文档库 最新最全的文档下载
当前位置:文档库 › bp与kDa的转化

bp与kDa的转化

bp与kDa的转化
bp与kDa的转化

DNAbp(kp)与蛋白质D(KD)间的转换关系

DNA的大小以bp或kp来反映核苷酸的个数多少,蛋白质的大小以D或KD 来反映其分子量的高低。氨基酸平均分子质量为120,也就是120D。

因此:

(DNA序列长度/3)*120可以估算蛋白的大小,一般几十KD的蛋白都为小分子

20种氨基酸的平均分子量为138。小分子氨基酸出现的频率较大因此加权平均分子量为128,在此基础上减去一分子被脱去的水分子量,即128-18=110。所以“氨基酸残基”的平均分子量通常按110计算。

根据上述14.4kD蛋白质的氨基酸数目为(14400/110=)131 个

因此其基因长度为(131X3 +3=)396 bp (所加的那个3 是指终止密码)

核酸、蛋白质的各种换算

分光光度值与核酸浓度的换算

1 A260 unit dsDNA=50 μg/ml

1 A260 unit ssDNA=33 μg/ml

1 A260 unit ssRNA=40 μg/ml

蛋白质质量与摩尔数的转换

100 pmol的100 kDa蛋白分子=10 μg

100 pmol的50 kDa蛋白分子=5 μg

100 pmol的10 kDa蛋白分子=1 μg

100 pmol的1 kDa蛋白分子=100 ng

DNA分子质量与摩尔数

1 μg of 1000 bp DNA = 1.5

2 pmol(3.0

3 pmol of ends)

1 μg of pBR32

2 DNA = 0.36 pmol DNA

1 pmol of 1000 bp DNA = 0.66 μg

1 pmol of pBR32

2 DNA = 2.8 μg

PVDF转膜实验步骤及注意事项

蛋白质转膜实验注意事项(用于N端测序) 转膜实验操作要点 1、SDS-PAGE电泳:按常规条件进行(CAPS系统:用于>=20KD蛋白;Tris-Tricine 系统:用于低分子量蛋白,也可用于高分子量蛋白); 2、甲醇浓度:CAPS电印迹缓冲液中甲醇浓度范围是0-20%(甲醇浓度高,用于低分子量蛋白转印;甲醇浓度低甚至不含甲醇的用于高分子量蛋白的转印); 3、PVDF膜处理:取出PVDF膜,用甲醇浸泡数秒钟,然后放入CAPS电印迹缓冲液中。(注:此后的操作须防止PVDF膜干涸。如果膜变干,须重复本步骤的操作); 4、凝胶处理:取出电泳凝胶,在CAPS缓冲液中浸泡5-10分钟。(注:转移某些强碱性蛋白pI>9.0时,可省略本步骤); 5、安装转印槽子:将滤纸和海绵放入电印迹缓冲液中浸泡一下,然后按海绵、滤纸、PVDF 膜、凝胶、滤纸、海绵的次序将电印迹夹层装好,并放入小型电转槽中; 6、转印条件:在50V恒压条件下(100-170mA)于室温下进行电印迹转移,转移时间为0.5-2小时。(注:务必排尽凝胶和PVDF膜之间的气泡。例如对70kD以上的蛋白质须延长转移时间); 7、PVDF膜染色前处理:取出PVDF膜并用去离子水略为漂洗,用甲醇浸泡数秒钟,然后进行染色; 8、膜染色:考马斯亮蓝染色(将0.1%考马斯亮蓝R-250溶于40%甲醇/1%乙酸中)30-50秒(切勿超过1分钟),50%甲醇脱色(勤换脱色液),用去离子水充分洗涤,然后晾干即可; 转膜实验注意事项 1)电泳胶要求:尽可能使用厚胶,以保证膜上高载量; 2)预电泳处理:低电流跑空胶2~2.5小时,防止胶内杂质污染; 3)转印缓冲液:不能使用Tris-甘氨酸缓冲液,推荐使用CAPS缓冲液; 4)转印膜选择:不能用NC膜,务必使用PVDF膜;

