文档库 最新最全的文档下载
当前位置:文档库 › 前置功放作用

前置功放作用

前置功放作用

前置功放作用

前置广播功放通常我们这行的人叫合并式广播功放,即它内部由前置信号放大器+后级广播功放组成,前置信号放大器的作用就是对各路音源进行前级放大,一般包括2-3路辅助输入(就是接CD、MP3什么的),3路话筒输入,有些还有紧急输入端口,它具有优先输入功能(一般MIC1和两路紧急输入口有优先),除了每路输入独立音量调节,(两路紧急输入一般不带音量调节)还带高低音调节。后级广播功放是将前置放大器放大后的信号(一般是1V 左右)再次放大去推动扬声器发声,(一般放大到70V/100V)。这就是合并式广播功放的作用,纯后级广播功放的作用只是去掉前置信号放大器,只实现后级广播功放的功能而已。十分区器的作用是将广播进行分区及报警自动转换功能,它的后面板有两入输入端口,这两入输入端口都是接定压功放的输出端的(一般为COM和70V/100V端),一路输入为背景音乐输入,一路为紧急音乐输入,它的输出端有十路,可以接10组广播扬声器,一般每组的功率不宜超过300W,每组输出有一个对应的控制按钮及报警输入口,控制按钮可以控制输出的接通与断开,报警输入与十分区寻呼器或报警主机相连,一般报警电平为0V或24V,当其中一路有报警电平输入时该路输出会自动转换到紧急音乐输入端口,从而实现报警功能。

浅谈音响功放的工作原理

浅谈音响功放的工作原理 音响中的功放是整个音响设备中的关键部件,所以音响发烧友们都在其上不惜花费人力物力财力进行"摩机",在电源部分,电路的整体布局,用料等方面进行不断改良.本人并不是超级发烧友,充其量算是一位音响爱好者吧,为此在这里我就以一个音响爱好者的身份谈一谈我对音响功放的看法. 功放分胆机与石机,先讨论石机.石机最初的功放为甲类功放,这类功放的功放管的工作点选在管子的线性放大区,所以就算在没有信号输入的情况下,管子也有较大的电流流过,且其负载是一个输出变压器,在信号较强时由于电流大,输出变压器容易出现磁饱和而产生失真,另外为了防止管子进入非线性区,此类放大器往往都加有较深度的负反馈,所以这种功放电路效率低,动态范围小,且频响特性较差.对此人们又推出了一种乙类推挽式功率放大器,这类功放电路其功放管工作在乙类状态,即管子的工作点选在微道通状态,两个放大管分别放大信号的正半周和负半周,然后由输出变压器合成输出.所以流过输出变压器的两组线圈电流方向相反,这就大大地减少了输出变压器的磁饱和现象.另外由于管子工作在乙类状态,这样不仅大大的提高了放大器的效率且也大大的提高了放大器的动态范围,使输出功率大大提高.所以这种功放电路曾流行一时.但人们很快发现,此种功电路由于其功放管工作在乙类工作状态,所以存在小信号交越失真的问题,而且电路需使用两个变压器(一个输出变压器,一个输入变压器),由于变压器是感性负载,所以在整个音频段内,负载特性不均衡,相移失真较严重.为此人们又推出了一种称为OTL的功率放大电路.这种电路的形式其实也是一种推挽电路形式,只不过是去掉了两个变压器,用一个电容器和输出负载进行藕合,这样一来大大的改善了功放的频响特性.晶体管构成的功放电路有了质的飞跃,后来人们又改良了此种电路,推出了OCL和BTL电路,这种电路将输出电容也去掉了,放大器与扬声器采取直接藕合方式,直到现在由晶体管组成的功放电路,其结构基本上是OCL电路或BTL电路.OCL电路与OTL电路不同之处是采取了正负电源供电法,从而能将输出电容取消掉.BTL电路是由两个完全独立的功放模块搭建组成,如图C所示.IC1放大输出的信号一部分通过IC2反相输入端,经IC2反相放大输出,负载(扬声器)则接在两放大器输出之间,这样扬声器就获得由IC1和IC2放大相位相差180度的合成信号了. 不论是OCL或BTL功放电路,由于其去除了输出变压器和输出电容器,使放大器的频响得到展宽。与扬声器配接方面,当功率放大器连接一个标称阻抗低于

