文档库 最新最全的文档下载
当前位置:文档库 › 薄膜制备的方法与技巧

薄膜制备的方法与技巧

薄膜制备的方法与技巧
薄膜制备的方法与技巧

一种新型有机薄膜制备方法的调研报告

电子91 09051015 刘明伟

(一)名称:表面分子印迹交替层状组装(SMILBL)薄膜;

(二)调研途径:Google学术搜索;钱学森图书馆馆藏文献;中国知网;中外文核心期刊查询系统;

(三)方法描述:

(1)分子印迹技术:以某一特定的目标分子为模板,制备对该分子具有特异

选择性识别的聚合物。传统方法是将模板分子、功能单体、交联剂混合

在一起,聚合后再除去模板分子。

(2)SMILBL方法:模板分子与聚电解质在溶液中组装形成超分子复合物,

然后以此超分子复合物为构筑基元,与感光性高分子如重氮树脂(DAR)

通过常规交替层状组装形成聚合物多层膜,利用聚合物多层膜之间的光

化学反应形成稳定的多层膜,然后去除模板分子得到分子印迹交替组装

薄膜。以下是几种表面分子印迹交替层状组装薄膜的构建方法:

(a)基于静电作用的单电荷分子非常规交替层状组装:将溶液中的静电负荷与界面交替沉寂相结合。例如以蒽丙酸钠作为待组装单电

荷分子,先在水溶液中将其与聚阳离子进行预组装,以此为基元

与聚阴离子交替组装,形成复合物多层膜。其中的蒽丙酸钠小分

子可通过盐溶液浸泡释放出来,形成选择性吸附负电荷分子的多

层膜。

(b)基于静电作用的交替层状组装表面印迹多层膜:解决了上述方法洗脱小分子后多层膜体系坍塌问题的一种方法。例如以带多个正

电荷Por为模板分子,先将其与聚阴离子PAA静电结合形成超分

子混合物,以此为基元与具光反应性的重氮树脂DAR交替层状

组装制备多层膜;再通过紫外光照射,重氮基团与聚丙烯酸的羧

基发生原位光化学反应,将静电力转化为化学键,从而极大提高

多层膜的稳定性。

(c)基于多价相互作用的交替组装表面印迹多层膜:为进一步提高SMILBL薄膜的选择性,引入基于氢键的多重相互作用来实现对

有相似结构分子的选择性吸附。例如选取具有多个氢键的模板分

子---茶碱衍生物,通过可逆的二硫键接枝到PAA聚合物链上形成

前驱体,再通过溶液中预组装使前驱体通过氢键识别形成共价键-

氢键复合物,再将它与DAR进行交替沉积得到多层膜。经光交

联及打断二硫键洗脱茶碱残基后,就实现了在交替沉积薄膜中构

筑稳定的具有多识别位点的结合空腔,从而可识别结构相近的茶

碱生物分子。

(四)薄膜特征:

(a)选择性高,制备相对简单,稳定性好;

(b)构筑基元选择性范围较宽;

(c)交替层状结构易于调控,如可简单增加沉积层数来控制印迹点数量和深度;

(d)多点相互作用的引进可能提高选择性;

(e)有优良的基地适应性。

(五)方法应用:不同的分子间相互作用均可用于分子印迹交替组装薄膜的制备,并且通过引入多点相互作用可以提高其选择性。以此为基础,交替

层状组装分子印迹薄膜分别与微接触印刷和膜分离技术相结合,制备了

具有正电荷选择性的印章材料和电荷选择性的膜分离材料,从而提供一

种新的制备表面分子印迹材料的方法。比如(三)中的(b)方法与微接

触印刷技术结合,可制备对墨水分子具有选择性的印章。

(六)参考文献:

1张巧珍,师晋生,邓启良,景作亮;分子印迹聚合物[J];材料导报;2003年S1期;

2 张希;聚合物多层膜的表面分子工程[J];高分子学报;2007年10期;

3Chen H, Zeng G H, Wang Z Q, Zhang X, Peng M L, Wu L Z, Tung C H; Chem Mater, 2005, 17:6679~6685;

4史瑞雪,郭成海,邹小红,朱春野,左言军,邓云度;分子印迹技术研究进展[J];化学进展;2002年03期;

5Shi F, Liu Z, Wu G L, Zhang M, Chen H, Wang Z Q, Zhang X; Adv Funct Mater, 2007,17:1821~1827;

6张希,刘志华;表面印迹交替层状组装薄膜;高分子学报;2011年09期;7孙俊奇;聚合物复合物层组装膜[J];高分子学报;2011年09期。

高分子膜材料的制备方法

高分子膜材料的制备 方法 xxx级 xxx专业xxx班 学号:xxxxxxx xxx

高分子膜材料的制备方法 xxx (xxxxxxxxxxx,xx) 摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。 关键词:膜分离,膜材料,膜制备方法 1.引言 膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。 2.膜材料的制备方法 2.1 浸没沉淀相转化法 1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。所谓相转化法