Western超详细实验步骤

Western实验步骤 1. 电泳(Electrophoresis) (1)SDS-PAGE凝胶配制 SDS-PAGE凝胶进行配制,配方试剂去离子水,Arc-HCL(29:1),10%APS,SDS,TEMED。 一般按分子大小配胶,现实验分离胶配12%-15%的胶,浓缩胶10%的胶。 配胶步骤: 1.清洗玻璃板,装好(注意不要漏即玻璃板要对齐)。 2.按比例配分离胶(8ml-10ml) 3.加水压胶,待分离胶凝固后(可见有分离胶与水有分隔线,一般凝固时间30分钟-1小时左右),吸走上层水面 4.按比例配浓缩胶(3ml-4ml),加入分离胶上层,插入梳子,(注意别有气泡),待凝。(如果今日不上样可以放入4°C冰箱) 注意:玻璃板要洗得干净;玻璃板要装好,不要漏;制胶过程中,一定要充分混匀,而且避免有气泡;(2)样品处理 1.准备无菌EP管,向EP管内加入样品蛋白质体积的1/4体积的SDS缓冲液(5X的SDS-PAGE蛋白上样缓冲液,现样品加 3.5ul),之后加入相应蛋白样品(要制冰,蛋白质样品要放置在冰上),充分吹打混匀 2.100℃水浴加热5分钟,以充分变性蛋白。 3.12000r离心5分钟。 (3)上样与电泳 1.将玻璃板装入电泳槽中,加电泳缓冲液至泳槽的的2/3左右 2.蛋白质样品冷却到室温后,直接上样到SDS-PAGE胶加样孔内即可,样品两边加蛋白质Maker(6ul)(注意上样蛋白质顺序,一定不要弄错)。 3.通常把电压设置在100V,然后设定定时时间为100分钟(一般为90-120分钟)。设置定时可以避免经常发生的电泳过头。 通常电泳时溴酚蓝到达胶的底端处附近即可停止电泳,或者可以根据预染蛋白质分子量标准的电泳情况,预计目的蛋白已经被适当分离后即可停止电泳。(为了避免电泳过头,最好是在电泳设定时间的提前30分钟观察电泳) 注意:上样时尽量避免样本被上漏出孔外;注意电泳时间的把握;最重要的是一定要记录上样顺序,必要时记录在本子上。 3.转膜(Transfer) 1.物品准备,甲醇,转膜缓冲液,滤纸,转膜槽,玻璃皿3个,制冰。 2.取下胶板,用专门的板将玻璃板分离(务必不要将胶弄破,动作轻些,从下面和上面分离玻璃板),切适合大小的胶(不要切掉MAKER)。 3.用专门的板将胶转入事先放有转膜缓冲液的皿中,记录胶的顺序,剪与胶同等大小的滤纸和转膜纸PVDF膜,PVDF膜要放入甲醇中浸15秒(一般1-2分钟),胶要切角做标记(不要切到maker),一般一个切三个角,一个切一个角,记录顺序 4.铺膜,PVDF膜铺在胶上,在PVDF膜上铺三层滤纸,然后胶的对侧面铺三层滤纸即可(滤纸要大于等PVDF膜,PVDF膜要大于等胶),赶尽气饱。 5.再将铺好的膜胶滤纸,转入转膜夹中,有PVDF膜这面放在正极侧(即无色透明夹这面),再将夹子放入转膜槽里(电极不要放错,蛋白质带负电的)

western转膜条件

western 转膜条件 蛋白来源:RAW264.7 总蛋白蛋白名称(可保密):一些转录因子蛋白分子量:40~70 KD WB用膜类型、孔径:0.45 NC 转膜方式(恒压、恒流):湿转恒流400 mA 转膜时间:60~90 min PS.其实吧,以我的经验来看,除非目的蛋白特别小,或者特别大,不然转膜时间真的不是那么重要,曾经因为失误,转了15 min 就拆下来了,但从丽春红染色来看,跟平常实验也没有太大的区别。 蛋白来源:内皮细胞总蛋白蛋白名称(可保密):occludin & AKT 蛋白分子量:65 KD & 56 KD WB用膜类型、孔径:0.45 PVDF 转膜方式(恒压、恒流):湿转恒压100 V 转膜时间:60~70 min 设备名字是“ Bio-Rad mini ”。 蛋白来源:乳鼠心肌细胞和成年鼠心肌组织总蛋白和核蛋白蛋白名称(可保密):保密蛋白分子量:65 KD & 55 KD WB用膜类型、孔径:PVDF(预先用甲醇处理)转膜方式(恒压、恒流):半干转恒压12 V 转膜时间:30-40 min 设备:“ Bio-Rad mini ” 建议:最开始做过湿转(过夜的那种),太费事费时,效果也不如半干转。 蛋白来源:293T 细胞蛋白名称(可保密):蛋白分子量:95 KD & 35 KD WB用膜类型、孔径:PVDF 转膜方式(恒压、恒流):湿转恒压90 V-110 V ,控制电流不要超过300 mA。转膜时间:70 min 蛋白来源:肿瘤手术标本蛋白名称(可保密):转录因子蛋白分子量:33 KDa WB用膜类型、孔径:PVDF膜 转膜方式(恒压、恒流):350 mA 恒流转膜时间:150 min 转膜设备:湿转Bio-Rad 说明:相同条件曾用于数个30-70 KDa的蛋白,都能成功转上,不过没有试缩短时间效果如何;实验时没为转膜条件苦恼,倒是电泳时胶的浓度及时间根据不同分子量而有区别。 蛋白来源:成纤维细胞 蛋白名称(可保密):smad3 蛋白分子量:54 KDa WB用膜类型、孔径:PVDF膜 转膜方式(恒压、恒流):350 mA 恒流 转膜时间:150 min 转膜设备:湿转Bio-Rad 蛋白来源:胰腺癌细胞 蛋白名称(可保密): 蛋白分子量:16 KDa and 42 KDa

