文档库 最新最全的文档下载
当前位置:文档库 › 车站侧墙大型钢模板施工技术简介

车站侧墙大型钢模板施工技术简介

车站侧墙大型钢模板施工技术简介
车站侧墙大型钢模板施工技术简介

国帆路站侧墙大型钢模板施工交流

目录

1 大型钢模板简介 (2)

1.1 结构形式 (2)

1.2 大钢模组成规格 (2)

2 施工过程 (5)

2.1 施工流程 (5)

2.2 人员设备 (6)

2.3 施工进度 (6)

2.4 成本费用 (6)

2.5 国帆路站施工图片展示 (7)

3 存在问题及采取措施 (11)

3.1 拼缝漏浆 (11)

3.2 表面气泡 (12)

3.3 结构烂根 (12)

4 大型钢模改进探讨 (13)

1 大型钢模板简介

1.1 结构形式

国帆路站大型钢模施工借鉴青浦站大钢模经验,大型钢模主要结构由侧墙钢模面板、三角桁架、预埋件等3部分组成。

1.2 大钢模组成规格

1.2.1 面板

(1)面板宽度为2m ,高度为2.1m ,厚度为6mm 的Q235钢板;施工采用上下双拼,尺寸2m*4.2m 。

(2)连接螺栓用M20×60m m , 各块板之间通用互换。

(3)各板连接相同规格必须互换。

(4)安装桁架处的连接孔为φ21.5mm 连接钩头螺栓。

钢模板

支腿

调整螺栓 结构底板

支腿

连结型钢

图1 面板结构

1.2.2 三角桁架

(1)各桁架用φ48×3.5中成一体,由定做方自行处理。

(2)模板与模板之间连接用M20×60连接螺栓。连接孔φ21.5mm。

(3)调节螺栓用于调节桁架外口高度。

(4)型钢尺寸见详图。

图2 三角桁架结构

1.2.3 预埋件

预埋地锚32mm钢筋并设置接驳器,锚固长度按设计要求,详见侧墙大钢模剖面布置图。

图3 侧墙大钢模剖面布置图

2 施工过程

2.1 施工流程

大模板施工流程如下:

(1)底板施工,预埋地锚钢筋并设置接驳器,锚固长度按设计要求;

(2)绑扎侧墙钢筋;

(3)安装大模板及支架,固定并准确定位;

(4)浇筑下二层侧墙(4.2m大模板高度);

(5)搭设满堂支架及对撑支架,浇筑中板及其以下剩余侧墙,离壁墙与中板同步浇筑,离壁沟内设置木箱作为离壁墙及侧墙内侧模板,待浇筑下一层侧墙时拆除,中板上预埋地锚钢筋,地锚钢筋设于离壁墙外侧;

(6)绑扎下一层侧墙钢筋,搭设侧墙模板。大模板置于离壁沟内,支架底部架设在离

壁墙上,定位固定大模板。

(7)浇筑下一层侧墙,待强度满足要求后,拆除大模板,搭设顶板支架、完成顶板施工。

2.2 人员设备

(1)人工:4人/工作面

(2)设备:1台50t履带吊/工作面

2.3 施工进度

每个工作面约30m长度(15套2m*4.2m钢模),安装时间约为2天。混凝土浇筑之后3天拆模,基本上5天完成一段侧墙。

2.4 成本费用

国帆路施工时,我部向厂商定制了一些大钢模,采用加工购买形式,合同采购均价(含材料费、加工费等)约为6100元/t.

2.5 国帆路站施工图片展示

图4 侧墙钢模板安装

图5 侧墙钢模板安装

图6 钢模板侧墙养护

图7 大钢模侧墙拆模后图片

图8 大钢模侧墙拆模后细节图

图9 大钢模侧墙拆模后细节图3 存在问题及采取措施

3.1 拼缝漏浆

由于大钢模较为笨重,相邻两块模板间很难密贴,容易在拼缝处漏浆;可通过在模板拼缝处黏贴泡沫密封条,有效控制拼缝漏浆现象。

图10 拼缝漏浆及措施

3.2 表面气泡

因大钢模表面的致密性好,混凝土墙面本身也不吸水,表面的气泡难以排出,故混凝土表面易产生气泡。

图11 表面气泡及措施

3.3 结构烂根

由于大钢模高度较高,振捣棒过长,不易控制棒头振捣。易在墙根处产生“烂根”现象。

图12 结构烂根及措施

4 大型钢模改进探讨

(1)地铁车站中,盾构洞门尺寸基本相同,可定制定型钢模板用于洞门区域施工,由于洞门施工时间段,仅需2-3套模板即可在公司内各项目间流转,满足施工需求。

(2)定性钢模高度可以选择4m左右,基本满足上海车站侧墙一次浇筑的结构高度。

地铁车站单侧墙移动模架施工工法

地铁车站单侧墙移动模架施工工法 中铁二局股份有限公司城通公司 1.前言 在深基坑侧墙施工时,侧墙多采用定型竹胶板、木模板+钢管支撑组合体系,使用过程中存在耗费工时长,材料利用率低,表观质量差、渗漏水现象较严重等缺点。 在施工武汉市轨道二号线一期工程第十八标18A 分标段工程【洪山广场站】时,根据施工工艺、基坑深度、支护要求和土质情况,选择了移动模板台车,代替传统的组合式模板,减少了劳动力投入,提高了工作效率。 2.工法特点 2.1成本低廉; 2.2 安全可靠; 2.3 操作方便; 2.4工作效率高; 2.5节能环保; 3.适用范围 适用于地下车库、地下室、地下车站等单侧墙体系工程。 4.工艺原理 4.1工艺原理 1、加固原理:借助预埋的地脚螺栓+台车自重+台车斜向可调节钢锭进行加固; 2、行走原理:在台车底部设置万向轮行走装置,利用人工推动行走; 3、工作原理:模板制安、脚手架搭设一次成型,侧墙墙体分段整体浇筑,侧墙刹尖部分预留契口,后期通过注浆的方式,保证该部位砼密实度。 4.2侧压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: 2 /121022.0V t F c ββγ= H F c γ= 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取25 kN/m3 t0------新浇混凝土的初凝时间(h ),可按实测确定。当缺乏实验资料时,可采用