制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。

薄膜物理与技术A卷答案

《薄膜物理与技术》A卷试题参考答案及评分细则 一、名词解释:(本题满分20分,每小题5分) 1、饱和蒸汽压 在一定温度下(1分),真空室内蒸发物质的蒸气与固体或液体平衡过程中(2分)所表现出的压力称为该物质的饱和蒸气压。(2分) 2、溅射 是指荷能粒子轰击固体物质表面(靶),(1分)并在碰撞过程中发生动能与动量的转移,(2分)从而将物质表面原子或分子激发出来的过程。(2分) 3、化学气相沉积 把含有构成薄膜元素的一种或几种化合物的单质气体供给基片(2分),利用热、等离子体、紫外线、激光、微波等各种能源(2分),使气态物质经化学反应形成固态薄膜。(1分)。 4、外延生长 外延生长技术就是在一块半导体单晶片上(2分)沿着单晶片的结晶轴方向生长(2分)一层所需要的薄单晶层。(1分) 二、简答题:(本题满分80分) 1、什么叫真空?写出真空区域的划分及对应的真空度(10分) 答:真空是指低于一个大气压的气体空间。(2分) 对真空的划分: 1)粗真空:105-102Pa;(2分) 2)低真空:102-10-1Pa;(2分) 3)高真空:10-1-10-6Pa;(2分) 4)超高真空:<10-6Pa。(2分) 2、什么是真空蒸发镀膜法?其基本过程有哪些?(10分) 答:真空蒸发镀膜法(简称真空蒸镀)是在真空室中,加热蒸发容器中待形成薄膜的原材料,使其原子或分子从表面气化逸出(2分),形成蒸气流,入射到基片表面,凝结形成固态薄膜的方法。(2分)其基本过程包括: (1)加热蒸发过程。包括凝聚相转变为气相的相变过程。(2分) (2)输运过程,气化原子或分子在蒸发源与基片之间的输运。(2分) (3)蒸发原子或分子在基片表面的淀积过程,即使蒸气凝聚、成核、核生长、形成连续薄膜。(2分) 3、简述磁控溅射的工作原理。(10分) 答:磁控溅射的工作原理是:电子e在电场E作用下,在飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子e,电子飞向基片,Ar+在电场作用下加速飞向阴极靶,(2分)并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子则淀积在基片上形成薄膜。(2分) 二次电子e1一旦离开靶面,就同时受到电场和磁场的作用。一般可近似认为:二次电子在阴极暗区时,只受电场作用;一旦进入负辉区就只受磁场作用。(2分)

薄膜材料与薄膜技术复习资料完整版本

1.为了研究真空和实际使用方便,根据各压强范围内不同的物理特点,把真空划分为 粗真空,低真空,高真空,超高真空四个区域。 2.在高真空真空条件下,分子的平均自由程可以与容器尺寸相比拟。 3.列举三种气体传输泵旋转式机械真空泵,油扩散泵和复合分子泵。 4.真空计种类很多,通常按测量原理可分为绝对真空计和相对真空计。 5.气体的吸附现象可分为物理吸附和化学吸附。 6.化学气相反应沉积的反应器的设计类型可分为常压式,低压式,热壁 式和冷壁式。 7.电镀方法只适用于在导电的基片上沉积金属和合金,薄膜材料在电解液中是以 正离子的形式存在。制备有序单分子膜的方法是LB技术。 8.不加任何电场,直接通过化学反应而实现薄膜沉积的方法叫化学镀。 9.物理气相沉积过程的三个阶段:从材料源中发射出粒子,粒子运输到基片和粒子 在基片上凝聚、成核、长大、成膜。 10.溅射过程中所选择的工作区域是异常辉光放电,基板常处于负辉光区,阴极 和基板之间的距离至少应是克鲁克斯暗区宽度的3-4倍。 11.磁控溅射具有两大特点是可以在较低压强下得到较高的沉积率和可以在较低 基片温度下获得高质量薄膜。 12.在离子镀成膜过程中,同时存在吸附和脱附作用,只有当前者超 过后者时,才能发生薄膜的沉积。 13.薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与 结合生长过程。 14.原子聚集理论中最小稳定核的结合能是以原子对结合能为最小单位不连续变化 的。 15.薄膜成核生长阶段的高聚集来源于:高的沉积温度、气相原子的高的动能、 气相入射的角度增加。这些结论假设凝聚系数为常数,基片具有原子级别的平滑度。 16.薄膜生长的三种模式有岛状、层状、层状-岛状。 17.在薄膜中存在的四种典型的缺陷为:点缺陷、位错、晶界和 层错。 18.列举四种薄膜组分分析的方法:X射线衍射法、电子衍射法、扫描电子 显微镜分析法和俄歇电子能谱法。 19.红外吸收是由引起偶极矩变化的分子振动产生的,而拉曼散射则是由引起极化率 变化的分子振动产生的。由于作用的方式不同,对于具有对称中心的分子振动,红外吸收不敏感,拉曼散射敏感;相反,对于具有反对称中心的分子振动,红外吸收敏感而拉曼散射不敏感。对于对称性高的分子振动,拉曼散射敏感。 20.拉曼光谱和红外吸收光谱是测量薄膜样品中分子振动的振动谱,前者 是散射光谱,而后者是吸收光谱。 21.表征溅射特性的主要参数有溅射阈值、溅射产额、溅射粒子的速度和能 量等。 什么叫真空?写出真空区域的划分及对应的真空度。 真空,一种不存在任何物质的空间状态,是一种物理现象。粗真空105~102Pa 粘滞流,分子间碰撞为主低真空102~10-1 Pa 过渡流高真空102~10-1 Pa分子流,气体分子与器壁碰撞为主超高真空10-5~10-8 Pa气体在固体表面吸附滞留为主极高真空10-8 Pa以下·什么是真空蒸发镀膜法?其基本过程有哪些?