Western操作步骤

Western-Blot 操作流程及注意事项 Western操作步骤 (一)蛋白样品制备 (1)单层贴壁细胞总蛋白的提取: 1. 倒掉培养液,并将瓶倒扣在吸水纸上使吸水纸吸干培养液(或将瓶直立放置一会儿使残余培养液流到瓶底然后再用移液器将其吸走)。 2. 每瓶细胞加3ml 4℃预冷的PBS(0.01M pH7.2~7.3)。平放轻轻摇动1min 洗涤细胞,然后弃去洗液。重复以上操作两次,共洗细胞三次以洗去培养液。将PBS 弃净后把培养瓶置于冰上。 3. 按1ml 裂解液加10 μl PMSF(100mM),摇匀置于冰上。(PMSF要摇匀至无结晶时才可与裂解液混合) 4. 每瓶细胞加400 μl含PMSF的裂解液,冰上裂解30min,为使细胞充分裂解培养瓶要经常来回摇动。 5. 裂解完后,用干净的刮棒将细胞刮于培养瓶的一侧(动作要快),然后用枪将细胞碎片和裂解液移至1.5ml 离心管中。(整个操作尽量在冰上进行) 6. 于4℃下12000rpm 离心5min。(提前开离心机预冷) 7. 将离心后的上清分装转移倒0.5min 的离心管中放于-20℃保存。 (个人感觉上述方法可操作性有待加强,细胞中蛋白本来就很少,一瓶50ml的细胞有时按照实验要求只能加100~200μl 的裂解液,按照上述操作,直接用200μl 裂解液进行裂解,根本就不够瓶壁上沾的。本人是先用预冷的PBS(一般数毫升)加入后,用细胞刮刮下细胞,转移至试管中,如果数瓶细胞是收集同一蛋白的,可以放在同一试管,离心后再将蛋白转移到EP管中,这样可操作性就比较强) (2)组织中总蛋白的提取: 1. 将少量组织块置于1~2ml 匀浆器中球状部位,用干净的剪刀将组织块尽量剪碎。 2. 加400 μl 单去污剂裂解液裂(含PMSF)于匀浆器中进行匀浆。然后置于冰上。 3. 几分钟后再碾一会儿再置于冰上,要重复碾几次使组织尽量碾碎。 4. 裂解30 min 后,即可用移液器将裂解液移至1.5ml 离心管中,然后在4℃下12000rpm 离心5min,取上清分装于0.5ml 离心管中并置于-20℃保存。 (3)加药物处理的贴壁细胞总蛋白的提取: 由于受药物的影响,一些细胞脱落下来,所以除按(一)操作外还应收集培养液中的细胞。以下是培养液中细胞总蛋白的提取: 1. 将培养液倒至15ml 离心管中,于2500rpm 离心5min。 2. 弃上清,加入4ml PBS并用枪轻吹打洗涤,然后2500rpm离心5min。弃上清后PBS 重复洗涤一次。 3. 用枪吸干上清后,加100 μl 裂解液(含PMSF)冰上裂解30min,裂解过程中要经常弹一弹以使细胞充分裂解。 4. 将裂解液与培养瓶中裂解液混在一起4℃、12000rpm 离心5min,取上清分装于0.5ml 离心管中并置于-20℃保存。 (二)蛋白含量的测定 (1)制作标准曲线 1. 从-20℃取出1mg/ml BSA,室温融化后,备用。 2. 取18 个1.5ml 离心管,3 个一组,分别标记为0μg,2.5μg,5.0μg ,10.0μg ,20.0μg ,40.0μg。

bp神经网络及matlab实现讲解学习

b p神经网络及m a t l a b实现

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function ) 以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。 (4) S形函数 ( Sigmoid Function ) 该函数的导函数:

Western Blot技术专辑之PAGE胶电泳和转膜

Western Blot技术专辑之PAGE胶电泳和转膜 PAGE倒胶的仪器我们在前面WesternBlot仪器之选已经介绍过了,除了顺手的工具能防止漏胶,PAGE配胶的试剂和配方比例对电泳结果的质量当然有决定性的影响,这个配胶的比例,在《分子克隆》上有详细的论述,相信大家都不难查到。容易忽视的问题主要在于过硫酸铵(AP)一定要新鲜——最好用小指管配AP(写日期)保存在-20度,超过2周的AP扔掉算了,或者已经反复打开使用多次的AP都别用,小气病发作的后果往往是得不偿失——胶凝不好多半是这里疏忽(或者混合不匀),因为相对配胶的其他组分,AP算最活跃分子——如果还有诸如漏加某组分或者配比错误或者Buffer搞错,那绝对是你自己找骂,不值得同情。水要用去离子的纯水,MilliQ级更好。Cambrex(原来的FMC)有商品化的丙烯酰胺母液,很贵,也很好——配出的胶对200KD以上的蛋白的分辨率高于普通PAGE胶,条带清晰漂亮,可惜一直没有搞清楚配方的奥秘;但是数十倍于丙烯酰胺粉剂的价格令人却步,不过,对接触丙烯酰胺粉尘严重过敏的人可以选择这个。更加豪华的选择是已经凝好的预制胶,各种配方各种比例各种梳孔大小多少任君选择,打开即用,当然更直接方便,更吸引人的是结果漂亮,分辨率高,特别是重复性好,条带真正是"razor sharp"啊!平时都能用这么豪华的东西心情当然超爽啊,实验紧凑又轻松,效率也更高啊!如果实验都能这么“好马配好鞍”,想必更容易出结果,也就更容易拿经费吧!什么时候我们的实验才能实现这种良性循环啊!Invitrogen旗下的Norvex和Cambrex(原来的FMC)PAGEr都是首选预制胶。可是在“社会主义初级阶段”这种奢侈品平时流流口水就算了,偏偏最近Invitrogen公司推出了新的优惠活动,买3盒NuPAGE预制胶就送电泳仪或者电转移,面对这种诱惑,你难道就没有一点非份之想的冲动? 上样电泳:上样前蛋白样品最好离心,上样量不宜过多,以免看结果时,每个条带都弯弯地“笑”你贪多嚼不烂哦。其他的操作,按照说明控制电流,不要过多重复使用电泳Buffer (别小气,重复使用会降低缓冲能力的),好像基本不会出问题了。当预染的Marker告诉你,你要分辨的蛋白已经到达最佳分辨区——分离胶的2/3处,OK,电泳结束了。 电泳结果检查:如果要做Western Blot,是否需要先检查电泳结果呢?能先看看结果如何再进行下一步转膜当然最好。考马斯亮蓝使用简便快速,可以分辨1ug左右的条带,是最经济通用的蛋白PAGE胶电泳染色方法。银染操作复杂一些但分辨率高很多,可以分辨2-5ng 蛋白。可是由于考马斯亮蓝染色或者银染经过固定不可逆结合,会干扰后面的Western Blot

