文档库 最新最全的文档下载
当前位置:文档库 › 材料力学小论文

材料力学小论文

材料力学小论文

材料力学小论文——

积分顺序对解决材料力学问题的影响

机1101班刘圣前学号:201161077

众所周知,在工程实际应用中微积分占据着十分重要的地位。微积分是与实际应用联系着发展起来的,它在天文学、力学、生物学、工程学、经济学、自然科学、社会科学及应用科学等多个分支中,有着越来越广泛的应用.特别是计算机的发明更有助于这些应用的不断

发展.微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支.它是数学的一个基础学科,特别在解决实际问题中起到了非常大的作用. .-----《数学学习与研究》2012年19期微积分在解决实际问题中的应用孙建国张会娜

那么在实际工程中应用广泛的材料力学领域中,微积分的应用也就十分普遍了。在整个材料力学的所有计算问题中,如,轴力引起的拉伸变形,

弯矩引起的弯曲变形及扭矩引起的扭转变形等。

在科学出版社出版的由季顺迎主编的材料力学第11章能量法中,几乎所有的问题都离不开微积分,如后面的莫尔积分法。但是又由莫尔积分法引出了图乘法呢?这是因为莫尔积分法的运算有时比较冗繁。对于直杆或由直杆组成的杆系,可以将积分运算简化为几何图形的代数运算,从而便于工程应用。由此,出现了有微积分引出的图乘法,但是,他的原理,离不开微积分,也就是莫尔积分。那么还有什么可以简化或影响微积分在材料力学中的应用呢?下面介绍一下积分顺序对解决材料力学问题的影响。

弹性力学学习心得

弹性力学学习心得 孙敬龙S4 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编着的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17

世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从 1822~1828年间,在?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表

材料力学小论文 竹竿性能分析

竹子外形和截面性能的力学分析 选课序号100 姓名杨建成学号2220133836 摘要:略约200字 一引言 在日常生活中,随处可见竹子,竹竿可视为上细下粗、横截面为空心圆形的杆件。这样的形状赋予了竹子很强的抗弯强度。 二力学分析 材料力学的任务是在满足强度、刚度和稳定性的要求下,以最经济的代价为构件确定合理的形状和尺寸,选择适宜的材料,为构件设计提供必要的理论基础的计算方法。换句话说,材料力学是解决构件的安全与经济问题。所谓安全是指构件在外力作用下要有足够的承载能力,即构件要满足强度、刚度和稳定性的要求。所谓经济是指节省材料,节约资金,降低成本。当然构件安全是第一位的,降低经济成本是在构件安全的前提下而言的。实际工程问题中,构件都应有足够的强度、刚度和稳定性。 本文以竹子为研究对象,其简化力学模型如下图所示。 竹子体轻,质地却非常坚硬,强度比较高,竹子的顺纹抗拉强度170Pa,顺纹抗压强度达80Pa 单位质量的抗拉强度大概是普通钢材的两倍。 根据材料力学,弯曲正应力是控制强度的主要因素,自然界的竹子经常受到来自风的力,主要是弯矩,主要是弯曲正应力。

从公式可以看出,当弯矩一定的时候,正应力与惯性矩正反比。 截面为实心圆的对中性轴的惯性矩,大部分树木都是这种结构。 (假设实心和空心竹子的横截面) 2.1 竹子的弯曲强度分析 根据材料力学的弯曲强度理论, 弯曲正应力是控制强度的主要因素, 弯曲强度条件为 max max []z M W σσ= ≤ (1) 横截面如上图所示。实心圆截面和空心圆截面的抗弯截面模量分别为: 332 W d π = 实 (2) 341 132 ()()D W D D π αα= -= 空 (3) 式中,d 是实心杆横截面直径,D 和D 1分别是空心杆横截面外径和内径,1 D D α=为空心杆内外径之比。 当空心杆和实心杆的两横截面的面积相同时