薄膜的材料及制备工艺

薄膜混合集成电路的制作工艺 中心议题:多晶硅薄膜的制备 摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化学反应气相沉积(PECVD等,进行详细说明。 关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA); 快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD) 引言 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。 1薄膜集成电路的概述

在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。 2物理气相沉积-蒸发 物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。 3 等离子体辅助化学气相沉积--PECVD

传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进反应、降低温度。 降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化与性能恶化;避免薄膜与衬底中出现较大的热应力等。 4低压化学气相沉积(LPCVD)

膜结构、膜材料制作加工工艺及其流程

膜材料制作加工工艺及其流程 1、膜材料制作加工流程 1.1、膜结构应根据建造物的性质和等级、使用年限、使用功能、结构跨度、防火要求、地区自然条件及对膜材的耐用年限等要求进行膜材选用。 材料验收→放样→复核→裁剪→排版→搭接→角、顶→边→检验→清洗→包装。 1.2、应根据建筑防火等级和防火要求来选择膜材。 1.3、膜片连接处应保持高度水密性,应进行了抗剥离测试。膜片宜呈瓦状排列,由高处膜片盖住低处膜片。 1.4、膜结构在裁剪中必须考虑预张拉应力的影响,根据膜材的应变关系确定膜片的收缩量,对膜片的尺寸进行调整。 1.5、裁剪缝的应考虑膜材力学性能的正交各向异性,宜使结构主应力方向与织物纤维向

一致。 1.6、膜结构的连接节点包括膜片与膜片连接节点和膜面与支承结构连接节点。根据支承体系的不同,可分为膜面与柔性支承结构节点和膜面与刚性支承结构节点。接照所处部位不同,可分为中间节点和边界节点。 1.7、膜结构的连接构造应考虑结构的形状、荷载、制造、安装等条件,使结构安全、可靠、确保力的传递,并能适应可能的位移和转动。 1.8、膜面与支承结构连接节点必须具有足够的强度和刚度,不得先于连接的构件和膜材而破坏,也不应产生影响受力性能的变形。 1.9、膜片连接处应保持高度水密性,应进行抗剥离测试,并应防止织物磨损、撕裂。连接处的金属构件应有防止腐蚀的措施。连接构件造应充分考虑膜材蠕变的影响。 2、膜片连接的构造原则 2.1、膜片之间可用热融合、缝合或机械连接,如图: (a)热融合 (b)缝合 (c)机械连接 2.2、膜片连接处的膜材强度,应由制作单位工艺保证。当工程需要时,应由试验验证。 2.3、膜片与膜片之间的接缝位置应依据建筑要求、结构要求、经济要求等因素综合确定。 2.4、膜面的拼接纹路应根据膜材主要受力经纬方向合理安排,宜采用纬向拼接、经向拼接和树状拼接三种方法。 2.5、屋面膜片宜反搭接,搭接接缝应考虑防水要求,见图:

氧化物薄膜的制备方法

氧化物薄膜的制备方法 不同的制备技术及工艺参数决定了薄膜的结构特性和光电性质。目前,制备氧化铜薄膜的方法主要有:磁控溅射法(Magnetron Sputtering)、金属有机物化学气相沉积(MOCVD)、喷雾热分解(Spray Pyrolysis)、溶胶-凝胶法(Sol-gel)、热蒸发镀膜法等。其中溅射法、MOCVD、脉冲激光沉积和热蒸发镀膜法都可以生长出性能良好的氧化铜薄膜,是制备氧化铜半导体光电器件的良好选择。下面简要介绍这几种常用方法[5]。 (1)磁控溅射法(Magnetron Sputtering) 磁控溅射法是目前(尤其是国内)研究最多、最成熟的一种氧化铜薄膜的制备方法。现已开发出以氧化铜陶瓷为靶材,沉积过程无化学变化的普通溅射方法和以铜为靶材,沉积过程中铜与环境气氛中的氧发生反应的反应溅射方法。磁控溅射可以制备出 c 轴高度择优取向,表面平整且透明度很高的致密薄膜。衬底可以是单晶硅片、玻璃、蓝宝石等。 磁控溅射法要求较高的真空度,合适的溅射功率及衬底温度,保护气体一般用高纯的氩气,反应气体为氧气。基本原理是:在阴极(靶材)和阳极(衬底)之间加电场,向真空室内通入氩气和氧气。在电场的作用下,真空室内的气体电离,产生离子。离子又在电场的作用下被加速,并向阴极靶材运动。由于施加在阳极和阴极之间的电场很强,电离的离子具有很高的动能并轰击阴极靶材,将靶材上的物质以分子和分子团的形式溅射出来并射向阳极衬底。磁控溅射由于磁场使等离子体局域在靶表面附近作摇摆式运动,延长了电子运动路径,提高了电子与反应粒子的碰撞几率,在靶表面附近形成高密度的等离子体区,从而达到高速溅射。高密度电子存在的另一个好处是使磁控溅射可以在比普通溅射低的气压下工作,从而减少微孔并获得柱状生长。磁场使大多数电子被封锁在靶附近区域,从而显著减少电子对薄膜的轰击损伤,也降低了基片的温升。磁控溅射制备工艺简单,容易实现掺杂、成本低、尾气无污染,适宜规模化生产。而且,磁控溅射法可以制备高度 c 轴取向,表面平整度高,可见光透过率高及光电性能良好的薄膜。由于磁控溅射是一种高能沉积方法,粒子轰击衬底或已经生长的薄膜表面容易造成损伤,因此生长单晶薄膜或本征的低缺陷浓度氧化铜半导体有很大难度。总体来看,溅射法制备的氧化铜薄膜质量不如利用MOCVD方法制备的氧化