western转膜

western blot转移电泳一般操作流程 总的来说,半干转、湿转的程序和基本原理是相同的。胶和膜预稀释并用电转缓冲液平衡;滤纸/胶/膜/滤纸三明治放入电转设备中;正确的方向确保蛋白转移到膜上。合适的电压/电流条件对于电转的成败是非常重要的。

电转缓冲液和电转条件的选择 对于不同的电转设备,当选用不同的胶和缓冲液时,要求不同的电压/电流。变性凝胶需要增加电转时间,而低分子量的蛋白需要相应的缩短电转时间。现在实验室常用的Bio-rad 小型Mini Trans-Blot转印槽(湿转)和Trans-Blot半干转印系统转印槽(半干转)相应的电转参数如下表: 槽式转印半干转印 Mini Trans-Blot槽Trans-Blot半干转印系统转印槽印迹区域(宽 x 长)10 x 7.5 厘米24 x 16 厘米 转移参数 凝胶夹数 2 -

缓冲液要求450ml ≤200 ml 电极距离4cm 按夹层结构厚度确定 转移时间(高强度)60分钟15–60 分钟 冷却蓝胶冷却装置/冷却旋管- 凝胶容量 18.3 x 19.3 厘米- 1 块凝胶(2 块凝胶堆叠)16 x 20 厘米- 1 块凝胶(2块凝胶堆叠)16 x 16 厘米- 13.3 x 8.7 厘米- 3 个凝胶并列 8.3 x 7.3 厘米每个凝胶夹1块凝胶共2个 凝胶夹(两种尺寸)4个凝胶并列 8.6 x 6.8 厘米 通常我们在做湿转的时候,选择100V恒压(高强度,因为低强度时间较长,且效率较低),电流控制在120-350mA之间,分子量在60KD以下的60分钟即可,分子量在60KD 以上的需要延长转膜时间60-150分钟才能确保高效率的转膜。所以如果你所需要转印的蛋白分子量差得比较多(如GAPDH 37KD,Ki67 358KD),你可以考虑将胶从中间分开,两部分分别采用不同时间转印,能达到你理想的效果。电转液一般可以重复使用3次,之后电流会过大,不适合再使用。 而对于半干转,我们一般选择恒流(膜面积的3倍:3 mA/cm2)之间一般60分钟,同样根据蛋白分子量适当调节时间。 需要注意的是:低温对于膜的转印是至关重要的,尤其是在转印时间较长而无人监管的情况下。经过转印的胶和膜都要通过染色确定转膜效率(胶用考马斯亮蓝加热染色,膜用

WB的转膜和染色(优质参考)

