文档库 最新最全的文档下载
当前位置:文档库 › 磁芯的选型(自动化专业--工程实践必备)

磁芯的选型(自动化专业--工程实践必备)

磁芯的选型(自动化专业--工程实践必备)
磁芯的选型(自动化专业--工程实践必备)

运动控制系统作业

1. 忽略定子电阻的影响,讨论定子电压空间矢量s u 与定子磁链s ψ的关系。当三相电压AO u 、

BO u 、CO u 为正弦对称时,写出电压空间矢量s u 与定子磁链s ψ的表达式,画出各自的

运动轨迹。

2. 两电平PWM 逆变器主回路的输出电压矢量是有有限的,若期望输出电压矢量s u 的幅值

小于

d U 3

2

,空间角度θ任意,如何用有限的PWM 逆变器输出电压矢量来逼近期望的? 3. 按磁动势等效、功率相等的原则,三相坐标系变换到两相静止坐标系的变换矩阵为

?????

?

?????

?=

23-2312

1-21-

13223C

现有三相正弦对称电流)sin(t I i m A ω=,)3

2sin(π

ω+

=t I i m B ,)3

2sin(π

ω+

=t I i m C ,求变换后两相静止坐标系中的电流αs i 和βs i ,分析两相电流的基本特征与三相电流的关系。

4. 笼型异步电动机铭牌数据为:额定功率kW 3=N P ,额定电压V 083=N U ,额定电流

A 9.6=N I ,额定转速min r 1400=N n ,额定频率Hz 50=N f ,定子绕组Y 联结。

由实验测得定子电阻Ω=85.1s R ,转子电阻Ω=658.2r R ,定子自感H 294.0=s L ,转子自感H 2898.0=r L ,定、转子互感H 2838.0=m L ,转子参数已折合到定子侧,系统的转动惯量2

m kg 1284.0?=J ,电动机稳定运行在额定工作状态,试求转子磁链

r ψ和按转子磁链定向的定子电流两个分量sm i 、st i 。

提示:(不需抄题) 1-3题为简答题;

4题中需用到的主要公式为: 额定转差率1

2

1n n n s N -=

额定转差

N N N sN f s s πωω21==

电流矢量幅值m st sm s I i i i 2

3

22=

+=

按转子磁链定向的动态模型

sm r

m r r r i T L T dt d +-=ψψ1

r

r st

m s T i L ψω=

其中稳定运行时,

0=dt

d r

ψ,故sm m r i L =ψ

《现代控制理论》实验指导书

实验设备

PC 计算机1台(要求P4-1.8G 以上),MATLAB6.X 软件1套。

实验1 系统的传递函数阵和状态空间表达式的转换

[实验目的]

1 学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;

2 通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。 [实验内容]

1 设系统的模型如式(1.1)示。

p m n R y R u R x D

Cx y Bu Ax x ∈∈∈??

?+=+= (1.1)

其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。

D B A SI C s den s num s G +-==

-1)()

()

(()( (1.2)

式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。 2 实验步骤

① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式(1.2),采用MATLA 的file.m 编程。注意:ss2tf 和tf2ss 是互为逆转换的指令;

② 在MATLA 界面下调试程序,并检查是否运行正确。

③ [例1.1] 已知SISO 系统的状态空间表达式为(1.3),求系统的传递函数。

,631234100010321321u x x x x x x ??????????-+????????????????????---=?????????? []????

?

?????=321001x x x y (1.3)

程序:

%首先给A 、B 、C 阵赋值; A=[0 1 0;0 0 1;-4 -3 -2]; B=[1;3;-6]; C=[1 0 0]; D=0;

%状态空间表达式转换成传递函数阵的格式为[num,den]=ss2tf(a,b,c,d,u) [num,den]=ss2tf(A,B,C,D,1)

程序运行结果: num =

0 1.0000 5.0000 3.0000 den =

1.0000

2.0000

3.0000

4.0000 从程序运行结果得到:系统的传递函数为:

4

323

5)(232+++++=s s s s s S G …………………… .. (1.4)

④ [例1.2] 从系统的传递函数(1.4)式求状态空间表达式。 程序:

num =[0 1 5 3]; %在给num 赋值时,在系数前补0,使num 和den 赋值的个数相同; den =[1 2 3 4];

[A,B,C,D]=tf2ss(num,den)

程序运行结果: A =

-2 -3 -4 1 0 0

0 1 0 B = 1 0 0 C =

1 5 3 D =

由于一个系统的状态空间表达式并不唯一, [例1.2]程序运行结果虽然不等于式(1.3)中的A 、B 、C 阵,但该结果与式(1.3)是等效的。不防对上述结果进行验证。

⑤ [例1.3] 对上述结果进行验证编程 %将[例1.2]上述结果赋值给A 、B 、C 、D 阵; A =[-2 -3 -4;1 0 0; 0 1 0]; B =[1;0;0]; C =[1 5 3]; D=0;

[num,den]=ss2tf(A ,B ,C ,D,1) 程序运行结果与[例1.1]完全相同。 [实验要求]

在运行以上[例]程序的基础上,应用MATLAB 对(1.5)系统仿照[例1.2]编程,求系统的A 、B 、C 、阵;然后再仿照[例1.3]进行验证。并写出实验报告。

432352)(2

32+++?