墙模板计算书

墙模板计算书 齐家工程;工程建设地点:;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 墙模板的计算参照《建筑结构荷载规范》(GB 50009-2001)、《混凝土结构设计规范》(GB50010-2002)、《钢结构设计规范》(GB 50017-2003)等规范。 墙模板的背部支撑由两层龙骨(木楞或钢楞)组成:直接支撑模板的为次龙骨,即内龙骨;用以支撑内层龙骨的为主龙骨,即外龙骨。组装墙体模板时,通过穿墙螺栓将墙体两侧模板拉结,每个穿墙螺栓成为主龙骨的支点。 根据《建筑施工手册》,当采用溜槽、串筒或导管时,倾倒混凝土产生的荷载标准值为2.00kN/m2; 墙模板的总计算高度(m):H=3.00;模板在高度方向分 2 段进行设计计算。 第1段(墙底至墙身高度1.50米位置;分段高度为1.50米): 一、参数信息 1.基本参数 次楞间距(mm):150;穿墙螺栓水平间距(mm):450; 主楞间距(mm):450;穿墙螺栓竖向间距(mm):450; 对拉螺栓直径(mm):M14; 2.主楞信息 主楞材料:圆钢管;主楞合并根数:2; 直径(mm):48.00;壁厚(mm):2.50; 3.次楞信息 次楞材料:木方;次楞合并根数:2; 宽度(mm):60.00;高度(mm):80.00; 4.面板参数

面板类型:胶合面板;面板厚度(mm):14.00; 面板弹性模量(N/mm2):6000.00;面板抗弯强度设计值f c(N/mm2):13.00; 面板抗剪强度设计值(N/mm2):1.50; 5.木方和钢楞 方木抗弯强度设计值f c(N/mm2):13.00;方木弹性模量E(N/mm2):9000.00; 方木抗剪强度设计值f t(N/mm2):1.50; 钢楞弹性模量E(N/mm2):206000.00;钢楞抗弯强度设计值fc(N/mm2):205.00; 墙模板设计简图 二、墙模板荷载标准值计算 按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值: F=0.22γtβ1β2V1/2 F=γH 其中γ -- 混凝土的重力密度,取24.000kN/m3; t -- 新浇混凝土的初凝时间,取2.000h; T -- 混凝土的入模温度,取20.000℃; V -- 混凝土的浇筑速度,取1.500m/h; H -- 模板计算高度,取1.500m; β1-- 外加剂影响修正系数,取1.200;

最新北京某地铁车站明挖结构模板方案单侧模板计算书.doc

北京某地铁车站明挖结构模板方案单侧模板计算书.d o c

一、编制依据 1.1施工图纸 1、北京地铁9号线工程怡海花园站(现改名为“科怡路站”)主体结构施工图 1.2施工图集 1、《混凝土结构施工图平面整体表示方法制图规则和构造详图》(06G101) 2、《建筑构造通用图集》(88J1系列) 1.3主要规程、规范 1、《混凝土结构工程施工质量验收规范》(GB50204-2002) 2、《混凝土结构工程施工质量验收规程》(DB01-82-2005) 3、《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001) 4、《建筑工程冬期施工规程》(JGJ104-97) 5、《北京市建筑安装工程分项施工工艺规程》(DBJ/T01-26-2003) 1.4主要标准 1、《建筑工程施工质量验收统一标准》(GB50300-2001) 2、《轨道交通车站工程施工质量验收标准》(QGD-006-2005) 3、《混凝土质量控制标准》(GB50164-92) 4、《混凝土强度检验评定标准》(GBJ107-87) 5、《建筑施工安全检查标准》(JGJ59-99) 1.5其它 1、北京地铁九号线工程科怡路站施工组织设计 2、北京地铁九号线工程科怡路站施工现场平面布置 3、《建筑施工手册(第四版)》 4、《建筑工程模板施工手册(第二版)》 5、绿色施工管理规程及图例 二、工程概况 2.1工程简介 科怡路站位于南四环北侧万寿路南延路下,呈南北向布置,车站为地下两层双柱三跨框架结构,岛式站台。车站有效站台中心里程为K2+507.614,起止里程为K2+396.414~

K2+578.864,车站主体总长182.45m,车站标准段宽度为19.7m,端头盾构井段宽度为23.4m。 车站设东南、东北2个风道以及东南、东北、西南和西北共4个出入口等附属结构,车站主体及附属结构均采用明挖法施工。 2.2主体结构概况 车站主体结构的相关情况如下表所示。

侧墙三角支架模板搭设方案样本

编号: ******站主体结构侧墙模板 及三角支架专项安全施工方案 工程名称: 地铁里程: 施工单位: 编制单位: 部门: 编制人: 审核人: 项目总工程师: 编制日期 : 主体结构侧墙模板及三角支架专项安全施工方案 1. 编制依据 《建筑施工计算手册》江正荣著中国建筑工业出版社;

《建筑施工手册》第四版中国建筑工业出版社; 《钢结构设计规范》GB50017- 中国建筑工业出版社; 《建筑结构荷载规范》GB50009- 中国建筑工业出版社; 《建筑施工安全检查标准》JGJ59-99中国建筑工业出版社; 《建筑工程大模板技术规程》JGJ74- 中国建筑工业出版社; 另外参照本工程施工图纸及施工组织设计编制本施工方案。 2. 工程概况 1.1 工程地理位置 体育馆站位于位于郑州市中心城区人民路与管城后街交叉口处, 如图1所示。 紫荆山站 市体育馆站 郑州火车站站 二七广场站 中原东路站 图1 工程地理位置示意图 3. 模板部分 3.1模板方案 侧墙模板体系由竖楞( H20木工字梁200mm×80mm) , 横向背楞( 10a双拼