WB的转膜和染色 凝胶中蛋白的可视化 在现阶段染胶可用于确定蛋白的迁移是否均匀一致。如果您计划将蛋白转印到膜上,则使用铜染色法,因为考马斯染色不可逆。考马斯染色仅适用于以下情形:在转膜后染胶检查转膜效率;不需要转膜,只需观察 SDS-PAGE 结果。 考马斯染色 切断电源后,分离的蛋白条带就会开始扩散(溶于水溶液)。为了防止蛋白的扩散,用 40% 蒸馏水、10% 醋酸、50% 甲醇的溶液处理凝胶,就会使大多蛋白沉淀(变得不可溶)。 为了让固定的蛋白可视化,在相同比例的水/醋酸/甲醇混合物中加入质量比 0.25% 的考马斯亮蓝 R-250,然后将凝胶放置溶液中,在振荡器上室温孵育 4 小时至过夜。接下来将凝胶(保存染料;可重复多次使用)转移到 67.5% 蒸馏水、7.5% 醋酸、25% 甲醇的混合溶液中,放置在振荡器上,洗去多余的染料。 染料不会结合丙烯酰胺,因此会被洗脱(留下干净的凝胶)。但是,染料会与凝胶中的蛋白紧密结合,显示为深蓝色。 铜染色法 用蒸馏水简单冲洗经新鲜凝胶(最多 30 分钟),然后转移至 0.3 M CuCl2溶液染色5–15 分钟。接下来用去离子水简单清洗凝胶,在暗视野背景下观察。蛋白在半透明蓝色背景下形成清晰条带。凝胶可以用 0.1–0.25 M Tris/0.25 M EDTA pH 8.0 重复冲洗至完全脱色。根据转膜仪器制造商的说明,进行转膜。 转膜 转膜流程的详细说明可在转膜仪器制造商的网站上找到,根据系统的不同而有所区别。但是,每种方法的原理都一样。带电荷的蛋白(SDS 提供)在电场中可以在凝胶中移动,从凝胶转移到膜上,显示蛋白的“印迹”。早期的方法依赖于扩散;现在在电场中进行印迹是标准方法了。 转膜可以湿转或半干转。湿转由于膜的干燥而更不容易失败,尤其推荐用于大蛋白转膜。在两种转膜方法中,膜都放置在凝胶旁边,两者夹在滤纸中间,整个三明治结构夹在固体载体之间,保持凝胶与膜之间的紧密接触。 在湿转中,凝胶和膜紧紧地夹在海绵和滤纸之间(海绵 > 滤纸 > 凝胶 > 膜 > 滤纸 > 海绵),确保凝胶与膜之间不形成气泡。三明治结构浸泡在转膜缓冲液中,对其施加电场。负电荷蛋白向正极移动,结合在膜上,并阻止其继续移动。 湿转的标准缓冲液与跑胶缓冲液所用的都是 1x Tris-甘氨酸缓冲液,但是没有 SDS,并加入了甲醇至终浓度 20%。对于分子量大于 100 kDa 的蛋白,推荐在转膜缓冲液中加入终浓度为 0.1% 的 SDS。 在半干法转膜中,三明治由滤纸 > 凝胶 > 膜 > 滤纸组成,在转膜缓冲液中浸湿,直接放置在正负电极之间。在转膜中,膜靠近正极、凝胶靠近负极,这很重要。 半干转的转膜缓冲液中 Tris 和甘氨酸的比例不一定与湿转一致,请参考仪器制造商的实验方案。标准配方是 48 mM Tris、39 mM 甘氨酸、0.04% SDS、20% 甲醇。

Western 转膜步骤 操作方法

Western 转膜步骤操作方法 Western转膜步骤(建议用伯乐电泳系统来操作完成) 下面的步骤适用于通过Xcell Ⅱ转印系统进行蛋白印记的大部分应用。为达到最佳效果,用户的优化是必要的。 I. 所需材料:?Xcell SureLock?或Xcell Ⅱ?Mini-Cell以及Blot Module(Cat. Nos. EI10001, EI9001及EI9051) ?电泳后的迷你胶(mini-gel)(最大的尺寸9cm*9cm) ?预先切割好的印记膜: 硝酸纤维素(Cat. no. LC2000或LC2001), PVDF(Cat. No. LC2002)或Nylon+(Cat. No. LC2003) ?转印垫(Cat. No. EI9052) ?甲醇 ?去离子水 ?转移缓冲液(配方见下文) ?用于平衡膜,滤纸和转移垫的浅盘 II. 规格: 转印槽尺寸:14.5cm x 14cm x 11cm Blot Module容积:约200ml 下缓冲液槽容积:600ml Blot尺寸:约9cm*9cm 注意:在以下步骤中,应该始终使用手套以避免凝胶和膜的污染,并防止接触电泳和电转过程中常用的刺激物。 Ⅲ材料制备 a) 转膜缓冲液- 请注意对大多数转膜我们推荐使用强度减半的Towbin缓冲液,其中含有20%的甲醇。使用Xcell Ⅱ转印系统进行成功的转膜,0.5Xtowbin缓冲液就可以提供足够的离子强度,而不产生过多的热量。这种缓冲液可能不适合其它的转印系统,反过来也是这样。一升的转膜缓冲液制备方法如下(含20%甲醇的0.5X Towbin) 使用我们的Tris-Glycine转膜缓冲液:去离子水760 ml 转膜缓冲液(Cat. No. LC3675)40 ml (25×未稀释液) 甲醇200 ml 总体积1000 ml 自己制备Tris-Glycine转膜缓冲液: Tris 碱(12mM) 1.45 g 甘氨酸(96mM) 7.2 g 甲醇(20%终浓度)200 ml