复合材料论文

摘要 与传统的CF增强材料相比,CNTs/CF混杂多尺度增强体在提高复合材料横向力学性能,充分发挥CNTs和cF的优异性能,开发具有综合优异性能的先进复合材料方面具有显著优势。目前该领域的研究尚处于起步阶段,几种常见的制备方法中化学气相沉积法尤其是等离子体化学气相沉积法获得的多尺度增强体的纳米结构在纤维表面均匀密布,具有广阔的发展前景和应Hj潜力。总之,CNTs/CF制备工艺的进一步完善和其与树脂复合后的新型复合材料的性能研究有待深入探索。 引言 碳纤维增强树脂基复合材料(CFRP)具有强度高、模量高、密度小、尺寸稳定等一系列优异性能,已器材等领域。众所周知,复合材料的性能主要取决于纤维和树脂基体本身的力学性能、纤维的表面能、纤维与基体之间的界面粘结以及界面应力传递能力。由于碳纤维(CF)表面为石墨乱层结构,纤维表面惰性大、表面能低,有化学活性的宫能}玎少,反应活性低,与基体的粘结性差,复合材料界面中存在较多的缺陷,界面粘结强度低,复合材料层间剪切强度(Interlaminar Sheafing Strength,ILSS)低。另外,纤维复合材料是各向异性十分突出的材料,其优异的物理、力学性能都集中在纤维的轴向,而在复合材料的横向无纤维加强作用.复合材料耐冲击性能较差。为改善纤维增强树脂基复合材料的性能,必须对纤维/树脂基体间的界面进行优化设计,同时改善树脂基体的性能指标。 纳米管(Carbon Nanotubes,CNTs)是由单层或多层石墨烯片围绕中心轴按一定的螺旋角卷绕而成的无缝、纳米级中空管体。组成CNTs的c—C共价键是自然界巾很稳定的化学键,理论计算和实验表明CNTs具有极高的强度和极大的韧性¨1,理论估计其杨氏模量高达5TPa,实验测得平均为1.8TPa,弯曲强度为14.2GPa,抗拉强度为钢的100倍,密度仅为钢的1/6~l/7。其直径在0.4—50nm之间,长度可达数微米至数毫米,因而具有很大的长径比,一般大于1000,是准一维的量子线,被看作复合材料增强体的终极形式,必将作为增强相而在复合材料中得到应用HJ。CNTs主要由碳元素组成,与聚合物有相似的结构,尺寸在同一数量级上,可将CNTs看作一种单元素的聚合物,且CNTs表面原子约占50%以上,与聚合物之间的相互作用强,研究表明,CNTs与聚合物之间的应力传递能力至少是传统纤维增强复合材料的10倍以上¨J,同时CNTs还具有很好的韧性,能够承受40%的张力应变,而不会呈现膪I生行为、塑性变形或键断裂.可以提高基体材料的韧性。6 J,因此可与聚合物复合制备高性能的复合材料。将准一维纳米材料CNTs与传统连续纤维混合作为复合材料增强相,有望同时改善复合材料的界面性能和树脂基体的抗冲强度。 CNTs/CF作为多尺度增强材料,其方式主要有掺杂法、化学气相沉积法、混纺法及化学接枝法。 碳纳米管/碳纤维混杂多尺度增强体 研究现状 掺杂法 掺杂法是将CNTs直接混合在树脂中,然后与连续CF复合,制备复合材料。究了多壁碳纳米管(MWCNTs)/T300连续cF环氧树脂复合材料的力学性能,当基体中CNTs的含量为3%时复合材料的力学性能最佳,断裂强度为1780MPa,模量为164GPa。国防科学技术大学采

材料力学论文学习心得

《集中力作用下深梁弯剪耦合变形应力计算方法》学习心得 背景 深梁是工程中常见的的结构,其跨高比一般介于3~8之间。当梁上作用集中力时,既有弯矩又有剪力即横力弯曲,出现弯剪耦合现象。由于剪力的存在,梁的横截面上会出现翘曲现象,并且与中性层平行的截面上出现挤压应力。 跨高比小于5的梁在应用细长梁的纯弯曲理论及假设计算时,误差会随跨高比的减小而迅速增大。对这种深梁而言,细长梁理论就不适用了。深梁应力计算主要影响因素有截面形状、支座约束、跨高比,究其原因是集中力作用下发生弯曲变形时,平面假设和纵向纤维相互不挤压的假设与实际相差太大。 原理 文章只研究两端简支和两端固支时,集中载荷作用在跨中时的横力弯曲的问题,以矩形截面为例,然后推广至工字形截面。 模型简化:在深梁跨中施加集中力F ;当深梁为简支时,两端只有集中反力R 的作用;当深梁为固支时,梁两端受到剪力和弯矩的共同作用。当深梁受有集中力时,由于跨度小,梁高大,其跨中截面的挠度较小。故以力的作用点为圆心的区域内按一半平面考虑应力分布。根据弹性力学半平面体在边界上受集中力作用时,应力计算方法得出深梁内的应力分布。由弹性力学半平面模型可得到图1所示载荷下应力表达式。 ?x =? 2F πx 2y (x 2+y 2)2 (1) 在梁两端集中反力作用下,梁内也会产生应力场,按照叠加原理,梁内应力由这三个力产生的应力场叠加而得。为方便将这三个应力叠加在一起,文章采用了坐标变换, 变换方式坐标轴以图2为基准。坐标变换公式如下: 对于集中力F 产生的应力场,有如下坐标变换:

x F=x?l 2 y F=y?? 2 (2) 对于集中反力R1产生的应力场,有如下坐标变换: x R 1 =?x y R 1=?y+? 2 (3) 对于集中反力R2产生的应力场,有如下坐标变换:x R 2 =l?x y R 2=?y+? 2 (4) 将(2)、(3)、(4)式代入到(1)中,由平衡原理知R1=R2=F 2 ,可得到叠加后应力表达式: ?x=2F π x?l 2 2 (y+? 2 ) ( x?l 2 2 + y+? 2 2 )2 ? F π x2 ?y+? 2 x2+ ?y+? 2 22 ? F π l?x2 ?y+? 2 l?x2+ ?y+? 2 22 (5) 梁在集中力作用下,不仅引起剪力,还会产生弯矩,因此需要考虑弯矩剪力共同作用产生的应力。再将材料力学梁受弯矩作用下的应力公式代入叠加到(5)式中,可得弯剪共同作用下的应力表达式: ?x=My I + 2F π x?l 2 2 (y+? 2 ) ( x?l 2 2 + y+? 2 2 )2 ? F π x2 ?y+? 2 x2+ ?y+? 2 22 ? F π l?x2 ?y+? 2 l?x2+ ?y+? 2 22 (6) 分析 对(6)式所得结果进行无量纲化分析,定义剪跨比η=x l (0<η<1),跨高 比α=l ?,和y值的无量纲值ξ=y ?/2 。将其代入(6)得到 ?x=My I +F 2π? {2α 2 η+1 2 2 (ξ+1) α2 η+1 2 +1ξ+12 2 ?α2η2?ξ+1 α2η2+1 4 ?ξ+12 2 ?α2(1?η)2?ξ+1 α21?η2+1 4 ?ξ+12 2 }(7) 再将大括号中的表达式用λ表达得到?x=My I +Fλ 2π? 。为材料力学解加一个修 正项。为比较材料力学和修正项的比例又引入无量纲翘曲应力λ?=Fλ 2π? I My 。得到 无量纲弯曲正应力表达式:

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

《神奇的材料》结课论文

生命的启示 ——仿生材料的应用及发展 学号:1505024303 姓名:宫美梅 2016.6.5

生命的启示 ——仿生材料的应用及发展 革命导师马克思曾经说过:“自然界为劳动提供材料,劳动把材料变成财富。”材料是人类赖以生活和生产的物质基础,是人们用以作为物品的物质。生产技术的进步是和新材料的应用密切相关的,因为材料的好坏,直接影响着生产工具的优劣和产品的价值,所以人类总是不断地去寻找、发现新材料,以促进生产,改善物质和文化生活。而新材料的应用,不仅可以大大促进科学技术和生产的发展,也使人类的活动方式发生日新月异的变化。 自然界的创造力总是令人惊奇,天然生物材料经历几十亿年进化,大都具有最合理、最优化的宏观、细观、微观复合完美的结构,并具有自适应性和自愈合能力,如竹、木、骨骼和贝壳等。其组成简单,通过复杂结构的精细组合,从而具有许多独有的特点和最佳的综合性能。人类从自然界的生物身上得到启迪,从而设计出了更完美的材料和物件。 例1.人造纤维 最早开始研究并取得成功的仿生材料之一就是模仿天然纤维和人的皮肤的接触感而制造的人造纤维。对蚕或者蜘蛛吐出的丝,人类自古就有很大的兴趣,这些丝纯粹是由蛋白质构成,特别是蚕丝,具有温暖的触感和美丽的光泽。二十世纪以来,人们模仿蚕吐丝的过程研制了各种化学纤维的纺丝方法,此后又模仿生物纤维的吸湿性、透气性等服用性能研制了许多新型纤维,例如,牛奶蛋白质与丙烯晴共聚纤维(东洋纺) ,商品名为稀苤的高吸湿性纤维(旭化成) 等等。这些产品的出现显示了人类仿造生物纤维表面细微形态与内部构造取得了成功。另外人们还对蚕的产丝体进行了卓有成效的研究(日本农业生物资源研究所) ,并且对蜘蛛丝也进行了研究(日本岛根大学) ,研究者们期待着有朝一日能够制造出与蚕丝完全一样的人造丝。 例2.人鱼传说 在陆地上生活的动物有肺,能够分离空气中的氧气,水里的鱼有鳃,能够分离溶解在水中的氧气,供给身体使用。人们仿造这种特性,制作了薄膜材料,用于制造高浓度氧气、分离超纯水等,以达到节省能源以及高分离率的目的。目前人们正在研制具有动物肺和鱼鳃那样功能的材料,如果研制成功的话,人类在水底世界的活动将发生一场新的革命。

材料力学论文

大连理工大学 材料力学论文 学生:宋子杰 学号: 201241013 班级:运船1201 院(系):运载工程与力学学部 专业:船舶与海洋工程 2014 年 6 月 11日