薄膜材料与技术

薄膜技术在能源材料中的应用——薄膜太 阳能电池 一概述 能源和环境是二十一世纪面临的两个重大问题,据专家估算,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。太阳能电池作为可再生无污染能源,能很好地同时解决能源和环境两大难题,具有很广阔的发展前景。照射到地球上的太阳能非常巨大,大约40 min照射到地球上的太阳能就足以满足全球人类一年的能量需求。因此,制备低成本高光电转换效率的太阳能电池不仅具有广阔的前景,而且也是时代所需。 太阳能电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳能电池种类繁多,主要有硅太阳能电池、聚光太阳能电池、无机化合物薄膜太阳能电池、有机薄膜太阳能电池、纳米晶薄膜太阳能电池和叠层太阳能电池等几大类[1]。 二薄膜太阳能电池。 1、薄膜硅太阳能电池 薄膜硅太阳能电池(硅膜厚约50μm)的出现,相对晶体硅太阳能电池,所用的硅材料大幅度减少,很大程度上降低了晶体硅太阳能电池的成本。薄膜硅太阳能电池主要有非晶硅(a—Si)、微晶硅(μc—Si)和多晶硅(p-Si)薄膜太阳能电池,前两者有光致衰退效应,其中μc—Si薄膜太阳能电池光致衰退效应相对较弱但μc-Si薄膜沉积速率低(仅1.2 nm/s) ,光致衰退效应致使其性能不稳定,发展受到一定的限制,而后者则无光致衰退效应问题,因此是硅系太阳能电池

的发展方向[1]。 太阳能电池是制约太阳能发电产业发展的瓶颈技术之一。目前主要的研究工作集中在新材料、新工艺、新设计等方面,其目的是为了提高电池转换效率和降低电池制造成本。制造太阳能电池的材料主要有单晶硅、多晶硅、非晶硅以及其他新型化合物半导体材料,其中非晶硅属直接转换型半导体,光吸收率大,易于制成厚度0.5微米以下、面积l平方米以上的薄膜,并且容易与其他 原子结合制成对近红外高吸收的非晶硅锗集层光电池,这是目前的主攻方向之一;另一种是非晶硅和多晶硅混合薄膜材料,它转换率高、用材省,是新世纪最有前途的薄膜电池之一。 2、无机化合物薄膜太阳能电池 选用的无机化合物主要有CdTe,CdS,GaAs,CulnSe2(CIS)等,其中CdTe的禁带宽度为1.45 eV(最佳产生光伏响应的禁带宽度为1.5 eV),是一个理想的半导体材料,截止2004年,CdTe电池光电转化效率最高为16.5%;CdS的禁带宽度约为2.42 eV,是一种良好的太阳能电池窗口层材料,可与CdTe、SnS和CIS等形成异质结太阳能电池;GaAs的禁带宽度为1.43 eV,光吸收系数很高,GaAs单结太阳电池的理论光电转化效率为27%,目前GaA/Ge单结太阳电池最高光电转换效率超过20%,生产水平的光电转换效率已经达到19~20%,其与GalnP组成的双节、三节和多节太阳能电池有很大的发展前景;CIS薄膜太阳能电池实验室最高光电转化效率已达19.5%,在聚光条件下(14个太阳光强),光电转化效率达到21.5%,组件产品的光电转化效率已经超过13%;CIS 薄膜用Ga部分取代In,就形成Culn1-x Ga x Se2 (简称CIGS)四元化合物,其薄膜的禁带宽度在1.04~1.7 eV范围内可调,这为太阳能电池最佳禁带宽度的优化提供了机会,同时开发了两种新的材料,用Ga完全取代In形成CuGaSe2,用S完全取代Se形成CulnS2,以备In、Se资源不足时可以采用。但是,Cd和As是有毒元素,In和Se是稀有元素,严重地制约着无机化合物薄膜太阳能电池的大规模生

薄膜制备方法

薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。 一、真空蒸镀即真空蒸发镀膜,就是制备薄膜最一般的方法。这种方法就是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室与真空抽气系统两大部分组成。 保证真空环境的原因有①防止在高温下因空气分子与蒸发源发生反应,生成化合物而使蒸发源劣化。②防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等③在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源的类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃的镀料。对于蒸发源的要求为a、熔点高 b、饱与蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应 d、具有良好的耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料与高纯薄膜材料。优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。c、热量可直接加到蒸发材料的表面,减少热量损失。 ⑶、高频感应蒸发源。将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失与磁滞损失(铁磁体),从而将镀料金属加热蒸发。常用于大量蒸发高纯度金属。 分子束外延技术(molecular beam epitaxy,MBE)。外延就是一种制备单晶薄膜的新技术,它就是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法。外延薄膜与衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”。 10—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接喷MBE就是在8 射到衬底表面。其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总就是新分子束。这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状与蒸发源温度决定。 二、离子镀就是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上。 常用的几种离子镀: (1)直流放电离子镀。蒸发源:采用电阻加热或电子束加热; 充入气体: 充入Ar或充入少量反应气体; 离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏的电压下加速,离化与离子加速一起进行。 (2)空心阴极放电离子镀(HCD,hollow cathode discharge )。等离子束作为蒸发源,可充入Ar、其她惰性气体或反应气体;利用低压大电流的电子束碰撞离化, 0至数百伏的加速电压。离化与离子加速独立操作。 (3)射频放电离子镀。电阻加热或电子束加热,真空,Ar,其她惰性气体或反应气体; 利用射频等离子体放电离化, 0至数千伏的加速电压,离化与离子加速独立操作。 (4)低压等离子体离子镀。电子束加热,惰性气体,反应气体。等离子体离化, DC或AC