[原创]-Western-blot转膜整个过程

转膜(T r a r s m e m b r a n)1转膜的定义 将电泳后分离的蛋白质从凝胶中转移到固相载体(例如NC膜)上,通常有两种方法:毛细管印迹法和电泳印迹法。常用的电泳转移方法有湿转和半干转。两者的原理完全相同,只是用于固定胶/膜叠层和施加电场的机械装置不同。前者操作容易,转移效率高;而后者适用于大胶的蛋白转移,所用缓冲液少。 2转移膜的选择 杂交膜的选择是决定Westernblot成败的重要环节。应根据杂交方案、被转移蛋白的特性以及分子大小等因素,选择合适材质、孔径和规格的杂交膜。用于Westernblot的膜主要有两种:硝酸纤维素膜(NC)和PVDF膜。NC膜是蛋白印迹实验的标准固相支持物,在低离子转移缓冲液的环境下,大多数带负电荷的蛋白质会与膜发生疏水作用而高亲和力的结合在一起,但在非离子型的去污剂作用下,结合的蛋白还可以被洗脱下来。根据被转移的蛋白分子量大小,选择不同孔径的NC膜。因为随着膜孔径的不断减小,膜对低分子量蛋白的结合就越牢固。通常用0.45μm和0.2μm两种规格的NC膜。大于20kD的蛋白可用0.45μm的膜,小于20kD的蛋白就要用0.2μm的膜了,如用0.45μm的膜就会发生“Blowthrough”的现象。PVDF膜灵敏度、分辨率和蛋白亲和力比常规的膜要高,非常适合于低分子量蛋白的检测。但PVDF膜在使用之前必需用纯甲醇浸泡饱和1-5秒钟。 最常用于WesternBlot的转移膜主要是硝酸纤维素(Nitrocellulose,NC)膜和聚偏二氟乙烯(PolyvinylideneFluoride,PVDF)膜,此外也有用尼龙膜、DEAE纤维素膜做蛋白印迹。尼龙膜和NC膜的特点相似,主要用于核酸杂交。 硝酸纤维素(nitrocellulose,NC)膜:NC与蛋白质靠疏水作用结合,无需预先活化,对蛋白质的活性影响小;非特异性本底显色浅;价格低廉,使用方便。但结合在NC上的小分子蛋白质在洗涤时易丢失;NC韧性较差,易损坏。 聚偏二氟乙烯(Polyvinylidenefluoride,PVDF)膜:与蛋白质亲和力高,用前需在甲醇中浸泡,以活化膜上的正电基团,使其更容易与带负电荷蛋白结合。 膜的选择主要根据: p膜与目的蛋白分子的结合能力(也就是单位面积的膜能结合蛋白的载量),以及膜的孔径(也就是拦截蛋白的大小); p不影响后续的显色检测(也就是适和用于所选的显色方法,信噪比好); p如果后继实验有其他要求,比如要做蛋白测序或者质谱分析,还要根据不同目的来挑选不同的转移膜。 几种膜的性质对比 PVDF膜NC膜尼龙膜背景低低较高 蛋白结合能力100-200μg/cm280-100μg/cm2>400ug/cm2机械强度强干的膜很脆软而结实 溶剂抗性强差差

western转膜条件

w e s t e r n转膜条件 蛋白来源:RAW264.7总蛋白 蛋白名称(可保密):一些转录因子 蛋白分子量:40~70KD WB用膜类型、孔径:0.45NC 转膜方式(恒压、恒流):湿转恒流400mA 转膜时间:60~90min PS.其实吧,以我的经验来看,除非目的蛋白特别小,或者特别大,不然转膜时间真的不是那么重要,?曾经因为失误,转了15min就拆下来了,但从丽春红染色来看,跟平常实验也没有太大的区别。 蛋白来源:内皮细胞总蛋白 蛋白名称(可保密):occludin&AKT 蛋白分子量:65KD&56KD WB用膜类型、孔径:0.45PVDF 转膜方式(恒压、恒流):湿转恒压100V 转膜时间:60~70min 设备名字是“Bio-Radmini”。 蛋白来源:乳鼠心肌细胞和成年鼠心肌组织总蛋白和核蛋白 蛋白名称(可保密):保密 蛋白分子量:65KD&55KD WB用膜类型、孔径:PVDF(预先用甲醇处理) 转膜方式(恒压、恒流):半干转恒压12V 转膜时间:30-40min 设备:“Bio-Radmini” 建议:最开始做过湿转(过夜的那种),太费事费时,效果也不如半干转。? 蛋白来源:293T细胞 蛋白名称(可保密): 蛋白分子量:95KD&35KD WB用膜类型、孔径:PVDF 转膜方式(恒压、恒流):湿转恒压90V-110V,控制电流不要超过300mA。转膜时间:70min? 蛋白来源:肿瘤手术标本 蛋白名称(可保密):转录因子 蛋白分子量:33KDa WB用膜类型、孔径:PVDF膜 转膜方式(恒压、恒流):350mA恒流 转膜时间:150min

bp神经网络详解

学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法为模型。 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。 1.2.1 神经网络的学习机理和机构 在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如BP网络,Hopfield网络,ART网络和Kohonen网络中;BP网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和 Kohonen网络则无需教师信号就可以学习。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。 一、感知器的学习结构 感知器的学习是神经网络最典型的学习。 目前,在控制上应用的是多层前馈网络,这是一种感知器模型,学习算法是BP法,故是有教师学习算法。 一个有教师的学习系统可以用图1—7表示。这种学习系统分成三个部分:输入部,训练部和输出部。 图1-7 神经网络学习系统框图

神经网络算法详解

神经网络算法详解 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.wendangku.net/doc/9c14756448.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ] 则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net 为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function )