槽钢) 和专用连接件组成, 木胶合板与竖楞( 木工字梁) 采用自攻螺栓和地板钉正面连接, 竖楞和横楞采用连接抓连接, 在竖楞上两侧对称设置两个吊钩。两块模板之间采用芯带连接, 用芯带销固定, 从而保证模板的整体性, 使模板受力更加合理、可靠。木梁直模板为装卸式模板, 拼装方便, 在一定范围和程度上能拼装成各种大小的模板。 3.2 施工方法 3.2.1直墙木模板经过芯带进行连接。 3.3模板的拼装 3.3.1 拼装前准备工作 常见模板拼装工具有: 手电钻, 开孔器, 钻头, 批头, 电刨, 电锯, 曲线锯, 锯片, 墨斗, 铅笔, 卷尺角尺, 电锯, 靠尺, 线坠, 油漆刷, 灰刀, 毛笔, 扳手, 胶枪, 气钉枪, 气钉, 油漆, 玻璃胶, 原子灰, 自攻螺钉, 钢丝等。 3.3.2 拼装平台 模板正面打自攻螺钉, 要求平台高度200~400mm, 可选用工字钢, 或者槽钢搭设平台, 操作平台大小根据模板的大小选择拼装场地。要求操作平台搭设牢固, 安全, 平稳, 对应的各构件平行而且确保在同一水平上, 对角线长度保持一致。 3.3.3 模板的拼装过程 ( 1) 放置背楞 根据侧墙新浇筑砼对模板侧压力大小, 横向背楞间距设置第一道与第二背楞间距600mm, 第二道与第三道700mm,第三与第四道900mm,第四与第五道1100mm。在横向背楞上画上定位线, 间距300mm, 按画线放置竖向背楞( 木工字梁) 。 ( 2) 木梁组成 先在背楞两端各放一根木工字梁, 画上定位线, 拉准对角线, 让两根木梁的长方形对角线相等, 然后用连接抓固定, 这两根木工字梁的同一端连上一根细线, 作为基准点, 其它木工字梁都对齐这根基准线排放, 并保证与两边的木

北京某地铁车站明挖结构模板方案单侧模板计算书.doc

北京某地铁车站明挖结构模板方案单侧模板计算书.doc

一、编制依据 1.1施工图纸 1、北京地铁9号线工程怡海花园站(现改名为“科怡路站”)主体结构施工图 1.2施工图集 1、《混凝土结构施工图平面整体表示方法制图规则和构造详图》(06G101) 2、《建筑构造通用图集》(88J1系列) 1.3主要规程、规范 1、《混凝土结构工程施工质量验收规范》(GB50204-2002) 2、《混凝土结构工程施工质量验收规程》(DB01-82-2005) 3、《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001) 4、《建筑工程冬期施工规程》(JGJ104-97) 5、《北京市建筑安装工程分项施工工艺规程》(DBJ/T01-26-2003) 1.4主要标准 1、《建筑工程施工质量验收统一标准》(GB50300-2001) 2、《轨道交通车站工程施工质量验收标准》(QGD-006-2005) 3、《混凝土质量控制标准》(GB50164-92) 4、《混凝土强度检验评定标准》(GBJ107-87) 5、《建筑施工安全检查标准》(JGJ59-99) 1.5其它 1、北京地铁九号线工程科怡路站施工组织设计 2、北京地铁九号线工程科怡路站施工现场平面布置 3、《建筑施工手册(第四版)》 4、《建筑工程模板施工手册(第二版)》 5、绿色施工管理规程及图例 二、工程概况 2.1工程简介 科怡路站位于南四环北侧万寿路南延路下,呈南北向布置,车站为地下两层双柱三跨框架结构,岛式站台。车站有效站台中心里程为K2+507.614,起止里程为K2+396.414~K2+578.864,车站主体总长182.45m,车站标准段宽度为19.7m,端头盾构井段宽度为23.4m。

地铁车站侧墙模板技术交底

施工技术交底记录 年月日

施工技术交底记录 年月日 模板拼装流程:放置背楞→竖肋组装→钢板上弹线下料→铺面板→弹线铺竖肋上槽钢背楞和吊钩→模板吊升靠在堆放架上。 模板及支架安装流程:钢筋绑扎并验收→弹出外墙边线→拼装好单元模板吊装到位→模板到位后用芯带及插销连接好各单元模板→吊装架体到位,并用钢管连接好相邻架体,利用架体尾部的调节螺栓使模板上口向墙体侧倾斜5mm→紧固好一次性埋件系统→验收合格后进行混凝土浇筑 图2.1 侧墙模板工艺流程

施工技术交底记录 年月日 交底单位:*市轨道交通5号线 二标五工区项目部 接收单位:项目部工程技术人员 接收人:

施工技术交底记录 年月日

施工技术交底记录 年月日 (四)阳角、阴角连接节点 阳角处模板通过45度的斜拉杆连接,角部合成企口形式,因为斜拉杆为45度方向受力,能有效保证角部不开模、不漏浆。(如下图) 阴角处模板通过定型角模连接,角模和直墙模板用直芯带连接。可以保证接口处的严密、不开模、不漏浆。(如下图) 图??阳角连接节点图??阴角连接节点 (五)混凝土工程 1.钢筋、模板报验合格后进行混凝土浇筑,每个班组8-10人,配置3根振动棒(1根备用) 2.砼浇筑前做好砼塌落度试验,也应在模板上标出各层顶面标高,混凝土的振捣使用插入式振捣棒,浇筑分层进行,每层厚度为300~400mm。 3.混凝土的浇筑连续进行,如必须间歇时,其间歇时间应尽量缩短,并应在前层混凝土初凝前,将次层混凝土浇灌完毕。混凝土运输、浇筑及间歇的全部时间,不得超过210 分钟,当超过时须设置施工缝。 4.混凝土运至浇筑地点后,经坍落度检验合格后,应立即浇筑入模。砼卸出时,其自由倾落高度不宜超过2m,若超过2m,应采用斜槽、溜槽等下料。混凝土下料应均匀、适量,边振捣边下料。