材料力学在螺纹连接中的应用 摘要:在我们的日常生活中,处处离不开连接。连接是指被连接件与连接件的组合。就机械零件而言,被连接件有轴与轴上零件、轮圈与箱盖、焊接零件中的钢板与型钢等。这样应用广泛的连接中螺栓是必不可少的成分。因此,螺纹连接的强度校核便成为了工程中必不可少的环节。 关键词:连接;材料力学;强度校核 正文: 一:材料力学知识简介与生活中的运用 材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。 1.研究材料在外力作用下破坏的规律; 2.为受力构件提供强度,刚度和稳定性计算的理论基础条件; 3.解决结构设计安全可靠与经济合理的材料力学基本假设; a)连续性假设——组成固体的物质内毫无空隙地充满了固体的体积 b)均匀性假设——在固体内任何部分力学性能完全一样 c)各向同性假设——材料沿各个不同方向力学性能均相同 d)小变形假设——变形远小于构件尺寸,便于用变形前的尺寸和几何形状进行计算。 人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降

复合材料力学上机编程作业(计算层合板刚度)要点

复合材料力学上机编程作业 学院:School of Civil Engineering专业:Engineering Mechanics 小组成员信息:James Wilson(2012031890015)、Tau Young(2012031890011)复合材料力学学了五个星期,这是这门课的第一次编程作业。我和杨涛结成一个小组,我用的是Fortran编制的程序,Tau Young用的是matlab编制。其中的算例以我的Fortran计算结果为准。Matlab作为可视化界面有其独到之处,在附录2中将会有所展示。 作业的内容是层合板的刚度的计算和验算,包括拉伸刚度A、弯曲刚度D以及耦合刚度B。 首先要给定层合板的各个参数,具体有:层合板的层数N;各单层的弹性常数 E1、E2、υ21、G12;各单层 对应的厚度;各单层对应的主方向夹角θ。然后就要计算每个单层板的二维刚度矩阵Q,具体公式如下: υ12=υ21E2 E1;Q11=E11-υ12υ21;Q22=E21-υ12υ21;Q12=υ12E1; 1-υ12υ21Q66=G12 得到Q矩阵后,根据课本上讲到的Q=(T-1)TQ(T-1)得到Q。 然后根据z坐标的定义求出z0到zn,接下来,最重要的一步,根据下式计算A、B、D。 n??Aij=∑(Qij)k(zk-zk-1) k=1??1n22?Bij=∑(Qij)k(zk-zk-1) 2k=1??1n33?Dij=∑(Qij)k(zk-zk-1)3k=1? 一、书上P110的几个问题可以归纳为以下几个类型。

第 1 页共 1 页 (4)6层反对称角铺设层合板(T5-10)第 2 页共 2 页

材料力学论文

中国古代的材料与结构 一、前言 中国是一个历史悠久、文化源远流长的国家。经历了绵绵五千年的历史沉积,中国文化在中华民族的传承中不断得到发展。而文化的沉淀,不仅仅凝聚在优雅的诗词和动人心弦的历史故事中,更多的是以建筑的物质形象存在于我们身边,以具体的技术体现在我们使用的工具中。中国古代没有现在高端的技术与高效精密的工具设备,使用的材料也都是通过粗制加工后得到,然而中国古代的许多建筑在经历了几千年的风吹雨打后仍屹立于世,备受世人感叹。它们不仅是前人的智慧的结晶,更是世界的瑰宝。 二、中国古代建筑的材料与结构 放眼中国古代的建筑,可谓是丰富多彩。其中最常见的有木结构、石木结构,如布达拉宫等藏式古建筑;有石结构,如石牌楼、石桥及部分地区的长城等;有土结构,如秦汉时期的长城、延安陕北地区的窑洞等;有砖结构,如影壁、围墙等;还有竹建筑,如南方少数民族地区的竹楼等。而根据不同建筑的结构特点,中国古建筑所用的建筑材料主要有:木材、砖瓦、石材、土、竹子等。 (一)中国古建筑的发展历史 1.原始雏形 早在五十万年前的旧石器时代,中国原始人就已经知道利用天然的洞穴作为栖身之所,北京、广东、湖北、浙江等地均发现有原始人居住过的崖洞。 到了新石器时代, 黄河中游的氏族部 落,利用黄土层为墙 壁,用木构架、草泥 建造半穴居住所,进 而发展为地面上的建 筑,并形成聚落。长 江流域,因潮湿多雨, 常有水患兽害,因而 发展为干栏式建筑。 据考古发掘,约在距 今六、七千年前,中 国古代人已知使用榫卯构筑木架房屋,如浙江余姚河姆渡遗址。木构架的形制已经出现,房屋平面形式也因功用不同而有圆形、方形、吕字形等。这是中国古建筑的草创阶段。 春秋、战国时期,中国的大地上先后营建了许多都邑,夯土技术已广泛使用于筑墙造台。此时木构技术较之原始社会已有很大提高。春秋、战国的各诸侯国均各自营造了以宫室为中心的都城。这些都城均为夯土版筑,墙外周以城濠,辟有高大的城门。宫殿布置在城内,建在夯土台之上,木构架已成为主要的结构方式,屋顶已开始使用陶瓦。这标志着中国古代建筑已经具备了雏形,不论是夯土技术、木构技术还是建筑的平面布局、以及建筑材料的制造与运用,都达到了雏