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

有源音箱与无源音箱+功放的主要差别

有源音箱与无源音箱+功放的主要差别在于: 一、电路 有源音箱主要使用集成电路作为功率放大,放大方式主要以甲乙类、乙类、丙类、丁类(乙、丙、丁,越往后发生效率越高,但失真越大,从效率一般说甲类小于50%,乙类小于70%,丙类大于85%,丁类90%以上,比方说输出功率50W的甲类功放,消耗功率在100W以上,不多说了,再说属于无线电范畴了......),其优点是电路简单,外围元件少,基本不需要调试。缺点是,声音发干、发硬,尤其接入电脑或CD音源时数码位较重。 通常发烧友说的无源音箱+功放,通常采用晶体三极管、场效应管、电子管作为功率放大元件,优点只有一个:失真少,声音温暖.......哦,好的功放比较好看、气派,也算是个优点吧。缺点就多了去了。1.因为追求音质,攻放功率管通常设置在不失真区域,效率很低,通常好的晶体管功放通常都是纯甲类攻放,少数工作在甲乙类,电子管不用说了,点了那么多白炽灯泡,还不是节能的.....2.发热量大。每个超过50W的功放都是个小电暖器,通常多媒体音箱的小散热片无法满足那么大发热量的。3.线路复杂。通常攻放的电路要比有源音箱 复杂的多,看看个头就知道了。其中不仅包括放大电路、反馈电路、保护电路,为保证音质,连音源切换都采用继电器,大型变压器、大容量电容,及各种补偿电路。4.调试繁琐。所有攻放的功率放大管必须经过严格配对,包括左右声道,这样才能减少失真和左右声道差异...... 二、个性 有源音箱因为使用集成电路作为放大元件,所以千箱一味,调整听音感觉只能靠箱体设计和喇叭单元。 攻放因为使用不同的管件,加上厂家对电路的设计思路、对放大器进行较声,因此不同厂家设计的攻放声音都有它的特点,如日系的硬、英国的温暖、北欧的严谨、意大利的婉转、美国的粗旷....... 三、箱声 中低档音箱都有箱声,好的音箱放出来的让你感觉不到音箱,无源音箱或多或少都有吸音棉,有源音箱出于成本考虑,要么没有吸音棉,要么很少,还有一个原因就是吸音棉放多了,箱内的功率元件散热成问题。另外音箱内有放大电路,那么左右音箱的容积就会有差异,声音也会有差异。

AV功放与Hi-Fi功放的异同

AV功放和Hi-Fi功放,AV功放和Hi-Fi 功放异同点有哪些 AV功放即视听系统中使用的放大器,用于家庭影院视听系统中,功放齐全。AV功放一般具有前置、中置、环绕等4~7个声道功率输出,有的带有杜比定向逻辑环绕解码器或AC-3解码器、DSP数码声场处理、调频/调幅数字调谐收音功能,还具有多种音频输入输出接口,有些功放还有SVIDEO(高清晰度)视频四针接口,各种功能可以用遥控器进行控制,使用非常方便。 AV功放原理 AV功放,顾名思义,它是用于和影像源相配合、产生视听合一的效果、以营造声场为主要设计目的、专门供家庭影院使用的放大器。它通过其内部的延迟、混响处理电路来控制放音时各声道之间的延迟时间,通过调整延迟时间的长短来模拟出各种听音环境下的声场,例如大厅、教堂、体育场、演播室等。AV功放强调声道隔离度、延迟时间范围、各种声场模式等指标参数。AV功放的声道少则四路,多至九路,目前市场上的AV功放结合家庭放音的需要,多为五路或七 路。 AV系统主要由大屏幕彩电、影碟机或高保真录像机,AV多声道环绕功放,一只中置音箱,一对主音箱,一对环绕音箱组成。AV系统着重于表现大动态的效果声,以此烘托气氛,配合画面的声场定位制造出惊心动魄的场面。人们在家中就可以享受电影院中所特有的视听效果。 AV多声道环绕声系统主要有杜比逻辑环绕声系统、THX系统、雅马哈的影院CINEMA DSP系统。这三大系统各有千秋,杜比逻辑环绕声是多声道录制的,一般地说是四声道,录制时,用多只拾音器,按不同距离安置在演奏者的各个方向,将拾取的声音信号经过AD变为数码,再将这些数码按一定规则编码,编为两声道的数码,最后录制在两声道的影碟上。当人们要欣赏影碟时,杜比逻辑解码系统将两声道上的数码反变换为四声道或五声道的数码,再经过DA转换,经过AV 多声道放大器,分别送到几对不同位置的音箱,以此实现环绕声,力求重现现场录音时的风采。雅马哈的CINEMADSP是从杜比逻辑中发展而来的。与杜比逻辑解码环绕声系统完全兼容而又有自己独有的特色,数字音场处理是雅马哈CIN?EMA DSP独有的技术。它使用DSP(数字信号处理芯片)及CPU存贮了原野、教堂、音乐厅、峡谷等等特定场合声音音场传播的参数,并将参数直接加到杜比逻辑解码以后的环绕声上,这样就弥补了杜比环绕声的不足。 AV功放的技术指标 AV功放是家庭影院的重要组成部分,它的性能主要由以下指标决定: 1、信噪比 信噪比指音频信号电平与噪声电平之间的分贝差。信噪比数值越高,放大器 相对噪声越小,音质越好。 2、输出功率 输出功率是指功放所接的音箱上得到的能量,对功放来说,其额定功率(功放在不失真的条件下能连续输出的有效值功率)才是评价功放性能的有效指标。 3、频率响应