Western-blot转膜整个过程

转膜(Trarsmembran) 1 转膜的定义 将电泳后分离的蛋白质从凝胶中转移到固相载体(例如NC膜)上,通常有两种方法:毛细管印迹法和电泳印迹法。常用的电泳转移方法有湿转和半干转。两者的原理完全相同,只是用于固定胶/膜叠层和施加电场的机械装置不同。前者操作容易,转移效率高;而后者适用于大胶的蛋白转移,所用缓冲液少。 2 转移膜的选择 杂交膜的选择是决定Western blot成败的重要环节。应根据杂交方案、被转移蛋白的特性以及分子大小等因素,选择合适材质、孔径和规格的杂交膜。用于Western blot的膜主要有两种:硝酸纤维素膜(NC)和PVDF膜。NC膜是蛋白印迹实验的标准固相支持物,在低离子转移缓冲液的环境下,大多数带负电荷的蛋白质会与膜发生疏水作用而高亲和力的结合在一起,但在非离子型的去污剂作用下,结合的蛋白还可以被洗脱下来。根据被转移的蛋白分子量大小,选择不同孔径的NC膜。因为随着膜孔径的不断减小,膜对低分子量蛋白的结合就越牢固。通常用0.45 μm和0.2 μm两种规格的NC膜。大于20 kD的蛋白可用0.45 μm的膜,小于20 kD的蛋白就要用0.2 μm的膜了,如用0.45 μm的膜就会发生“Blowthrough”的现象。PVDF膜灵敏度、分辨率和蛋白亲和力比常规的膜要高,非常适合于低分子量蛋白的检测。但PVDF膜在使用之前必需用纯甲醇浸泡饱和1-5秒钟。

最常用于Western Blot的转移膜主要是硝酸纤维素(Nitrocellulose, NC)膜和聚偏二氟乙烯(Polyvinylidene Fluoride, PVDF)膜,此外也有用尼龙膜、DEAE纤维素膜做蛋白印迹。尼龙膜和NC膜的特点相似,主要用于核酸杂交。 硝酸纤维素(nitrocellulose, NC)膜:NC与蛋白质靠疏水作用结合,无需预先活化,对蛋白质的活性影响小;非特异性本底显色浅;价格低廉,使用方便。但结合在NC上的小分子蛋白质在洗涤时易丢失;NC韧性较差,易损坏。 聚偏二氟乙烯(Polyvinylidene fluoride, PVDF)膜:与蛋白质亲和力高,用前需在甲醇中浸泡,以活化膜上的正电基团,使其更容易与带负电荷蛋白结合。 膜的选择主要根据: p 膜与目的蛋白分子的结合能力(也就是单位面积的膜能结合蛋白的载量),以及膜的孔径(也就是拦截蛋白的大小); p 不影响后续的显色检测(也就是适和用于所选的显色方法,信噪比好); p 如果后继实验有其他要求,比如要做蛋白测序或者质谱分析,还要根据不同目的来挑选不同的转移膜。

western转膜条件

western转膜条件 蛋白来源:RAW264.7 总蛋白 蛋白名称(可保密):一些转录因子 蛋白分子量:40~70 KD WB用膜类型、孔径:0.45 NC 转膜方式(恒压、恒流):湿转恒流400 mA 转膜时间:60~90 min PS.其实吧,以我的经验来看,除非目的蛋白特别小,或者特别大,不然转膜时间真的不是那么重要,曾经因为失误,转了15 min就拆下来了,但从丽春红染色来看,跟平常实验也没有太大的区别。 蛋白来源:内皮细胞总蛋白 蛋白名称(可保密):occludin & AKT 蛋白分子量:65 KD & 56 KD WB用膜类型、孔径:0.45 PVDF 转膜方式(恒压、恒流):湿转恒压100 V 转膜时间:60~70 min 设备名字是“Bio-Rad min i”。 蛋白来源:乳鼠心肌细胞和成年鼠心肌组织总蛋白和核蛋白 蛋白名称(可保密):保密 蛋白分子量:65 KD & 55 KD WB用膜类型、孔径:PVDF(预先用甲醇处理) 转膜方式(恒压、恒流):半干转恒压12 V 转膜时间:30-40 min 设备:“Bio-Rad mini” 建议:最开始做过湿转(过夜的那种),太费事费时,效果也不如半干转。 蛋白来源:293T细胞 蛋白名称(可保密): 蛋白分子量:95 KD & 35 KD WB用膜类型、孔径:PVDF 转膜方式(恒压、恒流):湿转恒压90 V-110 V,控制电流不要超过300 mA。 转膜时间:70 min 蛋白来源:肿瘤手术标本 蛋白名称(可保密):转录因子 蛋白分子量:33 KDa WB用膜类型、孔径:PVDF膜 转膜方式(恒压、恒流):350 mA 恒流