薄膜物理与技术

第一章真空技术基础 1、膜的定义及分类。 答:当固体或液体的一维线性尺度远远小于它的其他二维尺度时,我们将这样的固体或液体称为膜。通常,膜可分为两类: (1)厚度大于1mm的膜,称为厚膜; (2)厚度小于1mm的膜,称为薄膜。 2、人类所接触的真空大体上可分为哪两种? 答:(1)宇宙空间所存在的真空,称之为“自然真空”;(2)人们用真空泵抽调容器中的气体所获得的真空,称之为“人为真空”。 3、何为真空、绝对真空及相对真空? 答:不论哪一种类型上的真空,只要在给定空间内,气体压强低于一个大气压的气体状态,均称之为真空。完全没有气体的空间状态称为绝对真空。目前,即使采用最先进的真空制备手段所能达到的最低压强下,每立方厘米体积中仍有几百个气体分子。因此,平时我们所说的真空均指相对真空状态。 4、毫米汞柱和托? 答:“毫米汞柱(mmHg)”是人类使用最早、最广泛的压强单位,它是通过直接度量长度来获得真空的大小。1958 年,为了纪念托里拆利,用“托(Torr)”,代替了毫米汞柱。1 托就是指在标准状态下,1 毫米汞柱对单位面积上的压力,表示为1Torr=1mmHg。 5、真空区域是如何划分的? 答:为了研究真空和实际使用方便,常常根据各压强范围内不同的物理特点,把真空划分为以下几个区域:(1)粗真空:l′105 ~ l′102 Pa,(2)低真空:l′102 ~ 1′10-1Pa,(3)高真空:l′10-1 ~ 1′10-6Pa和(4)超高真空:< 1′10-6Pa。 6、真空各区域的气体分子运动规律。 答:(1)粗真空下,气态空间近似为大气状态,分子仍以热运动为主,分子之间碰撞十分频繁;(2)低真空是气体分子的流动逐渐从黏滞流状态向分子状态过渡,气体分子间和分子和器壁间的碰撞次数差不多;(3)高真空时,气体分子的流动已为分子流,气体分子和容器壁之间的碰撞为主,而且碰撞次数大大减少,在高真空下蒸发的材料,其粒子将沿直线飞行;(4)在超高真空时,气体的分子数目更少,几乎不存在分子间的碰撞,分子和器壁的碰撞机会也更少了。 7、何为气体的吸附现象?可分几类、各有何特点? 答:气体吸附就是固体表面捕获气体分子的现象,吸附分为物理吸附和化学吸附。 (1)物理吸附没有选择性,任何气体在固体表面均可发生,主要靠分子间的相互吸引力引起的。物理吸附的气体容易发生脱附,而且这种吸附只在低温下有效;(2)化学吸附则发生在较高的温度下,和化学反应相似,气体不易脱附,但只有当气体中的原子和固体表面原子接触并形成化合键时才能产生吸附作用。 8、何为气体的脱附现象? 答:气体的脱附是气体吸附的逆过程。通常把吸附在固体表面的气体分子从固体表面被释放出来的过程叫做气体的脱附。 9、何为电吸收和化学清除现象? 答:电吸收是指气体分子经电离后形成正离子,正离子具有比中性气体分子更强的化学活泼性,因此常常和固体分子形成物理或化学吸附;化学清除现象常在活泼金属(如钡、铁等)固体材料的真空蒸发时出现,这些蒸发的固体材料将和非惰性气体分子生成化合物,从而产生化学吸附。 10、影响气体在固体表面吸附和脱附的主要因素

纳米薄膜材料的制备方法

纳米薄膜材料的制备方法 摘要纳米薄膜材料是一种新型材料,由于其特殊的结构特点,使其作为功能材料和结构材料都具有良好的发展前景。本文综述了近几年来国内外对纳米薄膜材料研究的最新进展,包括对该类材料的制备方法、微结构、电、磁、光特性以及力学性能的最新研究成果。关键词纳米薄膜;薄膜制备; 微结构;性能 21 世纪,由于信息、生物技术、能源、环境、国防 等工业的快速发展, 对材料性能提出更新更高的要求,元器件的小型化、智能化、高集成、高密度存储和超快传输等要求材料的尺寸越来越小,航空航天、新型军事装备及先进制造技术使材料的性能趋于极端化。因此, 新材料的研究和创新必然是未来的科学研究的重要课题和发展基础,其中由于纳米材料的特殊的物理和化学性能, 以及 由此产生的特殊的应用价值, 必将使其成为科学研究的热点[1]。 事实上, 纳米材料并非新奇之物, 早在1000 多年以前, 我国古代利用蜡烛燃烧的烟雾制成碳黑作为墨的原料, 可能就是最早的纳 米颗粒材料;我国古代铜镜表面的防锈层, 经验证为一层纳米氧化锡颗粒构成的薄膜,这大概是最早的纳米薄膜材料。人类有意识的开展纳米材料的研究开始于大约50 年代,西德的Kanzig 观察到了BaTiO3 中的极性微区,尺寸在10~ 100纳米之间。苏联的G. A. Smolensky假设复合钙钛矿铁电体中的介电弥散是由于存Kanzig微区导致成分布不均匀引起的。60 年代日本的Ryogo Kubo在金属超微粒子理论中发现由于金属粒子的电子能级不连续,在低温下, 即当费米

能级附近的平均能级间隔> kT 时, 金属粒子显示出与块状物质不同的热性质[ 4]。西德的H. Gleiter 对纳米固体的制备、结构和性能进行了细致地研究[ 5]。随着技术水平的不断提高和分析测试技术手段的不断进步, 人类逐渐研制出了纳米碳管, 纳米颗粒,纳米晶体, 纳米薄膜等新材料, 这些纳米材料有一般的晶体和非晶体材料不具备的优良特性, 它的出现使凝聚态物理理论面临新的挑战。80 年代末有人利用粒度为1~ 15nm 的超微颗粒制造了纳米级固体材料。纳米材料由于其体积和单位质量的表面积与固体材料的差别,达到一定的极限, 使颗粒呈现出特殊的表面效应和体积效应,这些因素都决定着颗粒的最终的物理化学性能,如随着比表面积的显著增大,会使纳米粒子的表面极其活泼,呈现出不稳定状态,当其暴露于空气中时,瞬间就被氧化。此外, 纳米粒子还会出现特殊的电、光、磁学性能和超常的力学性能。 纳米薄膜的分类 纳米薄膜具有纳米结构的特殊性质, 目前可以分为两类: ( 1)含有纳米颗粒与原子团簇基质薄膜; ( 2) 纳米尺寸厚度的薄膜, 其厚度接近电子自由程和Denye 长度, 可以利用其显著的量子特性和统计特性组装成新型功能器件。例如, 镶嵌有原子团的功能薄膜会在基质中呈现出调制掺杂效应, 该结构相当于大原子超原子膜材料具有三维特征; 纳米厚度的信息存贮薄膜具有超高密度功能, 这类集成器件具有惊人的信息处理能力; 纳米磁性多层膜具有典型的周期性调制结构, 导致磁性材料的饱和磁化强度的减小或增强。对这