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

功放的原理

功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。一套良好的音响系统功放的作用功不可没。 功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。 功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。 功放分类 按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B 类)、甲乙类功放(又称AB类)和丁类功放(又称D类)。 甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。 乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类 放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。 甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。 丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。 按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。 单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。 推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。 按功放中功放管的类型不同,可以分为胆机和石机。 胆机是使用电子管的功放。 石机是使用晶体管的功放。 按功能不同,可以前置放大器(又称前级)、功率放大器(又称后级)与合并式放大器。功率放大器简称功放,用于增强信号功率以驱动音箱发声的一种电子装置。不带信号源选择、音量控制等附属功能的功率放大器称为后级。 前置放大器是功放之前的预放大和控制部分,用于增强信号的电压幅度,提供输入信号选择,音调调整和音量控制等功能。前置放大器也称为前级。 将前置放大和功率放大两部分安装在同一个机箱内的放大器称为合并式放大器,我们家中常见的功放机一般都是合并式的。 按用途不同,可以分为AV功放,Hi-Fi功放。

功率放大器,功率放大器的特点及原理

功率放大器,功率放大器的特点及原理是什么? 利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。 一、功率放大器的特点 向负载提供信号功率的放大器,通常称为功率放大器。功率放大器工作时,信号电压和电流的幅度都比较大,因此具有许多不同于小信号放大器的特点。 l.功率放大器的效率 功串放大的实质是通过晶体管的控制作用,把电源提供给放大器的直流功率转换成负载上的交流功率。交流输出功串和直流电源功率息息相关。一个功率放大器的直流电源提供的功率究竟能有多少转换成交流输出功率呢?我们当然希望功率放大器最好能把直流功率(PE= EcIc)百分之百转换成交流输出功率(Psc=Uscisc)实际上却是不可能的。因为晶体管自身要有一定的功率消耗,各种电路元件(电阻、变压器等)要消耗一定的功率,这就有个效率问题了。放大器的效率η指输出功率Psc与电源供给的直流动率PE之比,即通常用百分比表示: η=Psc/PE 通常用百分比表示: η=Psc/PE×100% 效率越高,表示功率放大器的性能越好。 晶休管在大信号工作条件下,工作点会上下大幅度摆动。一旦工作点跳出输入或输出特性曲线的线性区,就会出现非线性失真。所以对声频功率放大器来说,输出功率总要和非线性失真联系在一起考虑。一般声频功率放大器都有两个指标棗最大输出功率和最大不失真输

音响前置放大器

2013届课程设计说明书模板音响前置放大器 院、部:电气与信息工程学院 学生姓名:鞠纯 指导教师:龙卓珉职称讲师 专业:电子信息工程 班级:电子1102班 完成时间:2013年6月10日