蛋白质免疫印迹(Western Blot )实验步骤和原理及注意事项

蛋白质免疫印迹(Western Blot )实验步骤和原理及注意事项 1.收集蛋白样品(Protein sample preparation) 可以使用适当的裂解液。收集完蛋白样品后,为确保每个蛋白样品的上样量一致,需要测定每个蛋白样品的蛋白浓度。根据所使用的裂解液的不同,需要采用适当的蛋白浓度测定方法。因为不同的蛋白浓度测定方法对于一些去垢剂和还原剂等的兼容性差别很大。BCA法。 2. 电泳(Electrophoresis) (1) SDS-PAGE凝胶配制 (2) 样品处理 在收集的蛋白样品中加入适量浓缩的SDS-PAGE蛋白上样缓冲液。例如2X或5X的SDS-PAGE蛋白上样缓冲液。使用5X的SDS-PAGE蛋白上样缓冲液可以减小上样体积,在相同体积的上样孔内可以上样更多的蛋白样品。 100℃或沸水浴加热3-5分钟,以充分变性蛋白(根据蛋白分子的大小,煮沸时间可适当变化,一般不低于5min。煮沸只是变性蛋白,而不是分解,一般加了抑制酶不会分解。煮沸对于SDS-PAGE凝胶电泳是必须的,只有煮沸,才能消除蛋白质的立体二级结构,伸展为一维线性结构,所以一般来讲二聚体都会解体,才能完全按照分子量跑电泳,加的蛋白Marker才有指示分子量的意义。蛋白样品变性后与SDS充分结合,SDS使每个氨基酸带相同的电荷,使整个蛋白呈线性结构. 抗体因为要是线性表位结合的,100度煮10min 后13000,离心5分钟,取上清电泳,因为沉淀会导致拖尾.也可以取上清到另一管,4度可以放一周备再次电泳)。 (3)电泳

i.清洗玻璃板:一只手扣紧玻璃板,另一只手蘸点洗衣粉轻轻擦洗。 两面都擦洗过后用自来水冲,再用蒸馏水冲洗干净后立在筐里晾 干。 ii.灌胶与上样 (1)玻璃板对齐后放入夹中卡紧。然后垂直卡在架子上准备灌胶。 (操作时要使两玻璃对齐,以免漏胶。) (2)配10%分离胶,加入TEMED后立即摇匀即可灌胶。灌胶时,可用10 ml枪吸取5 ml胶沿玻璃放出,待胶面升到绿带中间线高度时即可。然后胶上加一层水,液封后的胶凝的更快。(灌胶时开始可快一些,胶面快到所需高度时要放慢速度。操作时胶一定要沿玻璃板流下,这样胶中才不会有气泡。加水液封时要很慢,否则胶会被冲变型。) (3)当水和胶之间有一条折射线时,说明胶已凝了。再等3 min使胶充分凝固就可倒去胶上层水并用吸水纸将水吸干。 (4)配4%的浓缩胶,加入TEMED(TEMED,中文名为四甲基乙二胺,是一种无色透明的液体,有微腥臭味,可以用于配制SDS-PAGE胶。TEMED可以催化APS产生自由基,从而加速聚丙烯酰胺凝胶的聚合,可作为一种促凝剂使用)后立即摇匀即可灌胶。将剩余空间灌满浓缩胶然后将梳子插入浓缩胶中。灌胶时也要使胶沿玻璃板流下以免胶中有气泡产生。插梳子时要使梳子保持水平。由于胶凝固时体积会收缩减小,从而使加样孔的上样体积减小,所以在浓缩胶凝固的过程中要经常在两边补胶。待到浓缩胶凝固后,两手分别捏住梳子的两边竖直向上轻轻将其拔出。

数学建模bp神经网络讲解学习

数学建模B P神经网 络论文

BP 神经网络 算法原理: 输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,, ,n x x x x = 隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo = 期望输出向量: ()12,, ,q do d d d = 输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2, k m =

激活函数: ()f ? 误差函数:21 1(()())2q o o o e d k yo k ==-∑ 算法步骤: Step1.网络初始化 。给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。 Step2.随机选取第k 个输入样本()12()(),(), ,()n x k x k x k x k =及对应期望输出 ()12()(),(),,()q d k d k d k d k =o Step3.计算隐含层各神经元的输入()1 ()()1,2, ,n h ih i h i hi k w x k b h p ==-=∑和输出 ()()(())1,2, ,h h ho k f hi k h p ==及输出层各神经元的输入 ()1 ()()1,2, p o ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2, ,o o yo k f yi k o p == Step4.利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k δ。 o ho o ho yi e e w yi w ???=??? (()) () ()p ho h o o h h ho ho w ho k b yi k ho k w w ?-?==??∑ 2 1 1((()()))2(()())()(()())f (()) () q o o o o o o o o o o o o d k yo k e d k yo k yo k yi yi d k yo k yi k k δ=?-?'==--??'=---∑ Step5.利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ。

BP神经网络详细讲解

PS:这篇介绍神经网络是很详细的,有一步一步的推导公式!神经网络是DL(深度学习)的基础。 如果对神经网络已经有所了解,可以直接跳到“三、BP算法的执行步骤“ 部分,算法框架清晰明了。 另外,如果对NN 很感兴趣,也可以参阅最后两篇参考博文,也很不错! 学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法为模型。 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。 1.2.1 神经网络的学习机理和机构 在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如BP网络,Hopfield网络,ART网络和Kohonen 网络中;BP网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Kohonen网络则无需教师信号就可以学习。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。 一、感知器的学习结构 感知器的学习是神经网络最典型的学习。 目前,在控制上应用的是多层前馈网络,这是一种感知器模型,学习算法是BP法,故是有教师学习算法。 一个有教师的学习系统可以用图1—7表示。这种学习系统分成三个部分:输入部,训练部和输出部。

相关文档