材料力学论文

材料力学在生活中的应用 学院: 专业: 班级: 姓名: 学号: 授课老师:

摘要:在如今现代化的社会中,随着高新技术的研发,建筑行业的大力发展,机械材料的广泛使用,大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品,各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要,材料力学知识在生活中得到广泛的。 关键字:材料力学、生活应用、材料知识 正文: 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 在生活中随处可见的桥梁,桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者其他设施 (如管道、电缆等)跨越天然障碍 (如河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。如果在安

全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。 生活中我们平常吃到的面条,有的口感筋道,有的口感松散。材料力学在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。用《质构仪评价面条质地品质的研究》一文指出:用不同的材料:试样A :100 %的面包粉;试样B:面包粉和饼干粉的质量比为 3/ 1;试样C :面包粉和饼干粉的质量比为1/ 1;试样D :面包粉 和饼干粉的质量比为1/ 3;试样E :饼干粉的含量为100%。用质构 仪对其进行了TPA 实验、剪切实验和拉伸实验,得到:指标 A B C D E;最大拉伸应力 3. 546 3. 245 2. 790 2. 571 2. 211;拉伸应变 1. 357 1. 336 1. 315 1. 052 0. 821。筋道感得分 1. 773 0. 935 - 0. 407 - 1. 380 - 1. 972。硬度得分1. 778 0. 815 0. 064 - 1. 270 - 2. 175 在材料力学中,我们把拉伸试验共分 四个阶段:1弹性阶段2屈服阶段3强化阶段4颈缩阶段。而抗压强度或强度极限是材料的重要指标。工程上常将延伸率〉5%的材料称为塑性材料,而将延伸率占<5%的材料称为脆性材料。我们这里把工程的比例引用,进行如下计算:拉伸应变:L = L2/ L1(L1为拉伸前的面条长度; L2 :拉断瞬间面条长度的增加量)拉应力P=F/A(P为正拉力,A为截面面积La=1.357 Pa =3.546 Lb=1.336 Pb= 3.245 Lc=1.315 Pc = 2.790 Ld=1.052 Pd = 2.571 Le=0.821 Pe = 2.118 由塑性材料拉伸La-P图可知,材料在颈缩阶段迅速收缩,

复合材料论文

复合材料论文 陶瓷基复合材料的发展状况 12级无机非(1)班1203031002 秦宇 摘要:材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类。其中复合材料是是最新发展地来的一大类,发展非常迅速。最早出现的是宏观复合材料,它复合的组元是肉眼可以看见的,比如混凝土。随后发展起来的是微观复合材料,它的组元肉眼看不见。由于复合材料各方面优异的性能,因此得到了广泛的应用。复合材料对航空、航天事业的影响尤为显著,可以说如果没有复合材料的诞生,就没有今天的飞机、火箭和宇宙飞船等高科技产品。 本文从纤维增强陶瓷基复合材料Cf/SiC入手,综述了陶瓷基复合材料(ceramic matrix composite,CMC)的特殊使用性能、界面增韧机理、制备工艺作了较全面的介绍,并对CMC 的的研究现状、未来发展进行了展望。 关键词:陶瓷基复合材料、增强纤维、基体 正文 陶瓷基复合材料的定义与特性 陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。因此,近几十年来,陶瓷基复合材料的研究有了较快发展。目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。 陶瓷基复合材料的分类 按增强材料形态分类,陶瓷基复合材料可分为颗粒增强陶瓷复合材料、纤维增强陶瓷复合材料、片材增强陶瓷复合材料。 按基体材料分类,陶瓷基复合材料可分为氧化物基陶瓷复合材料、非氧化物基陶瓷复合材料、碳/碳复合材料、微晶玻璃基复合材料。 三、陶瓷基复合材料的界面对材料整体性能的影响 界面直接影响复合材料的整体力学性能。纤维与基体间界面的主要作用有: (1)传递作用:由于纤维是主要的载荷承担者,因此界面必须有足够的结合强度来传递载荷,使纤维承受大部分载荷,在基体与纤维之间起到桥梁作用; (2)阻断作用:当基体裂纹扩展到纤维与基体间界面时,结合适当的界面能够阻止裂纹扩展或使裂纹发生偏转,从而达到调整界面应力,阻止裂纹向纤维内部扩展的效果。 当一垂直于纤维方向的裂纹穿入包埋单根纤维的基体时,随后的破坏机制界面对陶瓷基复合材料力学性能的影响分析可能为:基体断裂、纤维—基体界面脱粘、脱粘后摩擦、纤维断裂、应力重新分布、纤维拔出等。 对陶瓷基复合材料来说,纤维与基体的界面是控制材料性能的关键因素。因此,研究界面对陶瓷基复合材料的力学性能的影响具有重要意义。在纤维与基体之间的界面反应将改变材料