摘要 本文介绍了前置放大的构成、功能、及工作原理。所用芯片是价格便宜的带有真差动输入的LM324四运算放大器。与单电源应用场合的标准运算放大器相比,它们有一些显著优点。该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。本音响的功能是将输入音频信号进行放大,是一种可普遍用于家庭音响系统、立体声唱机等电子系统中,便于携带,适用性强。 关键词:前置放大;LM324;立体声唱机

ABSTRACT This paper introduce the structure ,function and working principle of the audio.The LM324 are low-cost,quad operational amplifiers withtrue differential inputs.They have several distinc advantages overstandard operational amplifier types in single supply voltages as low as 3.0V or 32V with quiescent currents about one-fifth of thoseassociated with the MC1741. The sound is the function of the input audio signal amplification,is generally available for home audio system,stereo player and other electronic system,convenient carrying,strong applicability. Key word preamplifier amplifiers;LM324;stereo player

雅马哈功放

7.1.2.2功放的选型 功率放大器采用了日本YAMAHA 的X 系列产品。 全系列从950瓦到125瓦输出共5种机型(4欧立体声)。三种输出模式提供最大的系统灵活性:立体声,平行,桥接。精选的元件和精心设计的电路保证了最好的音质。此高性价比系列特别对于演讲或音乐素材拥有清澈的音质。运 用下一代EEEngine 技术让功放有更好的功 率效率和更低的功率消耗。增益开关可以设 置 4dBu/26dB/32dB 输入电平。31段精准电 平控制,信号指示灯,监控终端和高通滤波器都增加了信号质量并保证系统准确的电平控制。2U 的机身更耐用可靠更轻巧,适合任何安装。从雅马哈高端型号上继承下来的保护电路,低噪风扇和高抗震性。 选用产品的技术参数如下: ● 日本 YAMAHA 功放 XP2500 三种输出模式提供最大的系统灵活性:立体声,平行,桥接 275W+275W/8欧姆立体声 390W+390W/4欧姆立体声 780W/8欧姆桥接 运用下一代EEEngine 技术让功放有更好的功率效率和更低的功率消耗 4Ω立体声:2×155W ● 日本 YAMAHA 功放 XP3500 8Ω 立体声: 2×350W 4Ω立体声:2×590W 桥接8Ω:1180W 净重:15Kg 尺寸:480mm (W )×88mm (H )×456mm (D )

●日本 YAMAHA 功放 XP5000 8Ω立体声:2×525W 4Ω立体声:2×750W 桥接8Ω:1500W 净重:14Kg 尺寸:480mm(W)×88mm(H)×456mm(D) ●日本 YAMAHA 功放XP7000 全系列从950瓦到125瓦输出共5种机型(4欧立体声); 三种输出模式提供最大的系统灵活性:立体声,平行,桥接; 750W+750W/8欧姆立体声; 1100W+1100W/4欧姆立体声; 2200W/8欧姆桥接; 精选的元件和精心设计的电路保证了最好的音质; 此高性价比系列特别对于演讲或音乐素材拥有清澈的音质; 运用下一代Engine技术让功放 有更好的功率效率和更低的功 率消耗; 增益开关可以设置4dBu/26dB/32dB输入电平; 31段精准电平控制,信号指示灯,监控终端和高通滤波器都增加了信号质量并保证系统准确的电平控制; 2U的机身更耐用可靠更轻巧, 适合任何安装; 从雅马哈高端型号上继承下来 的保护电路,低噪风扇和高抗震 性; 适合与DME64N/24N数字混音引擎和Installation工程系列音箱联合使用。