??

???+++=s s s s s s S G (1.5) 提示:num =[0 0 1 2;0 1 5 3];

实验2 状态空间控制模型系统仿真及状态方程求解

[实验目的]

1、熟悉线性定常离散与连续系统的状态空间控制模型的各种表示方法。

2、熟悉系统模型之间的转换功能。

3、利用MATLAB 对线性定常系统进行动态分析 [实验内容]

1、给定系统1

25.03

2)(2323++++++=s s s s s s s G ,求系统的零极点增益模型和状态空间模型,

并求其单位脉冲响应及单位阶跃响应。 num=[1 2 1 3];den=[1 0.5 2 1];

sys=tf(num,den);sys1=tf2zp(sys);sys2=tf2ss(sys); impulse(sys2);step(sys2) sys=tf(num,den) Transfer function: s^3 + 2 s^2 + s + 3 ----------------------- s^3 + 0.5 s^2 + 2 s + 1 sys1=tf2zp(num,den) sys1 =

-2.1746 0.0873 + 1.1713i 0.0873 - 1.1713i [a,b,c,d]=tf2ss(num,den)

a = -0.5000 -2.0000 -1.0000 1.0000 0 0 0 1.0000 0

b = 1 0 0

c = 1.5000 -1.0000 2.0000

d = 1

单位脉冲响应:

图1.1 系统的单位脉冲响应 单位阶跃响应:

图1.2 系统的单位阶跃响应 2、已知离散系统状态空间方程:

[]??

?

???

?=??????????+??????????----=+)(021)()

(102)(101110221)1(k x k y k u k x k x 采样周期s T s 05.0=。在Z 域和连续域对系统性能进行仿真、分析。 g = -1 -3 -2 0 2 0

0 1 2

>> h = 2

1

-1

>> c = 1 0 0

>> d=0

>> u=1;

>> dstep(g,h,c,d,u)

Z域性能仿真图形:

图1.3 离散系统的阶跃响应sysd=ss(g,h,c,d,0.05)

a = x1 x2 x3

x1 -1 -3 -2

x2 0 2 0

x3 0 1 2

b = x1 2

x2 1

x3 -1

c = x1 x2 x3

y1 1 0 0

d = u1

y1 0

Sampling time: 0.05

Discrete-time model.

>> sysc=d2c(sysd,'zoh')

a = x1 x2 x3 x4

x1 -9.467e-008 -17.45 -9.242 -62.83 x2 4.281e-015 13.86 3.115e-015 2.733e-015 x3 -1.41e-014 10 13.86 -1.396e-014 x4 62.83 48.87 41.89 9.467e-008 b = u1

x1 1.035

x2 13.86

x3 -17.73

x4 -66.32

c = x1 x2 x3 x4

y1 1 0 0 0

d = u1

y1 0

step(sysc) ;连续域仿真曲线:

图1.4 离散系统转连续系统后的阶跃响应 [实验要求]

1、进行模型间的相互转换。

2、绘出系统单位阶跃及脉冲曲线。

实验3 能控能观判据及稳定性判据

[实验目的]

1、利用MATLAB 分析线性定常及离散系统的可控性与可观性。

2、利用MATLAB 进行线性定常及离散系统的李雅普诺夫稳定性判据。 [实验内容]

1、已知系统状态空间方程:

(1) []??????

?=????

?

?????+??????????----=x

y u

x x 02

1102101110221

(2)??????

?=????

?

?????--+??????????=x

y u

x x ]101

[111112210020231

(3)??

?????=?????

?????+??????????---=+)

(]121[)(030021)(300020012)1(k x k y u k x k x

对系统进行可控性、可观性分析。 以第一题为例:

(1)a=[-1 -2 2;0 -1 1;1 0 -1] a = -1 -2 2 0 -1 1 1 0 -1 >> b=[2 0 1]' b = 2 0 1 >> c=[1 2 0] c =

1 2 0 >> Qc=ctrb(a,b) Qc = 2 0 0 0 1 0 1 1 -1 rank(Qc)

ans = 3,系统满秩,故系统能控。 rank(obsv(a,c))

ans = 3,系统满秩,故系统能观。 (2)、(3)两题计算方法相同。 2、已知系统状态空间方程描述如下:

????

?????

???----=01000010000124503510A ,?????