材料力学在生活中与应用

材料力学理论在生活中的应用这篇论文选取了三个生活实例,运用材料力学所学的知识,通过受力分析,应力分析,强度校核回答了三个基本问题:铝合金封的廊子窗格是否可以无限高;千斤顶的承载重量是否可以任意大小和桥梁。 关键词 材料力学拉压强度挠度剪切压杆稳定组合变形受力单元体铝合金千斤顶 1.铝合金封的廊子窗格是否可以无限高 图一铝合金门窗、廊子 走在大街上,我们可以看到各式各样的廊子样式,可以看到大小不一的窗格布置,学了材料力学这门课程,我们不禁要提问了,窗格尺寸的极限是多么大才能保证支撑它的铝合金材料安全,不会变形? 现在就将这个模型抽象出来,假设铝合金材料是空心铝管,厚度可以任意选择,屈服强度取,只受玻璃给的压力(设玻璃居中,由于给定一段铝合金,主要承载件是玻璃,而且玻璃的相对总质量远远大于承载的铝合金的质量),外力是均匀分布力,设普通玻璃的密度是(忽略玻璃的宽度),玻璃高度为H,取长度a mm的铝合金材料,宽度为b mm,高为h mm,如图二所示:

图二 玻璃安装示意图 该结构危险点在铝合金与玻璃接触处,并且中间部位有一定的挠度(只要有承载,就一定有挠度),当承载到一定极限时,挠度太大不满足装配要求了,或者承载到一定极限就会使铝合金破坏。 情形(一):挠度w 不满足装配要求—— 将图二简化为图三(a)所示的力学简图,装配要求挠度值为[w],只要w ≤[w]即可。 首先,做外力矩 ,单位力力矩图 ,如图三(b)所示。 图三 (a) 简化模型 图三 (b) 弯矩图 运用图乘法可以求的w= ρ ρ ,进而, ρ , 可以满足装配要求。如果给定了最大允许装配误差[w],知道铝合金管的宽b ,还知道所使用的玻璃的密度ρ,那么 ρ,也就是玻璃不可能无限高,是有一个极限值的。 情形(二):剪切破坏—— 因为玻璃是有一定的厚度的,设厚为δ在玻璃与铝合金接触的地方, 有剪切

材料力学论文

材料力学在生活建筑学的运用 摘要:近年来随着建筑高度的不断增加,建筑类型与功能愈来愈复杂,结构体系更加多样化,高层建筑结构设计也越来越成为结构工程师设计工作的重点和难点之所在。现就高层建筑结构的设计要点谈谈材料力学在建筑学中的应用。 关键词:高层建筑;材料力学;结构体系;结构分析 一:材料力学知识简介与生活中的运用 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。 研究材料在外力作用下破坏的规律; 为受力构件提供强度,刚度和稳定性计算的理论基础条件; 解决结构设计安全可靠与经济合理的材料力学基本假设; 人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降低成本、减轻重量等目的。在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性体。但在实际研究中不可能会有符合这些条件的材料,所以需要各种理论与实际方法对材料进行实验比较。材料在机构中会受到拉伸或压缩、弯曲、剪切、扭转及其组合等变形。根据胡克定律,在弹性限度内,物体的应力与应变成线性关系。 材料力学是现代科学科学技术迅速发展的理论事实基础,20世纪以前推动近代科学技术与社会进步的工具。蒸汽机、内燃机、铁路、桥梁、船舶、兵器等都是材料力学知识的累积应用和完善的基础上逐渐形成和发展起来的。 20世纪产生的诸多高新技术,如高层建筑,大型桥梁海洋石油钻井平台,精密仪器,航空航天器材,机器人,高速列车以及大型水利工程等许多的重要工程更是在材料力学指导下得以实现并不断发展完善的。 20世纪产生的另一些高新技术,如核反应堆工程、电子工程、计算机工程学。虽然是在其它基础学科指导下产生和发展起来的,但对材料力学都提出了各式各样的,大大小小的问题。材料力学知识的广泛运用,使生活中各行业得到迅速发展。如冶金行业、物料运输行业、珠宝鉴定行业、工程设计行业、科研行业、技术研究与开发行业、交通质量安全检测行业等多个领域,材料力学知识的广泛运用,使现实世界发展迅速并使各个行业得到提升。尤其是在生活建筑学方面得到了广泛地运用和发展,并得到了人们的深刻认识和体会。人们逐渐认识到材料力学知识在生活中的重要性。材料力学在生活建筑学的运用就是一个很好地体现。下面就仔细谈谈材料力学在生活建筑学的运用和对人们日常生活的影响。 二:生活中高层建筑的结构设计特点 结构内力与变形 随着建筑物高度的增加,水平荷载作用下的结构侧向变形迅速增大,结构顶点侧移与建筑物高度的四次方成正比。所以对于高层建筑,结构侧移已成为设计中的关键因素,这是因为: 高层建筑的使用功能和安全与结构侧移的大小密切相关。结构在阵风作用下的振动加速度超过0.015g时,就会影响楼房内使用人员的正常工作与生活,而振动加速度的大小与侧移幅值的大小有关。 过大的侧向变形会使高层建筑的隔墙、围护墙以及饰面材料开裂或损坏。