功放的工作原理与作用

功放的工作原理与作用 功放的作用就是把来自音源或前级放大器的弱信号放大,以推动扬声器放声。一套良好的音响系统功放的作用功不可没。 功放作为各类音响器材中的大块头,它主要是将音源器材输入的较弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也不尽相同。 汽车功放电路图 汽车音响系统跟家用音响一样,使用功率放大器才能使整个系统完整。如果是刚接触汽车音响的人,对于在汽车中也安装功率放大器,甚至是安装多个功率放大器,可能会觉得不可思议。这个要从汽车自身来讲开,因为汽车的电源电压一般只有14.4V,功率(P)=电压(U)x电流(I),最多能达到4x55W。如果只用主机自身的功率放大器,只能推动功率小的扬声器,而且音量开大就会失真,声音听起来生硬,缺乏弹性。人耳听觉是有限度的,其下限比所能听到的音量上限还要少,这个可解释为何声音在一开始时感觉比较强烈,慢慢会觉得微弱下去。要让任何声音达到最逼真的状态,对于目前技术还无法解决。挡风玻璃,内装饰,发动机以及车底盘和轮胎在路面行驶时所发出的噪音,对聆听环境造成不可忽视的影响。只能加装功率放大器,才能解决低声压级和后级功率不足的缺陷,来重播音乐的全部信息。如果车用功率放大器内部使用逆变电源,将电源电压提高到40V左右,功率也会随之得到提高,这样便可推动大功率扬声器。由于储备功率加大,提高音量就不会产生失真,音质有力且富有弹性。尤其在推动大尺寸的低音扬声器时,低音区更加延伸,声音变得丰满,这样这个难题就能迎刃而解。

实际上功放是高保真地还原音频信号。我们来打个简单的比方,其实功放就好比复印机工作。为何要把这两个风马不相及的概念扯在一块,听我仔细一一道来。它们的实质作用都是复制某物,正如复印机可以把较小的纸张复印成较大的纸张。假如你去复印A4的纸张原件,那么你除了可以得到A4纸张的复印件,还可以得到A3或A1,甚至更大的纸张,新的复印件其实就是就是原件的放大版,这个你自己根据需要可以去控制调节。功放酷似复印机,复印件并非本源的原件。经过功放加工的信号就是原音频的还原加强版,音量比源音频输入要大。它改变的只是音频输入的音量,而音色并无改变。如果它的音色也改变了.那么它的波长及频率也相应有所改变。对于此话题本文将不做详细且有深度的阐述。这个比方通俗易懂,恰如其分。现在,我想大家对于功放应该有了大致的认识。总而言之.车载功放就是把输入端(主机、CD播放机等等)的音频输入还原放大,同时使它达到足够的强度,以至于能够带动喇叭工作。 功率放大器的工作原理就是靠电压来控制电流通道的大小来达到控制电流大小的目的。利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。而场效应管则是用栅极电压来控制源极与漏极的电流,其控制作用用跨导表示,即栅极变化一毫伏,源极电流变化一安,就称跨导为1,功率放大器就是利用这些作用来实现小信号控制大信号,从而使多级放大器实现了大功率的输出,并非真的将功率放大了!它们是转化的电源功率,而不是对能量的放大。以我们目前的技术我们还是要遵守能量守恒定律的。

放大器的种类及作用

放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。 原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 2、画图的时候,放大或缩小图形的用具。也叫放大尺。 原理:利用光的折射 一、集成运算放大器的分类介绍 下面对不同特性的集成运算放大器进行介绍。 1.通用型集成运算放大器 通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。通用型集成运算放大器又分为Ⅰ型、型和型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。 2.高精度集成运算放大器 高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。这类运算放大器的噪声也比较小。其中单片高