薄膜物理与技术课程教学大纲

薄膜物理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:薄膜物理与技术 所属专业:电子器件与材料工程 课程性质:必修课 学分:3 (二)课程简介、目标与任务; 本课程讲授薄膜的形成机制和原理、薄膜结构和缺陷、薄膜各项物理性能和分析方法等物理内容;讲授薄膜各种制备技术。通过本课程学习,使学生具备从事电子薄膜、光学薄膜、以及各种功能薄膜研究与开发的能力 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 《量子力学》、《热力学与统计物理》、《固体物理》、《电子技术》、《电路分析》等。 (四)教材与主要参考书。 教材:杨邦朝,王文生. 《薄膜物理与技术》,成都:电子科技大学出版社,1994 主要参考书:1.陈国平.《薄膜物理与技术》,东南大学出版社,1993 2.田民波,薄膜技术与薄膜材料,清华大学出版社,2006-8 二、课程内容与安排 本课程全部为课堂讲授。重点:真空的获得和真空测量的工作原理;物理气相沉积和化学气相沉积的原理及方法;薄膜生长的机理。 难点:磁控溅射的机理及控制;MOCVD技术;薄膜形成过程的机理 (一)绪论2学时 1、薄膜的概念和历史 2、薄膜材料与薄膜技术的发展 3、薄膜科学是边缘交叉学科 4、薄膜产业是腾飞的高科技产业

(二)真空技术基础2学时 1、真空的基本知识 2、真空的获得 3、真空的测量 (三)真空蒸发镀膜4学时 1、真空蒸发原理 2、蒸发源的蒸发特性及膜厚分布 3、蒸发源的类型 4、合金及化合物的蒸发 5、膜厚和淀积速率的测量与控制 (四)溅射镀膜4学时 1、溅射镀膜的特点 2、溅射的基本原理 3、溅射镀膜类型 4、溅射镀膜的厚度均匀性 (五)离子镀膜2学时 1、离子镀原理 2、离子镀的特点 3、离子轰击的作用 4、离子镀的类型 (六)化学气相沉积镀膜4学时 1、化学气相沉积的基本原理 2、化学气相沉积的特点 3、化学气相沉积方法简介 4、低压化学气相沉积 5、等离子体化学气相沉积 6、其他化学气相沉积 (七)溶液镀膜法2学时 1、化学反应沉积 2、阳极氧化法

薄膜物理与技术复习资料

第一章 最可几速率:根据麦克斯韦速率分布规律,可以从理论上推得分子速率在m v 处有极大值,m v 称为最可几速率 M RT M RT m kT 41.122==,Vm 速度分布 平均速度: M RT m RT m kT 59.188==ππ,分子运动平均距离 均方根速度:M RT M RT m kT 73.133==平均动能 真空的划分:粗真空、低真空、高真空、超高真空。 真空计:利用低压强气体的热传导和压强有关; (热偶真空计) 利用气体分子电离;(电离真空计) 真空泵:机械泵、扩散泵、分子泵、罗茨泵 机械泵:利用机械力压缩和排除气体 扩散泵:利用被抽气体向蒸气流扩散的想象来实现排气作用 分子泵:前级泵利用动量传输把排气口的气体分子带走获得真空。 平均自由程:每个分子在连续两次碰撞之间的路程称为自由程;其统计平均值成为平均自由程。 常用压强单位的换算 1Torr=133.322 Pa 1 Pa=7.5×10-3 Torr 1 mba=100Pa 1atm=1.013*100000Pa 真空区域的划分、真空计、各种真空泵 粗真空 1×105 to 1×102 Pa 低真空 1×102 to 1×10-1 Pa 高真空 1×10-1 to 1×10-6 Pa 超高真空 <1×10-6 Pa 旋转式机械真空泵 油扩散泵 复合分子泵 属于气体传输泵,即通过气体吸入并排出真空泵从而达到排气的目的 分子筛吸附泵 钛升华泵 溅射离子泵 低温泵 属于气体捕获泵,即通过各种吸气材料特有的吸气作用将被抽气体吸除,以达到所需真空。 不需要油作为介质,又称为无油泵 绝对真空计: U 型压力计、压缩式真空计 相对真空计:

薄膜物理与技术

薄膜物理与技术 第一章 1、真空:低于一个大气压的气体空间。P1 2、真空度与压强的关系:真空度越低,压强越高。P1 3、1Torr = 1/760 atm =133.322Pa.(或1Pa=7.5×10-3Torr)P2 4、平均自由程:每个分子在连续两次碰撞之间的路程。P5 5、余弦定律:碰撞于固体表面的分子,它们飞离表面的方向与原入射方向无关,并按与表 面法线方向所成角度θ的余弦进行分布。P7 6、极限压强(或极限真空):对于任何一个真空系统而言,都不可能得到绝对真空(p=0), 而是具有一定的压强。P7 7、抽气速率:在规定压强下单位时间所抽出气体的体积,它决定抽真空所需要的时间。P7 8、机械泵的原理:利用机械力压缩和排除气体。P8 9、分子泵的工作原理:靠高速转动的转子碰撞气体分子并把它驱向排气口,由前级泵抽走, 而使被抽容器获得超高真空。P13 第二章 1、真空蒸发镀膜的三个基本过程:P17 (1)加热蒸发过程:…… (2)气化原子或分子在蒸发源与基片之间的输运:…… (3)蒸发原子或分子在基片表面上的淀积过程:…… 2、为什么真空蒸发镀膜的三个过程必须在空气非常稀薄的真空环境中进行?P18 答:如果不是真空环境,蒸发物原子或分子将与大量空气分子碰撞,使膜层受到严重污染,甚至形成氧化物;或者蒸发源被加热氧化烧毁;或者由于空气分子的碰撞阻挡,难以形成均匀连续的薄膜。 3、饱和蒸气压:在一定温度下,真空室内蒸发物质的蒸气与固体或液体平衡过程中所表现 出的压力。P18 4、蒸发温度:物质在饱和蒸气压为10-2托时的温度。P18 5、碰撞几率:。P23 6、点蒸发源:能够从各个方向蒸发等量材料的微小球状蒸发源。P25-27 计算:公式2-28、2-33 7、蒸发源与基板的相对位置配置P33 (1)点源与基板相对位置的配置:为了获得均匀膜厚,点源必须配置在基板所围成的球体中心。 (2)小平面源与基板相对位置的配置:当小平面源为球形工作架的一部分时,该小平面蒸发源蒸发时,在内球体表面上的膜厚分布是均匀的。 (3)大、小面积基板和蒸发源的配置。 8、对蒸发源材料的要求:①熔点要高;②饱和蒸气压低;③化学性能稳定,在高温下不应 与蒸发材料发生化学反应;④具有良好的耐热性,热源变化时,功率密度变化较小;⑤原料丰富,经济耐用。P35、37 9、表2-5 适合于各种元素的蒸发源(蒸发源材料)。P36 10、外延:在适当的衬底与合适条件下,沿衬底材料晶轴方向生长一层结晶结构完整的新单 晶层薄膜的方法。P46 11、同质外延:外延薄膜和衬底属于同一物质;异质外延:外延薄膜和衬底属于不同物质。

光学薄膜技术第三章 薄膜制造技术

第三章薄膜制造技术 光学薄膜可以采用物理汽相沉积(PVD)和化学液相沉积(CLD)两种工艺来获得。CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,废水废气对环境造成污染,已很少使用。 PVD需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几个原子、分子的集合体(从广义来说,就是使其蒸发),并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: ①蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ②空气分子进入薄膜而形成杂质; ③空气中的活性分子与薄膜形成化合物; ④蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去,这个 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵,抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。制作 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。二 者真空度不同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不同,而且用于真空室和抽气 系统的材料也不同,下图是典型的高真空设备的原理图,制 作薄膜所用的高真空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1 高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作,而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱

薄膜物理与技术题库完整

一、填空题 在离子镀膜成膜过程中,同时存在沉积和溅射作用,只有当前者超过后者时,才能发生薄膜的沉积 薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与结合生长过程 薄膜形成与生长的三种模式:层状生长,岛状生长,层状-岛状生长 在气体成分和电极材料一定条件下,起辉电压V只与气体的压强P和电极距离的乘积有关。 1.表征溅射特性的参量主要有溅射率、溅射阈、溅射粒子的速度和能量等。 2. 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在 1~100nm 之间。 3.薄膜的组织结构是指它的结晶形态,其结构分为四种类型:无定形结构,多晶结构,纤维结构,单晶结构。 4.气体分子的速度具有很大的分布空间。温度越高、气体分子的相对原子质量越小,分子的平均运动速度越快。 二、解释下列概念 溅射:溅射是指荷能粒子轰击固体表面 (靶),使固体原子(或分子)从表面射出的现象 气体分子的平均自由程:每个分子在连续两次碰撞之间的路程称为自由程,其统计平均值: 称为平均自由程, 饱和蒸气压:在一定温度下,真空室蒸发物质与固体或液体平衡过程中所表现出的压力。 凝结系数:当蒸发的气相原子入射到基体表面上,除了被弹性反射和吸附后再蒸发的原子之外,完全被基体表面所凝结的气相原子数与入射到基体表面上总气相原子数之比。 物理气相沉积法:物理气相沉积法 (Physical vapor deposition)是利用某种物理过程,如物质的蒸发或在受到粒子轰击时物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移的过程 真空蒸发镀膜法:是在真空室,加热蒸发容器中待形成薄膜的源材料,使其原子或分子从表面汽化逸出,形成蒸气流,入射到固体(称为衬底、基片或基板)表面,凝结形成固态 溅射镀膜法:利用带有电荷的离子在电场加速后具有一定动能的特点,将离子引向欲被溅射的物质作成的靶电极。在离子能量合适的情况下,入射离子在与靶表面原子的碰撞过程中将靶原子溅射出来,这些被溅射出来的原子带有一定的动能,并且会沿着一定的方向射向衬底,从而实现薄膜的沉积。 离化率:离化率是指被电离的原子数占全部蒸发原子数的百分比例。是衡量离子镀特性的一个重要指标。 化学气相沉积:是利用气态的先驱反应物,通过原子、分子间化学反应的途径生成固态薄膜的技术。 物理气相沉积:是利用某种物理过程,如物质的蒸发或在受到离子轰击时物质表面原子溅射的现象,实现物质原子从源物质到薄膜的可控转移过程。 溅射阈值:溅射阈值是指使靶材原子发生溅射的入射离子所必须具有的最小能量。