地铁隧道工程内侧墙模板拆除移模新技术

地铁隧道工程内侧墙模板拆除移模新技术 摘要:本文通过无锡地铁二号线工程无锡东站车站明挖结构侧墙施工实例,通过侧墙模板及支撑体系的选型,阐述了明挖地铁结构侧墙拆除移模施工工艺,形成了较为成熟的施工实践。 关键词:明挖地铁;侧墙移模;新技术 目前,国内用于明挖地铁隧道工程的内侧墙模板拆除技术主要为分散拆除和整片拆除。前者由于需要将模板的穿墙螺杆、背肋、背楞、面板等配件逐步拆除,然后用的时候再重新拼装组合,需要消耗大量的人力,配件损耗较大,对于模板的质量控制和工期控制不利;后者整片拆除,节约人工,配件损耗也较小,由于整片拆除,人工无法搬运,对于起吊设备要求较高,且如果侧墙顶板一起浇筑整片拆除中间侧墙模板时起吊设备无法利用。两者均存在众多施工安全隐患,施工质量难以控制,施工成本高昂,工期难以保障。因此,如何更加安全、经济、合理地解决明挖地铁隧道工程内侧墙模板拆除施工难题,是当前施工单位广泛关注且迫切需要解决的难题。 一、工程概况 1. 建筑概况 无锡市轨道交通2 号线无锡东站位于无锡安镇安西村,锡沪路南侧约400 米处。站前设单渡线,站后设交叉渡线、停车线,车站外包全长629.550m,外包宽度为 20.500m。有效站台中心里程为右DK25+218.585,车站的起点设计里程为右DK24+965.635,终点设计里程为 DK25+595.185,车站外包全长629.550m,外包宽度为 20.500m。 2. 结构概况 本工程与京沪高铁结构共体,位于京沪高铁新无锡东站房下,垂直于京沪高铁站场,为地下一层岛式站。 本工程外侧墙高度为5.71m,内侧墙高度为5.51m,采用单柱双跨钢筋混凝土箱形结构,局部双柱三跨钢筋混凝土箱形结构。顶板厚度 700mm,侧墙厚度为600mm、局部 700mm。顶板与侧墙交汇处设计300mm×900mm 的倒角。 3. 施工难点 (1)侧墙与顶板一体化施工,外墙高 571cm,混凝土侧压力较大,对侧墙模板体系和支撑体系要求非常高。 (2)现场大开挖和三阶大放坡,顶部最小放坡开口宽度65m,考虑大型起重设备施工成本高昂,则不可采用大型起重设备。 (3)现场采用QTZ63 型塔吊吊重和吊臂臂长限制。 (4)内墙高511cm,无法直接利用起吊设备进行吊拆,需配合支撑拆卸移装,对施工过程和操作技术要求较高。 (5)施工工期短。 本工程与京沪高铁结构共体,位于京沪高铁新无锡东站房下,垂直于京沪高铁站场,施工进度直接影响高铁的施工进度。京沪高铁年内施工任务位于地铁上部箱梁必须全部完成,高铁位于地铁上部现浇箱梁支撑架需搭设在地铁顶板上,这就要求地铁顶板混凝土必须在高铁搭设支撑架之前强度达到100%,而且时处冬季气温较低对于混凝土的养护非常不利。为了满足京沪高铁的施工进度,达到年内施工任务目标,必须在模板的支设与拆除上进行创新改进缩短模板的翻用时间,从而又快又经济的完成施工任务,保证总工期。 二、模板设计与施工多方案比较 1. 设计原则

地铁车站主体结构模板、支架计算书

地铁车站主体结构模板、支架计算书

计算书 1模板配置概况表 模板支架配置表 部位面板 (mm) 次楞(mm) 主楞(mm) 支撑(mm) 中板(0.4m) 18胶 合板 85×85方 木,间距300 [8槽钢或120× 120方木,间距900 Φ48×3.5碗扣架 900×900×1200布置 顶板(0.8m) 18胶 合板 85×85方 木,间距300 [8槽钢或120× 120方木,间距600 Φ48×3.5碗扣架 600×900×1200布置 中板梁 (0.9× 1.0m) 梁底 模板 18胶 合板 85×85方 木,间距150 [8槽钢或120× 120方木,间距300 Φ48×3.5碗扣架 300×900×1200布置 梁侧 模版 18胶 合板 85×85方 木,间距300 竖向Φ48×3.5钢管,间距为300;对拉螺栓, 纵向600,竖向300;斜撑钢管间距300 顶板梁(1.2×1.8m) 梁底 模板 18胶 合板 85×85方 木,间距150 [8槽钢或120× 120方木,间距300 Φ48×3.5碗扣架 300×900×1200布置 梁侧 模版 18胶 合板 85×85方 木,间距300 竖向Φ48×3.5钢管,间距为300;对拉螺栓, 纵向600,竖向300;斜撑钢管间距300 侧墙(0.7m),高 5.05m,6.19m,18胶 合板 85×85方 木,间距200 [10槽钢,间距600 Φ48×3.5碗扣架水平 撑,竖向间距600 6钢 板 [8槽钢,间 距300 双[10槽钢,间距 900(100,400,600) 三角架 柱 18胶 合板 100×100方 木间距200 双[10槽钢,间距 750 Φ48钢管,间距250 2材料的物理力学性能指标及计算依据 2.1材料的物理力学性能指标 1)材料的物理力学性能指标 ①碗扣支架钢管截面特性 根据JGJ166-2008规范表5.1.6、5.1.7采用: 外径48mm φ=,壁厚t=3.5mm,按壁厚3.0mm计算。截面积A=4.24cm2,自重q=33.1N/m,抗拉、抗弯抗压强度设计值f=205N/mm2,抗剪强度设计值fv=125N/mm2,弹性模量E=2.06×105N/mm2。

地铁车站侧墙模板技术交底_图文复习课程

*市轨道交通 5 号线 施工技术交底记录 年月日

市轨道交通 5 号线 施工技术交底记录 年月日 模板拼装流程:放置背楞→竖肋组装→钢板上弹线下料→铺面板→弹线铺竖肋上槽钢背楞和吊钩→模板吊升靠在堆放架上。 模板及支架安装流程:钢筋绑扎并验收→弹出外墙边线→拼装好单元模板吊装到位→模板到位后用芯带及插销连接好各单元模板→吊装架体到位,并用钢管连接好相邻架体,利用架体尾部的调节螺栓使模板上口向墙体侧倾斜5mm→紧固好一次性埋件系统→验收合格后进行混凝土浇筑