???????=0001B ,[]242471=C 试判定其稳定性,并绘制出时间响应曲线来验证上述判断。 A=[-10 -35 -50 -24;1 0 0 0;0 1 0 0;0 0 1 0]; B=[1;0;0;0];C=[1 7 24 24];D=[0]; [z,p,k]=ss2zp(A,B,C,D,1); Flagz=0; n=length(A); for i=1:n if real(p(i))>0 Flagz=1; end end

disp('系统的零极点模型为');z,p,k 系统的零极点模型为 z =

-2.7306 + 2.8531i -2.7306 - 2.8531i -1.5388 p = -4.0000 -3.0000 -2.0000 -1.0000 k =

1.0000

if Flagz==1

disp('系统不稳定');

else disp('系统是稳定的');

end

运行结果为:

系统是稳定的

step(A,B,C,D);

图2.1 系统的阶跃响应

[实验要求]

1、判断系统的可控性,求解系统的变换矩阵Qc。(可选一个习题)

2、判断系统可观测性,求解系统的变换矩阵Qo。

3、判断系统稳定性,绘制时间响应曲线。

实验4 状态反馈及状态观测器的设计

[实验目的]

1、熟悉状态反馈矩阵的求法。

2、熟悉状态观测器设计方法。

[实验内容]

1、某控制系统的状态方程描述如下:

[]242471,0001,01000010000124503510=?????

???????=????

?????

???----=C B A 通过状态反馈使系统的闭环极点配置在P=[-30,-1.2,-2.4±4i 位置上,求出状

态反馈阵K,并绘制出配置后系统的时间响应曲线。 >> A=[-10 -35 -50 -24;1 0 0 0;0 1 0 0;0 0 1 0]; >> B=[1;0;0;0];C=[1 7 24 24];D=[0]; >> disp('原极点的极点为');p=eig(A)' >> disp('极点配置后的闭还系统为') 极点配置后的闭还系统为 >> sysnew=ss(A-B*K,B,C,D) >> step(sysnew/dcgain(sysnew)) 运算结果为: 原极点的极点为 p =

-4.0000 -3.0000 -2.0000 -1.0000 >> P=[-30;-1.2;-2.4+sqrt(-16);-2.4-sqrt(-16)]; >> K=place(A,B,P) K =

26.0000 172.5200 801.7120 759.3600 >> disp('配置后系统的极点为') 配置后系统的极点为 >> p=eig(A-B*K)' p =

-30.0000 -2.4000 - 4.0000i -2.4000 + 4.0000i -1.2000 a =

x1 x2 x3 x4 x1 -36 -207.5 -851.7 -783.4

x2 1 0 0 0

x3 0 1 0 0

x4 0 0 1 0

b =

u1

x1 1

x2 0

x3 0

x4 0

c =

x1 x2 x3 x4

y1 1 7 24 24

d =

u1

y1 0

Continuous-time model.

图3.1 极点配置后系统的阶跃响应2、考虑下面的状态方程模型:

[]0,001,10000,10000

8.20

98001

0==??

??

?

?????=??????????--=D C B A

要求选出合适的参数状态观测器(设观测器极点为op=[-100;-102;-103])。

程序如下:

A=[0 1 0;980 0 -2.8;0 0 -100]; B=[0;0 ;100]; C=[1 0 0]; D=[0];

op=[-100;-102;-103]; sysold=ss(A,B,C,D); disp('原系统的闭还极点为'); p=eig(A) n=length(A); Q=zeros(n); Q(1,:)=C; for i=2:n

Q(i,:)=Q(i-1,:)*A; end m=rank(Q); if m==n

H=place(A',C',op')'; else

disp('系统不是状态完全可观测') end

disp('状态观测器模型'); est=estim(sysold,H);

disp('配置后观测器的极点为');p=eig(est) 运行结果:

原系统的闭还极点为

p =

31.3050

-31.3050

-100.0000

状态观测器模型

配置后观测器的极点为

p =

-103.0000

-102.0000

-100.0000

[实验要求]

1、求出系统的状态空间模型;(可选一个习题)

2、依据系统动态性能的要求,确定所希望的闭环极点P;

3、利用上面的极点配置算法求系统的状态反馈矩阵K;

4、检验配置后的系统性能。

磁芯材料的选取

一、各种磁芯的磁导率参数对比

铁粉芯磁环(2材/红灰环)

-2材的磁导率比其他没有附加空隙损耗的材料更能降低操作时的AC通量密度

铁粉芯磁环(8材/黄红环)

-8材在高偏流的情况下,磁芯损耗低,并且线性良好,是良好的高频材料,

也是最贵的材料

铁粉芯磁环(18材/绿红环)

-18材跟材料-8一样,磁芯损耗低,但磁导率较高而成本较低,有良好的DC饱和特性

铁粉芯磁环(26材/黄白环)