物理法制备ZnO薄膜的方法

书山有路勤为径,学海无涯苦作舟 物理法制备ZnO 薄膜的方法 溅射法(Sputtering) 溅射是带电粒子轰击靶材,使靶材粒子(团)被击溅出来并淀积到衬底上成膜。假如靶材是Zn,沉积过程中Zn 与气氛中的O2 发生反应生 成ZnO,属于反应溅射。若靶材是ZnO,沉积过程中无化学变化则为普通溅射法。溅射法要求较高的真空度,合适的溅射功率及衬底温度。磁控溅射ZnO 薄膜,具有速率高、可有效抑制固相扩散、薄膜与衬底之间的界面陡峭等优点。决定ZnO 薄膜微结构的主要因素是衬底温度和溅射粒子的能量分布。保护气通常用 超高纯氩气,反应气为氧气。在反应溅射中,可能会有部分Zn 与O2 没有反应完全,薄膜的特性不够理想,不如用ZnO 靶制备的薄膜质量好。 脉冲激光沉积法(PLD) PLD 是在超高真空(本底气压10-8Pa)系统中,准分子激光器所产生的高功率脉冲激光束聚焦照射靶面,使靶材瞬时升华、解离,产生高压高温等离子体(T≥104K),这种等离子体局域定向膨胀发射并冷却沉积在衬底上成膜。PLD 常用的激光器有波长248nm 的KrF 和波长193 nm 的ArF 准分子激光器。衬底温度和反应气氛是决定ZnO 薄膜结晶好坏的重要因素。PLD 系统示意图示于图1。PLD 法制备的ZnO 薄膜的结构、光电性质与衬底温度、背景气压、激光能量密度、脉冲宽度和重复频率等因素有关。PLD 生长参数独立可调, 化学计量比可精确控制,薄膜平整度好,易于实现多层薄膜的生长,而且减少了不必要的玷污。 图1 PLD 系统示意图 分子束外延法(MBE)MBE 是一种原子级可控的薄膜生长方法MBE 生长ZnO 需要超高真空条件,本底压强大约为10-7Pa 或以上,衬底通常为蓝宝石。在电子 回旋共振分子束外延(ECR-MBE)生长中,采用100mW 的微波功率,氧气分压为2

薄膜材料的制备

对薄膜制备的综述 一.前言 随着薄膜科学技术与薄膜物理学的发展,薄膜在微电子、光学、窗器、表面改性等方面的应用日益广泛;而薄膜产业的日趋壮大又刺激了薄膜技术和薄膜材料的蓬勃发展。面对新技术革命提出的挑战,无机薄膜材料的制备方法也日新月异,与以往的制膜方法相比有了新的特点,方法也向着多元化的方向发展。这篇综述主要介绍了:薄膜材料的制备、举例发光薄膜的制备以及薄膜材料的发展前景。 二.薄膜材料的制备 主要内容:1.薄膜材料基础;2.薄膜的形成机理;3.物理气相沉积;4.化学气相沉积;5.化学溶液镀膜法;6.液相外延制膜法。 §1 薄膜材料基础 1. 薄膜材料的概念 采用一定方法,使处于某种状态的一种或几种物质(原材料)的基团以物理或化学方式附着于衬底材料表面,在衬底材料表面形成一层新的物质,这层新物质就是薄膜。简而言之,薄膜是由离子、原子或分子的沉积过程形成的二维材料。 2. 薄膜分类 (1)物态:气态、液态、固态(thin-solid-film)。 (2)结晶态:A非晶态:原子排列短程有序,长程无序。B晶态:a单晶:外延生长,在单晶基底上同质和异质外延;b多晶:在一衬底上生长,由许多取向相异单晶集合体组成。 (3)化学角度:有机和无机薄膜。 (4)组成:金属和非金属薄膜。 (5)物性:硬质、声学、热学、金属导电、半导体、超导、介电、磁阻、光学薄膜。 薄膜的一个重要参数:a厚度,决定薄膜性能、质量;b通常,膜厚小于数十微米,一般在1微米以下。

3. 薄膜应用 薄膜材料及相关薄膜器件兴起于20世纪60年代。是新理论、高技术高度结晶的产物。 (1)主要的薄膜产品: 光学薄膜、集成电路、太阳能电池、液晶显示膜、光盘、磁盘、刀具硬化膜、建筑镀膜制品、塑料金属化制品。 (2)薄膜是现代信息技术的核心要素之一: 薄膜材料与器件结合,成为电子、信息、传感器、光学、太阳能等技术的核心基础。 4.薄膜的制备方法 (1)代表性的制备方法按物理、化学角度来分,有: a物理成膜PVD、b化学成膜CVD (2)具体制备方法如下表流程图: §2 薄膜的形成机理 1.薄膜材料在现代科学技术中应用十分广泛,制膜技术的发展也十分迅速。制膜方法—分为物理和化学方法两大类;具体方式上—分为干式、湿式和喷涂三种,而每种方式又可分成多种方法。 2.薄膜的生长过程分为以下三种类型: (1) 核生长型(V olmer Veber型):这种生长的特点是到达衬底上的沉积原子首先凝聚成核,后续的沉积原子不断聚集在核附近,使核在三维方向上不断长大而最终形成薄膜。核生长型薄膜生长的四个阶段: a. 成核:在此期间形成许多小的晶核,按同济规律分布在基片表面上; b. 晶核长大并形成较大的岛:这些岛常具有小晶体的形状; c. 岛与岛之间聚接形成含有空沟道的网络; d. 沟道被填充:在薄膜的生长过程中,当晶核一旦形成并达到一定尺寸之后,另外再撞击的离子不会形成新的晶核,而是依附在已有的晶核上或已经形成的岛上。分离的晶核或岛逐渐长大彼此结合便形成薄膜。 这种类型的生长一般在衬底晶格和沉积膜晶格不相匹配时出现。大部分的

相关文档