复合材料结构力学认识

暨南大学研究生课程论文 题目:复合材料结构力学认识 学院:理工学院 学系:土木工程 专业:建筑与土木工程 课程名称:复合材料结构力学 学生姓名:陈广强 学号:1339297001 电子邮箱:chengq09@https://www.wendangku.net/doc/9c13340262.html, 指导教师:王璠

复合材料结构力学认识 主题词:复合材料力学;复合材料结构力学;力学特性;力学基础复合材料结构力学研究复合材料的杆、板、壳及基组合结构的应力分析、变形、稳定和振动等各种力学问题,,在广议上属于复合材料力学的一个分支。由于其内容丰富,问题重要和研究对象不同,已成为和研究复合材料力学问题的狭义复合材料力学并列的学科分支。 一、复合材料结构力学研究内容和办法 目前复合材料结构力学以纤维增强复合材料层压结构为研究对象,主要研究内容包括:层合板和层合壳结构的弯曲,屈曲与振动问题,以及耐久性、损伤容限、气功弹性剪裁、安全系数与许用值、验证试验和计算方法等专题。研究中采用宏观力学模型,可以分辩出层和层组的应力。这些应力的平均值为层合板应力。研究方法以各向异性弹性力学方法为主,同时采用有限元素法、有限差分法、能量变分法等方法。对耐久性、损伤容限等较新的课题则采用以试验为主的研究方法。 二、复合材料结构的力学特性 1、复合材料的比强度和比刚度较高 材料的强度除以密度称为比强度;材料的刚度除以密度称为比刚度。这两个参量是衡量材料承载能力的重要指标。比强度和比刚度较高说明材料重量轻,而强度和刚度大。这是结构设计,特别是航空、航天结构设计对材料的重要要求。现代飞机、导弹和卫星、复合电缆支架、复合电缆夹具等机体结构正逐渐扩大使用纤维增强复合材料的

材料力学课程论文

问题一:许可载荷试验分析 在本学期材料力学的学习过程中,有幸继续在叶敏老师的班上学习,本学期中叶老师延续去年理论力学课通过设计试验来锻炼学生动手操作能力的教学方式,设计了“许可载荷试验”这样一个项目。 题目即用A4纸制作成如图形状 的,测试其许可载荷。并通过裁剪制 作出符合要求的纸形。 在制作过程中,为了使数据更有 规律性,同时制作起来更方便,我们 选取中间为正圆弧,并且两侧对称。 根据圣维南定理,可以推测中间 受力基本均匀,且中间最窄,应力最大,最先断。试验也得以验证。 数据分析,我认为误差20克是很难达到的。分析如下: 1.中间裁剪误差: 中间受力均匀,可假设中间的应力σ=m*g/S,S为中间的截面 面积,许可应力为固定值,S与宽度d成正比,所以所能承受 的质量m与d成正比。根据数据对应关系,d=2cm时,m至少 为4kg(实际值大概在7至8kg),根据正比关系,每毫米的 误差在200克以上,也就是说裁剪时误差超过一毫米,则误 差就会超过200克,相对于要扣除50分。而实际学生使用的 制图工具精确度为1毫米,所以可见,误差难以控制。

2.平行度误差 根据线性分析,所测质量为1Kg 时,纸条中间宽度在3毫米左右 (根据纸质不同),而两次受力 区域宽度为6cm,是中线宽度的 20倍。 及受力不是竖直方向,对于三毫 米的宽度,是非常容易出现撕裂 的现象,两侧不是同时断,即应力不均,使m偏小。纸质为 纤维,更容易出现内部结构变动,从而不满足材料力学连续 性、各项同性等的假设。 综上,容易出现误差的地方也是试验中必须控制的因素。为保证试验进行正常,需使两侧对称,尽量裁剪精细,同时两侧受力务必平行,否则影响会非常大。