音频功率放大器的设计与实现

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

雅马哈AV功放的EQ设置

雅马哈AV功放的EQ设置 今天在看别的论坛发现有人发布了雅马哈AV功放的EQ设置,很多人都说用了以后有明显提升。现在把他的内容复制到这里,希望给雅马哈功放的兄弟试试。作者原来用的是雅马哈AX-1,后来转入3800后发现音效不如以前,所以通过与雅马哈代理的多次沟通,有了现在这个EQ调整参数。 参数仅供大家参考,如果用完后觉得改变不明显甚至没有改变,大家多多包涵,因为我也刚看完还没有回家试。千万不要乱喷。原作者功放为3800,音箱为杰士R35,大家可以根据自己的音箱对他的数据进行微调,希望大家多多发扬折腾精神。 前置 freq.62.5hz一段为低频输出,由于我的前置为座地双8吋低音单元喇叭,所以在数值上调至+5db来增加张力,假如你的喇叭为书架喇叭可调教至+2db或+3db试试 freq.157.5hz 可轻微+0.5db freq.396.9hz 亦轻微+0.5db Freq.1.00khz 一段为中音区可将该段增至+4.5db Freq.2.52khz 可轻微+0.5db Freq. 6.35khz一段不用加 freq. 16.0khz 一段为高频区,不妨加至+6.0db增加高音细致度 我前段时间在这里看了个帖子,很多老烧都说功放的EQ不用动,大家一试又何妨?如果不喜欢,再默认回来就OK了 跟着到中置 中置为家庭影院之命脉, 就算再科幻的影片都不乏人声对白, 而文戏就更加不用多说. 所以在调教中置时?会集中在人声的范围~ 中高音~ 中置数据 由于freq.62.5hz一段为低频输出,而人声基本上没有到达这个音域,所以在数值保持为0db freq.157.5hz 仍然是0 db freq.396.9hz 一段最接近男性声音,故将该段加至+3.0db,(这段调教最为重要, 可因应中置喇叭的特性加或减近至男性喉底声) Freq.1.00khz 一段为中音区,可将该段略增至+1.5db Freq.2.52khz +1.5db Freq. 6.35khz一段最易令人声失真,最好不要加或减,所以不动维持在0.0 db 最后freq. 16.0khz 一段高频区,可将其加至+6.0db以接近女性的高音音域,环绕由于大多数负责环绕效果声音, 而一般环绕的单元亦很小,故未能提供全频输出. 所以在调教后置喇叭时?将大多数的低音交给超低音负责. 环绕数据 freq.62.5hz 0db freq.157.5hz +0.5db freq.396.9hz +1.5db Freq.1.00khz +2.5db Freq.2.52khz +3.0db Freq. 6.35khz +2.0db freq. 16.0khz +6.0db 效果音箱(Presence speaker,如果有)的设置可以参照中置的设置即可 炮的EQ根据不同炮有不同,因为炮的素质相差确实太远了,所以不详细说了,拿个中端偏

功率放大器的基本结构和工作原理

功率放大器的基本结构和工作原理 功率放大器的基本结构和工作原理 扩音机是一种对声音信号进行放大的电子设备,其基本结构如图5-1所示,常分为前置放大器(简称前级)和功率放大器(简称后级)两大部分。 前置放大器通常由输人选择与均衡放大电路、等响音量控制电路、音调控制电路等组成,而功率放大器常由功率放大电路和扬声器保护电路组成。 扩音机工作时,输人选择电路主要对收音调谐器、录音座、CD唱机和Av辅助输入等信号源的信号进行选择切换控制,得出所需的信号输入,输入后的信号经均衡放大电路进行频率特性的校正和放大,使输入信号的频率特性变得较为平坦,同时使各种信号源输入的信号电平基本趋于一致,避免在转换不同的信号源时,声音响度出现较大的变化,影响使用效果。均衡放大后的信号则由等响音量控制电路控制信号的强弱,从而调节音量的大小。等响控制的目的主要是在音量较小时提升高、低频信号成分,以补偿人耳听觉的不足,在低响度时得到较丰满的声音信号。而音调控制电路则主要是根据个人的喜好调节电路的频率特性,适当提升或衰减声音中的高、低频成分,以满足听音者的需求。经前置放大器放大处理后的信号被送人功率放大器进行功率放大,以推动扬声器重放出声音。扩音机中为了保护扬声器免受电路冲击电流的干扰,或在电路出现故障时烧毁扬声器,常在功率放大器中加入扬声器保护电路。 在高保真的音响设备中,扩音机常有两种组合结构形式,一种是把前置放大器和功率放大器组合在一起,称作合并式扩音机,这种形式把“前置”和“功放”合并在一起,这时由于小信号电压放大的前置级和大信号电流放大的功率放大在电性能上不能互相兼顾,因而不能使扩音机达到最佳的工作状态,特别是前、后级的电源馈电,电源变压器的电磁干扰,印制电路板的走线排列,共用地线的走向等方面总会存在一定的相互干扰,影响整机性能的提高。另一形式是在设计制造上把前置放大器和功率放大器彻底分开,分别使用独立电源,单独的机壳,使前、后级之间互不干扰,形成前、后级分体式的结构,在使用时再把它们用信号传输线连接起来,这种分体式结构的扩音机可获得极高的性能指标。