*市轨道交通 5 号线 施工技术交底记录 年 月 日

SG3 三、施工方法 (一)模板拼装 1.严格按照图纸尺寸在钢板上弹线。 2.弹线后下料,裁料时应注意保证所需面板边到边的尺寸,边角不得有破损,角部必须保证直度(特殊角度除外),模板下料后,根据设计图纸分类码好并贴上标号。 3.铺面板:根据设计图纸将钢板焊接在侧墙模板上。 4.模板拼装完并验查合格后,在模板后面用木板给每块模板编号,用吊装设备将模板吊在模板堆放架上。 (二)预埋部分安装 单侧支架由埋件系统和架体两部分组成,其中埋件系统部分包括:地脚螺栓、连接螺母、外连杆、连接螺母和压梁。 1.地脚螺栓出地面处与砼墙面的距离见图纸。各埋件杆相互之间的距离不大于305mm ,在靠近一端的起点与终点各布置一个埋件。 2.埋件系统及架体示意图见上图,埋件与地面成45度的角度,现场埋件预埋时要求拉通线,保证埋件在同一条直线上,同时,埋件角度必须按45度预埋。 3.地脚螺栓在预埋前应对螺纹采取保护措施,用塑料布包裹并绑牢,以免施工时砼黏附在丝扣上,影响下一步施工时螺母的连接。 4.因地脚螺栓不能直接与结构主筋点焊,为保证砼浇筑时埋件不跑位或偏移,要求在相应部位增加附加钢筋,地脚螺栓点焊在附加钢筋上,点焊时注意不要损坏埋件的有效直径。 交底单位: *市轨道交通5号线二标五工区项目部 接收单位: 项目部工程技术人员 交底人: 接收人: 市轨道交通 5 号线施工技术交底记录 年 月 日 工程名称 *市轨道交通5号线* 路站土建工程 分部工程 主体结构

地铁车站主体结构模板、支架计算书.doc

计算书 1模板配置概况表 模板支架配置表 2材料的物理力学性能指标及计算依据 2.1材料的物理力学性能指标 1)材料的物理力学性能指标 ①碗扣支架钢管截面特性 根据JGJ166-2008规范表 φ=,壁厚t=3.5mm,按壁厚3.0mm计算。截面积A=4.24cm2,自外径48mm 重q=33.1N/m,抗拉、抗弯抗压强度设计值f=205N/mm2,抗剪强度设计值fv=125N/mm2,弹性模量E=2.06×105N/mm2。 回转半径i=1.59cm,截面模量W=4.49cm3,截面惯性矩I=10.78cm4。

②方木 根据《建筑施工模板安全技术规范》(JGJ162-2008)附录 A 3.1-3 木材的强度设计值和弹性模量采用; 方木采用红皮云杉,弹性模量E=9000N/mm2,抗弯强度设计值f=13N/mm2,承压强度设计值f=10N/mm2,顺纹抗拉强度设计值fm=8.0 N/mm2,顺纹抗剪强度设计值fv=1.4N/mm2。 截面尺寸85mm×85mm,惯性矩I=bh3/12=4.350×10-6m4 ,抗弯截面模量W=bh2/6=1.024×10-4m3, 静矩S= bh2/8=7.677×10-5m3 截面尺寸100mm×100mm,惯性矩I=bh3/12=8.333×10-6m4 ,抗弯截面模量W=bh2/6=1.667×10-4m3, 静矩S= bh2/8=1.250×10-4m3 截面尺寸120mm×120mm,惯性矩I=bh3/12=1.728×10-5m4 ,抗弯截面模量W=bh2/6=2.88×10-4m3, 静矩S= bh2/8=2.16×10-4m3 ③木胶合板(参照产品试验性能参数) 模板采用胶合面板,规格2440mm×1220mm×18mm 抗弯强度设计值f=11.5N/mm2,承压抗拉强度设计值fm=8.0 N/mm2,抗剪强度设计值fv=1.3N/mm2,弹性模量E=6000 N/mm2; 取1m宽模板, 惯性矩: I=bh3/12=1000×183/12=4.86×10-7 m4; 模板的截面抵抗矩为:w=bh2/6=1000×182/6=5.40×10-5m3; 静矩: S= bh2/8=1000×182/8=4.05×10-5m3; ④钢模板面板 钢模板采用大模板,面板为6mm厚Q235A钢板,规格2m×3m。 抗弯拉、压强度设计值f=215N/mm2,抗剪强度设计值f=125N/mm2 弹性模量E=N/mm2。 取1m宽,截面积A=6000mm2,惯性矩I=1.8×10-8m4;截面模量W=6×10-6m3;静矩S=4.5×10-6m3 ⑤钢背楞 竖肋、横肋和边肋均采用[8普通型热轧槽钢;背楞采用2[10普通型热轧槽钢。

地铁明挖车站主体结构侧墙模板安装施工技术

– 58 – 2012年第11卷第1期 0 引言 地铁车站普遍采用明挖顺筑法施工,但由于大部分地铁车站都建于城市道路下面,不能进行放坡开挖再施工主体结构,只能采用地下连续墙或围护桩加临时支撑的支护体系,才能安全地进行基坑开挖和主体结构施工。主体结构采用外包防水形式,因为支护体系的存在,导致侧墙的单侧模板安装无法采用对拉螺栓进行固定,给侧墙模板施工带来一定的施工难度,容易出现涨模、跑模等现象,导致结构出现质量问题,引发侧墙渗漏,侵限主体净空等一系列问题。因此侧墙模板安装牢固,是保证主体结构实体质量和观感质量的措施之一。本文通过工程实例对侧墙模板安装施工技术进行了研讨,总结经验,为今后类似工程提供参考。 1 工程概况 广西大学站总长465m,分为地下两层,标准断面宽度为20.7m,两端为盾构始发井,采用明挖顺筑做法施工。主体围护结构采用800mm厚连续墙加内支撑体系。本工程主体建筑面积21,163.6㎡,为两柱三跨框架结构,结构埋深16.5m~17.9m,底板900mm厚,侧墙700mm厚,中板400mm厚,顶板800mm厚,顶板平均覆土度为3.4m。负二层层高6.58米,负一层层高5.55米,如图1。 图1 主体结构断面示意图 根据主体的结构形式和设计要求,将整个主体结构分29个段,共27个环向施工缝,侧墙水平施工缝根据施工组织要求布置,底板、中板和顶板不设纵向施工缝。 2 侧墙模板的施工方案 2.1 侧墙模板体系 为了保证侧墙与中板(顶板)整体性,采用侧墙和中板(顶板)连续浇注方案,不设置水平施工缝,混凝土施工步骤见图2。 图2 侧墙中板(顶板)混凝土施工步骤 侧墙混凝土浇筑采用分段、分层浇筑,每层浇筑自由倾落不超过2m,同时模板构件选用:采用18mm厚胶合模板的组合木模板,支架体系采用φ50×3.5钢管扣件式满堂脚手架(见图3)、设置横向、纵向及水平方向剪刀撑。侧墙根部采用φ18对拉螺杆焊接在侧墙主筋上,用槽钢作背楞进行对拉固定根部(见图4)。模板楞条采用采用100m×100mm木枋和双钢管(见图5)。 所选用的材料质量需符合现行国家标准规定。钢管表面平直光滑,无裂缝、结疤、分层、错位、硬弯、毛剌、压痕和深的划痕。钢管上严禁打孔,钢管在使用前先涂刷防锈 地铁明挖车站主体结构侧墙模板安装施工技术 莫智彪 (中铁隧道集团四处有限公司,广西 南宁 530007) 摘 要:侧墙结构的模板安装施工一直是地铁明挖车站主体结构工程施工的关键工序,本文以广西大学站侧墙模板施工为实例,简要阐述了侧墙模板施工技术的总体方案,同时简单论述了侧墙模板的设计和支撑体系验算分析。重点阐述广西大学站的侧墙模板安装施工质量和安全控制措施。 关键词:地铁;明挖车站;侧墙;安装;施工技术;平整度;垂直度 中图分类号:U231+.3 文献标识码:A 文章编号:1671-8089(2012)01-0058-03 [作者简介] 莫智彪(1978- ),男,广西桂林市人,2000年毕业于西南交通大学,本科,工程师,现从事城市轨道交通工程项目管理工作。 工程施工 Engineering Construction