材料力学论文压杆稳定与实际生活问题研究

压杆稳定与实际生活问题研究 班 摘要:现在随着社会经济的发展,工程中受压的杆件越来越多,例如许多建筑立柱、各种液压机械活塞杆、机床的丝杆等等,都有平衡构件的稳定性问题。另外,除细长杆外,其他弹性构件也存在稳定性问题。本文主要就是根据这些方面对压杆稳定在生活中某些实际方面应用的研究 关键字:压杆稳定工程实例桥梁结构 正文: 1.压杆稳定的实用计算 在实际计算中,对压杆的稳定采用折减系数法,即把材料的许用应力[σ]乘上一个折减系数φ,作为压杆的稳定许用应力: 那么,用折减系数法计算压杆稳定的条件为: 压杆截面设计是在满足稳定条件的前提下,确定压杆所需要的最小截面尺寸。由压杆的稳定条件得知,要确定截面尺寸,必须先知道折减系数φ。但是,折减系数φ与柔度λ有关,而柔度λ又要通过惯性矩I、截面面积A及惯性半径i求得。所以只能采用逐次逼近法进行反复试算。 通常,用逐次逼近法确定截面积的大小,一般要2~3次才可获得满意的结果。 2.压杆稳定一些生活实际研究

图一 当细长杆件受压时,却表现出与强度失效全然不同的性质。例如一根细长的竹片受压时,开始轴线为直线,接着必然是被压弯,发生颇大的弯曲变形,最后折断。与此类似,工程结构中也有很多受压的细长[1]杆。例如内燃机配气机构中的挺杆(图一),在它推动摇臂打开气阀时,就受压力作用。又如磨床液压装置的活塞杆(图二) 图二 ,当驱动工作台向右移动时,油缸活塞上的压力和工作台的阻力使活塞杆受到压缩。同样,内燃机(图三)、空气压缩机、蒸汽机的连杆也是受压杆件。还有,桁架结构中的抗压杆、建筑物中的柱也都是压杆。现以图四所示两端铰支的细长压杆来说明这类问题。设压力与杆件轴线重合,当压力逐渐增加,但小于某一极限值时,杆件一直保持直线形状的平衡,即使用微小的侧向干扰力使其暂时发生轻微弯曲(图四a),干扰力解除后,它仍将恢复直线 图四 形状(图四b)。这表明压杆直线形状的平衡是稳定的。当压力逐渐增加到某一极限值时,压杆的直线平衡变

材料力学小论文

《材料力学书》中的若干模糊之处【摘要】:材料力学的知识与我们的生活密不可分,为了更好地学好材料力学的知识,本文简要从读者的角度对现学的《材料力学》书中的若干含糊之处加以改进和理解。 【关键词】:代数和,叠加法,斜弯曲,卡氏定理,静不定结构。 【序言】 学习的目的就是为了更好地解决问题,因此我们并不是一味的学,而是在学习的过程中发现问题,对于大连理工大学出版社出版的《材料力学》这本书,我认为总体上来说是很好的,但也有不尽完美之处。我从一个学生一个读者的角度,并根据自己在学习的过程中所遇到的困惑,根据自己的理解和解决的办法对之加以改进,由于能力有限很可能有不妥之处,还请谅解。 【正文】 一、代数和 书中多次提到代数和这个概念,如拉压杆任意横截面上的轴力,数值上等于该截面任一侧所有外力的代数和。其实真正理解了这个代数和后对今后材料力学的学习都是很有帮助的,但是在老师未讲解之前我真的不理解。后来才知道所谓代数和是对于远离截面的取正值指向截面的取负值所有外力的和。如图(a) (a) m截面的轴力F N=F1=F2-F3+F4。因为截断看左面F1是远离截面的,所以为正,截断看右面F2F4远离截面F3指向截面所以F2F4取正F3为负值。将他们直接相加即为m截面的轴力。 此方法对某一截面的扭矩、弯矩、剪力同样适用,只是要分清何种条件是正值何种条件是负值就行了。这样可以极大程度上提高做题速度。 二、叠加法 当学到P107页时,真正的叠加法应用的例题。当时我看【例7-5】看了了很久,因为没看懂为什么要将外身段切断后代之以悬臂梁,如图(b)。 (b) 我是这么思考的,既然都是简化为一个力矩和一个力为什么非得是悬臂梁呢?固定铰支座就不行吗?立例题的解答过程很含糊就是说将外伸梁看做悬臂梁。这个问题我同学也问过我,就是不理解为什么切断后就是固定端,后来经过过我慎重思考,终于知道是为了让其转角和挠度相对于其于左端连接部分为0。这样子才满足实际的变换。而固定端才能满足这个条件,铰支座就不行了。 另外对于叠加法的例题【例7-8】中D点的挠度和转角是BC两端弹簧引起的加上均布载荷q引起的的叠加。此处书上没说为什么,我学习的时候也郁闷了很久。换位思考后,即如果此处不是弹簧中间也没有中间铰支的话是不是不会加上那一段呢?答案是肯

相关文档