音响混合前置放大器的设计

第一章 绪论 近几年来,计算机技术进入了前所未有的快速发展时期,随着电子信息技术的发展关于音响放大器在电子技术基础中所处的位置越来越重要,它不仅是电子信息类专业的一个重要部分,而且在其他类专业工程中也是不可缺少的。放大器电路做为子系统的应用,发展更是迅速,已成为新一代电子设备不可缺少的核心部件,其现实生活中的运用也是非常普遍和广泛。 在音响放大器的设计过程中,控制其电路的核心部分是几个放大器的设计,其主要包括:话音放大器,混合前置放大器,音调控制器,功率放大器等。电子技术的发展促使话音放大器被广泛应用到一系列放音设备中,混合前置放大器也成为数字电子电路设计和制作过程中不可缺少的部分,例如在信号放大器的设计和无线电遥控电路的设计过程中该部件都是不可缺少的,功率放大器更是设计电子电路的核心。功率放大器的运用使电子产品的成本大大减少,并且有设计简单,易于操作,可靠性好的优点。 对音响放大器设计的目的是为了更好的掌握集成功率放大器内部电路工作原理,学会其外围电路的设计与主要性能参数测量方法以及掌握音响放大器的设计与电子线路系统的装试和调试技术。本次设计分为四个主要步骤:一,构思和设计话音放大器,混合前置放大器,音调控制级和功率放大级。二,根据设计要求和选择的电路通过计算选择元器件和参数,并准确无误的设计好要设计的电路原理图。三,在万能板或在面包板上根据设计电路原理进行元器件的电路安装和精细的调试。四,在安装好的电路板上进行输出功率的测试。 在此次课程设计的编写过程中得到了龙老师和许多实验室老师的大力支持和指导,在此表示感谢。 另外,由于时间仓促和本组成员能力有限,设计中难免出现缺点和不足之处,还敬请各位老师批评和指正。 2011年6月

雅马哈功放RX-V471安装说明书

检查本机是否带有以下配件。 根据本指南的说明准备以下用于连接的缆线(未附带)。? 如果您的电视支持 Audio Return Channel (ARC) 功能,则不需要数字光纤缆线。 1准备工作 配件 遥控器 将电池按正确方向插入电池盒(+ 和 -)。 AM 天线 FM 天线 VIDEO AUX 输入盖 YPAO 麦克风 (使用说明书) 快速设置指南(本说明书) 准备缆线 音箱缆线(每个音箱都需要) HDMI 缆线 x 2 单声道针口缆线 x 1 数字光纤缆线 x 1

请按如下所示的方式摆放音箱。其他布置方式(5.1 声道音箱布置方式除外)如《使用说明书》中所示。 5.1 声道系统 前置音箱(左) 前置音箱(右) 中置音箱 环绕声音箱(左) 环绕声音箱(右) 低音炮 2

连接音箱缆线 音箱缆线有两根线。一根用于连接本机和音箱的负极 (-) 端子,另一根用于连接正极 (+) 端子。如果这两根线存在颜色区分,则应用黑色的线连接负极端子,而用另一根线连接正极端子。 1从音箱缆线端部剥去大约 10mm 的绝缘皮,然后将 裸线捻在一起。 2松开音箱端子。 3 如果很难将裸线插入端子侧 的间隙内,则可将其插入端 子下方的间隙内。 4拧紧端子。 连接香蕉插头 拧紧旋钮,然后将香蕉插头插入 端子末端。1将前置音箱 (/)连接到 端子。 2将中置音箱 ()连接到 CENTER 端子。 ? 使用阻抗至少为 6Ω的音箱。 ? 使用有内置放大器的低音炮。 ? 连接音箱前,请拔下电源插头。 ? 注意,音箱缆线的线芯不得接触任何部件或本机的金属部位。 如果这样,则可能损坏本机或音箱。如果音箱缆线短路,则 当本机开机时,“CHECK SP WIRES!”会出现在前面板显示 屏上。 本机(后部) 3

前置放大器电路噪声分析

前置放大器电路噪声分析 前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PDA设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。 前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当? 元件选择原则 由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。在设计过程中,系统设计工程师经常会面临以下问题。 1、是否有必要采用高精度的运算放大器? 输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。 2、运算放大器需要什么样的供电电压? 这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。 3、输出电压是否需要满摆幅? 低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。

相关文档