地铁车站钢材料模板及支架计算书

附件1:计算书 本计算书钢管规格均取φ48×3.0mm 。 1 荷载汇总 2 材料性能汇总 3 侧墙钢模及支撑体系验算 3.1钢模板及支撑体系验算 (1)侧压力计算 根据《建筑施工计算手册》,新浇筑混凝土对模板最大侧压力按下列公式计算,并取二式中较小值。 21 21022.0V t F c ββγ= H F c γ= 式中: F ─新浇混凝土对模板的最大侧压力(2/m kN ) c γ─混凝土的重力密度,取243/m kN 0t ─新浇混凝土的初凝时间(小时),可按公式)15/(200t 0+=T ,T 为混凝土的温度,取20℃,h h 7.5)1520/(200t 0=+=

1β─外加剂影响修整系数,1β=1.2 2β─混凝土的坍落度影响修整系数。当坍落度小于30mm 时,取0.85; 50~90mm 时,取1.0;110~150mm ,取1.15,本次计算取2β=1.15 V ─混凝土浇注速度。取h m V /2= H ─混凝土侧压力计算位置至新浇混凝土顶面的总高度,本次侧墙浇注高 度取最大值4.70m 。得: 2 2 12101/74.582 15.12.17.52422.022.0m kN V t F c =?????==ββγ 。22/8.11270.424m kN H F c =?==γ 因二者取最小值,新浇混凝土对模板最大侧压力20/74.58m kN F =。 有效压头高度h 由下式计算: c F h γ/0= 有效压头m h 45.2=。 分项系数1.35,则作用在侧墙模板上的总荷载为: 2/30.7974.6835.1m kN F =?=。 (2)钢面板验算 钢面板采用6mm 钢板,背面间距350mm 布置[10槽钢,面板计算时按三跨连续梁考虑,有效净跨去330mm ,计算时取1m 板宽。 截面抵抗矩3322100.6610006 1 61W mm bh ?=??==模 截面惯性矩4433108.16100012 1 b 121mm h I ?=??== 模 进行刚度验算时,采用标准荷载,同时不考虑振动荷载作用,则模板上作用的均布荷载。m /74.5874.581b q 01kN F =?== 进行强度验算时,采用设计荷载,则作用在钢面板上的均布荷载 。m kN bF /07.5630.791q 2=?== ①刚度验算

墙模板(木模板)计算书

墙模板(木模板)计算书 计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计规范》GB 50017-2003 一、工程属性 二、荷载组合 新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]=min[0.22×24×4×1×1×21/2,24×4.1]=min[29.87,98.4]=29.87kN/m2

承载能力极限状态设计值S承=0.9max[1.2G4k+1.4Q3k,1.35G4k+1.4×0.7Q3k]= 0.9max[1.2×29.868+1.4×2,1.35×29.868+1.4×0.7×2]=0.9max[38.642,42.282]=0.9 ×42.282=38.054kN/m2 正常使用极限状态设计值S正=G4k=29.868 kN/m2 三、面板布置 小梁布置方式竖直左部模板悬臂长(mm)125 小梁间距(mm)200小梁一端悬臂长(mm)250 主梁间距(mm)450主梁一端悬臂长(mm)150 对拉螺栓横向间距(mm)450对拉螺栓竖向间距(mm)450 模板设计立面图 四、面板验算 面板类型覆面木胶合板面板厚度(mm)18 面板抗弯强度设计值[f](N/mm2)15面板弹性模量E(N/mm2)10000墙截面宽度可取任意宽度,为便于验算主梁,取b=0.45m,W=bh2/6=450×182/6=24300mm3,I=bh3/12=450×183/12=218700mm4

地铁车站模板支架计算书

计算书 为安全考虑,本计算书钢管规格均取φ48×3.0mm 。 1荷载汇总 2材料性能汇总 3 侧墙模板及支撑体系验算 3.1侧墙模板验算 (1)侧压力计算 根据《建筑施工计算手册》,新浇筑混凝土对模板最大侧压力按下列公式计算,并取二式中较小值。 21 21022.0V t F c ββγ= H F c γ= 式中: F ─新浇混凝土对模板的最大侧压力(2/m kN ) c γ─混凝土的重力密度,取243/m kN 0t ─新浇混凝土的初凝时间(小时),可按公式)15/(200t 0+=T ,T 为

混凝土的温度,取20℃,h h 7.5)1520/(200t 0=+= 1β─外加剂影响修整系数,1β=1.2 2β─混凝土的坍落度影响修整系数。当坍落度小于30mm 时,取0.85;50~90mm 时,取1.0;110~150mm ,取1.15,本次计算取2β=1.15 V ─混凝土浇注速度。取h m V /1= H ─混凝土侧压力计算位置至新浇混凝土顶面的总高度,本次侧墙浇注高度取最大值5.35m 。得: 22 12101/53.411 15.12.17.52422.022.0m kN V t F c =?????==ββγ 。22/4.12835.524m kN H F c =?==γ 因二者取最小值,新浇混凝土对模板最大侧压力20/53.41m kN F =。 有效压头高度h 由下式计算: c F h γ/0= 有效压头。 分项系数1.35,则m h 73.1=作用在侧墙模板上的总荷载为: 2/07.5653.4135.1m kN F =?=。 (2)侧模板验算 侧墙模板在力学上属于受弯构件,按三跨连续梁计算。墙侧模板采用 mm 15=δ竹胶板,内楞采用28585mm ?方木,间距mm 280。 截面抵抗矩34221075.31510006 1 61W mm bh ?=??==模 截面惯性矩45331081.215100012 1 b 121mm h I ?=??== 模 进行刚度验算时,采用标准荷载,同时不考虑振动荷载作用,则模板上作用的均布荷载。m /53.4153.421b q 01kN F =?== 进行强度验算时,采用设计荷载,则作用在模板上的均布荷载 。m kN bF /07.5607.561q 2=?== ①刚度验算

地铁车站侧墙模板技术交底 图文复习课程

此文档收集于网络,如有侵权请联系网站删除SG3号线*市轨道交通 5 施工技术交底记录日月年

此文档仅供学习和交流. 号线 5 *市轨道交通施工技术交底记录日年月工程名称*5号线*市轨道交通路分部工程主体结构

此文档仅供学习和交流. 此文档收集于网络,如有侵权请联系网站删除 SG3市轨道交通 5 号线*施工技术交底记录日月 工程名称*5号线市轨道交通* 路分部工程主体结构 此文档仅供学习和交流. 此文档收集于网络,如有侵权请联系网站删除三、施工方法(一)模板拼装严格按照图纸尺寸在钢板上弹线。1.弹线后下料,裁料时应注意保证所需面板边到边的尺寸,边角不得有破损,角部2. 必须保证直度(特殊角度除外),模板下料后,根据设计图纸分类码好并贴上标号。 3.铺面板:根据设计图纸将钢板焊接在侧墙模板上。模板拼装完并验查合格后,在模板后面用木板给每块模板编号,用吊装设备将模4. 板吊在模板堆放架上。(二)预埋部分安装单侧支架由埋件系统和架

体两部分组成,其中埋件系统部分包括:地脚螺栓、连接螺母、外连杆、连接螺母和压梁。地脚螺栓出地面处与砼墙面的距离见图纸。各埋件杆相互之间的距离不大于1. 305mm,在靠近一端的起点与终点各布置一个埋件。现场埋件预埋时要求45度的角度,2.埋件系统及架体示意图见上图,埋件与地面成45度预埋。拉通线,保证埋件在同一条直线上,同时,埋件角度必须按地脚螺栓在预埋前应对螺纹采取保护措施,用塑料布包裹并绑牢,以免施工时砼3. 黏附在丝扣上,影响下一步施工时螺母的连接。因地脚螺栓不能直接与结构主筋点焊,为保证砼浇筑时埋件不跑位或偏移,要求4. 在相应部位增加附加钢筋,地脚螺栓点焊在附加钢筋上,点焊时注意不要损坏埋件的有效直径。 号线市轨道交通5* 接收单位:项目部工程技术人员交底单位: 二标五工区项目部接收人:交底人:SG3号线*市轨道交通 5 施工技术交底记录日月年 *5市轨道交通号线* 分部工程主体结构工程名称路站土建工程此文档仅供学习和交流. 此文档收集于网络,如有侵权请联系网站删除

地铁车站离壁式侧墙小空间无拉杆模板施工技术

地铁车站离壁式侧墙小空间无拉杆模板施工技术 发表时间:2018-05-23T11:50:40.400Z 来源:《基层建设》2018年第6期作者:王超之 [导读] 摘要:本文主要结合厦门地铁2号线马銮西站高大支模离壁式侧墙施工实例,根据组合大钢模采用精轧螺纹钢对拉施工工艺特点,通过优化拉杆使用量,实现侧墙模板无拉杆施工,解决离壁式小空间模板加固施工难题,对其加快侧墙施工进度,提高侧墙止水效果,降低施工成本,提高施工安全性进行分析。 中交第三航务工程局厦门工程公司 361000 摘要:本文主要结合厦门地铁2号线马銮西站高大支模离壁式侧墙施工实例,根据组合大钢模采用精轧螺纹钢对拉施工工艺特点,通过优化拉杆使用量,实现侧墙模板无拉杆施工,解决离壁式小空间模板加固施工难题,对其加快侧墙施工进度,提高侧墙止水效果,降低施工成本,提高施工安全性进行分析。 关键词:离壁式小空间侧墙施工无拉杆模板 25a工字钢精轧螺纹钢对拉杆进度止水效果成本安全性 1 引言 根据目前地铁车站的施工情况分析,离壁式侧墙施工,基本上采用规格木模板通过止水拉杆进行加固或者组合钢模板通过止水拉杆进行对拉。这样存在的问题就是止水拉杆的使用量大,离壁空间小,搭设操作平台困难,安装模板时对拉杆的孔位对中及拉杆预穿等功效低,加固工作量大,同时浇筑混凝土后,拉杆尾部处理数量多、工作量大,造成成本增加,且封堵效果差,影响后期止水效果。 考虑到木模在对拉螺杆加固过程容易变形,平整度无法保证,钢模板采用普通钢材的拉杆,对孔位对中要求较高,预穿功效低和拉杆止水效果等原因,本工程在采用钢模板的基础上,结合简支梁的受力特点,对钢模板的受力体系进行优化,采用双拼25a工字钢作为主楞,提高其强度和刚度,通过两道25mm精轧螺纹钢(或32mm的普通圆钢加工的拉杆)上下进行对拉,实现模板体系加固。优化后的方案,在确保模板受力安全可靠的前提下,不仅减少了拉杆的使用量,提高的侧墙混凝土自防水的效果,而且优化了拉杆的安装工艺,提高模板安装的功效,大大降低了施工成本。 2工程概况 马銮西站为地下两层双岛四线车站,车站采用明挖法施工。负一层侧墙在冠梁标高以上,负二层侧墙在冠梁标高以下,侧墙墙厚700mm,墙高站台层墙高6.21m,站厅层层高4.95m,侧墙为离壁式,外墙与围护结构间的设计间距为50cm。 3施工工艺 3.1材质及规格 离壁式侧墙采用钢模板,面板采用5mm厚钢板,横肋选用8#槽钢,间距35cm,竖向主楞采用双拼25a的工字钢,间距80cm,模板均采用平接口螺栓连接,大模板通过主楞,采用上下两道25mm的精轧螺纹钢(或32mm的拉杆)进行连接。 (1)组合钢模单块规格为1.6m*4.6m,并设置调节块,可加高1米。面板采用5mm厚的钢板,横肋采用8#的槽钢,间距35cm,模板均采用平接口螺栓连接。 (2)模板加固的竖向主楞采用双拼25a的工字钢,通过10cm厚的连接钢板组焊而成,竖向顶部设置吊耳,底部设置20cm的槽口,主楞间距按80cm设置。 (3)对拉杆按两种类型加工,采用直径为25cm的精轧螺纹钢,其抗拉值不小于650KN。其中,下口预埋在矮边墙,单根长90cm,拉杆中间设有8cm*8cm厚度为2mm的止水片,上口拉杆设于施工缝以上,采用通长精轧螺纹拉杆,配套专用螺母,可重复利用。 3.2施工方法 (1)施工底板时,将精轧螺纹钢(或32mm拉杆)止水拉杆提前预埋在底板矮边墙中,单根长90cm,外露边墙10cm,预埋拉杆时,两端设置两块厚度为1.8mm的模板垫片,并排布置,紧贴矮边墙内膜,便于后期的拉杆处理及封堵。考虑到压底梁施工的影响,矮边墙高度设置1.25m,拉杆预埋在施工缝下去20cm。严格把控矮边墙的线型及平面位置,对拉杆的标高进行拉线控制。 (2)中板盘扣式满堂支架搭设,作为钢筋绑扎平台。 (3)侧墙钢筋绑扎、止水钢板焊接、保护垫块安装,垫块按1m间距布置。 (4)通过精轧螺纹钢专用连接器对预埋拉杆进行接长。 (5)采用塔吊或汽车吊进行组合钢模吊装及现场拼接,模板直接落在预埋的拉杆上方,通过钢管、扣件,依靠满堂支架及地下连续墙对模板进行临时固定。 (6)25a双拼工字钢吊装、安装,紧贴钢模,依靠自重,将主楞下部槽口对准拉杆,插入预埋的拉杆,进行下口拉杆加固。 (7)在模板上口设置定位钢筋,安装上口的拉杆,紧固螺母。 4模板体系方案优化比选 4.1提高进度 (1)施工简单模块化,模板安装只有面板及主楞,竖向面板采用单块整体吊装,主楞两端拉杆位置设置成槽口,可依靠自重竖向吊装就位,无需搭设外排脚手架,操作简单高效。 (2)拉杆数量少,且设计在面板以外,无需在面板内进行对穿,加固速度明显提高,混凝土拆模完成后,只需处理下口矮边墙一道拉杆,切除及封堵工程量少,速度快,可以立马转换到防水施工,桩间混凝土回填,保证混凝土支撑切除时回填素混凝土的强度。 (3)模板体系强度及刚度有较大的富余量,确保混凝土连续浇筑的安全性,缩短了侧墙混凝土浇筑的时间,加快工序转换。 (4)侧墙模板安装总体人员投入少,在确保木工总数不变的情况下,可以调配更多的人员进行板面及柱子模板的施工,提高总体施工速度。 4.2提高安全性 (1)精轧螺纹钢属于高强度材质,抗拉强度远远大于混凝土产生的侧压力。 (2)工序分明,面板与主楞分离,较常规大钢模轻便,便于吊装作业,同时相对木模无交叉施工,人员投入少,方便现场指挥操作。

地铁车站钢模板及支架计算书

附件1:计算书本计算书钢管规格均取φ48×3.0mm。 1 荷载汇总

2 材料性能汇总

3 侧墙钢模及支撑体系验算 3.1钢模板及支撑体系验算 (1)侧压力计算 根据《建筑施工计算手册》,新浇筑混凝土对模板最大侧压力按下列公式计算,并取二式中较小值。 21 21022.0V t F c ββγ= H F c γ= 式中: F ─新浇混凝土对模板的最大侧压力(2/m kN ) c γ─混凝土的重力密度,取243/m kN 0t ─新浇混凝土的初凝时间 (小时),可按公式)15/(200t 0+=T ,T 为混凝土的温度,取20℃,h h 7.5)1520/(200t 0=+= 1β─外加剂影响修整系数,1β=1.2 2β─混凝土的坍落度影响修整系数。当坍落度小于30mm 时,取 0.85;50~90mm 时,取1.0;110~150mm ,取1.15,本次计算取2β=1.15 V ─混凝土浇注速度。取h m V /2= H ─混凝土侧压力计算位置至新浇混凝土顶面的总高度,本次侧 墙浇注高度取最大值4.70m 。得: 2 2 1 2101/74.582 15.12.17.52422.022.0m kN V t F c =?????==ββγ 。22/8.11270.424m kN H F c =?==γ 因二者取最小值,新浇混凝土对模板最大侧压力20/74.58m kN F =。 有效压头高度h 由下式计算: c F h γ/0= 有效压头m h 45.2=。

分项系数1.35,则作用在侧墙模板上的总荷载为: 2/30.7974.6835.1m kN F =?=。 (2)钢面板验算 钢面板采用6mm 钢板,背面间距350mm 布置[10槽钢,面板计算时按三跨连续梁考虑,有效净跨去330mm ,计算时取1m 板宽。 截面抵抗矩3322100.6610006 16 1W mm bh ?=??==模 截面惯性矩4433108.161000121 b 121mm h I ?=??== 模 进行刚度验算时,采用标准荷载,同时不考虑振动荷载作用,则模板上作用的均布荷载。m /74.5874.581b q 01kN F =?== 进行强度验算时,采用设计荷载,则作用在钢面板上的均布荷载 。m kN bF /07.5630.791q 2=?== ①刚度验算 钢面板挠度mm 31.110 8.110210033074.58677.0100EI q K 4 54 41W =??????==模l ω 钢面板容许挠度值mm 50.1][=ω ][ωω<,挠度满足规范要求 ②强度验算 mm N l q K M M ??=??==5222max 1064.833030.791.0 2 3 5max /0.14410 0.61064.8mm N W M =??==模σ 钢面板抗弯强度设计值2/215mm N f m =钢板。 钢板m f <σ,强度符合规范要求。 上面各式中: 1q ――作用于模板上的标准均布荷载; 2q ――作用于模板上的均布荷载; l ――内楞间距; σ――模板承受的应力; 模W ――模板的截面抵抗矩;

相关文档
相关文档 最新文档