-26材最为通行的材料,是一种成本效益最高的一般用途材料,适合功率转换和

线路滤波等各种广泛用途。

铁粉芯磁环(33材/灰黄环)

-33材是一种可代替材料-8但不昂贵的选择,适用于高频率时磁芯损耗不重要

的情况,高偏流时线性良好。

铁粉芯磁环(40材/绿黄环)

-40材是最便宜的材料,其特性与最通用的材料-26颇相似,普遍应用于

较大的尺寸

铁粉芯磁环(52材/蓝绿环)

-52材在高频率下磁芯损耗较低,而磁导率与材料-26相同,在新型的高频抗

流器上应用广泛。

材质性能MA TERIAL PROPETIES

材质编号有效磁导率磁导率温度系数(+PP''m/oC) 颜色

-26 75 825 黄/白

-52 75 650 绿/蓝

-18 55 385 绿/红

-40 60 950 绿/黄

-33 33 635 灰/黄

-28 22 415 灰/绿

-38 85 955 黑/灰

-45 100 1040 黑色

-8 35 255 黄/红

注:有效磁道率仅作参考,磁芯按电感值AL制定。

铁芯:IRON POWDER CORE,适用于-65oC--+125oC的温度范围,当铁芯

处于较高的温度环境中,会使电感和品质因数“Q”,永久性降低,IRON CORE

磁环特性的偏差程度取决于时间、温度、磁芯大小,频率和磁通量密度等。

磁性偏差:磁芯是按列出的额定电感AL值,每种材料有效磁道率,仅作参考,

AL值偏差为±10%,测试条件:10KHZ的频率下环形铁芯是均匀分布,单层绕线测试。表面涂装:我司生产IRON POWDER CORE是用环氧树脂绝缘油漆,耐压600VMIN。

二、磁性选型的一点建议:

磁芯这个东西是最麻烦的,偏偏搞充电器还避不开。这东西每个厂家的产品都不一样,

最好是跟厂家联系,他们有数据手册,上面很详细,按照手册选就行了。导磁率,

频率这些都跟使用的材料有关,还跟工艺有关,不是在市场上买来就随便用的。

三、不同型号磁芯的磁饱和问题:

在网上找到了一本书《开关电源中的磁性原件》,大致翻了一下,说是BOOST/ BUCK/ 还有直流滤波功率电感这些属于1类磁性材料,由于工作环境电流大并且直流成分比较大,因此容易磁饱和,造成电感量急剧下降,要采用导磁率比较低的材料才行(通常

导磁率高的材料容易饱和)。

我想可能黑色的那种铁氧体材料并不适合在BUCK这类应用,虽然它的导磁率是最高,

绕一圈就能到20UH左右,可是在电流稍微大一些的环境下就会导致饱和,导致大电流

下的电感量急剧下降,自身的损耗也巨大,因此会产生发热的情况。

可能还是用黄白这类的磁性材料比较适合,虽然要多绕好多圈。我在网上找了一圈发现不少大功率开关电源拆机的照片中,好像这类电感都是用的黄白磁芯,还有用的

是黄红磁芯。

提供一个网站:

https://www.wendangku.net/doc/9d16536770.html,/bib.htm 这里有不少磁芯,还有拆机电源的照片,都是洋垃圾上拆的,不过可以参考下

刚才去拆了N种牌子的烂电脑主板,发现上边为CPU供电的电源部分无一例外的使用

蓝绿环,看来这种规格的适合BUCK电源使用。

铁粉芯磁环(52材/蓝绿环)

-52材在高频率下磁芯损耗较低,而磁导率与材料-26相同,在新型的高频抗流器上应用

广泛。

刚才测试了3种磁心在大电流下的表现,均为300uH左右:

1:灰黑色的磁环。

磁导率最高,一圈漆包线可获得几十微亨的电感量,仅绕11圈就有300uH左右的电感量,作为LM2575-5.0的电感,数据如下:

12V输入,输入电流0.5A,输出5V,电流0.5A,效率=(0.5*5)/(0.5*12)=41.7%

实际表现:电感无高于室温的温度产生,LM2575在15秒内发热烫手,无法触摸。

磁芯材料知识

磁芯材料知識 摘要: 1.磁芯材料基本概念 ui值磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單 1.磁芯材料 基本概念 ui值 磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單匝電感值,單位是nH/N2 . 磁滯回線:1﹕B-H CURVES (磁滯曲線) Bms:飽和磁束密度﹐表征材料在磁化過程中﹐磁束密度趨于飽和狀態的物理量﹐磁感應強度單位﹕特斯拉=104高斯﹒ 我們對磁芯材料慢慢外加電流,磁通密度(磁感應強度)也會跟著增加,當電流加至某一程度時我們會發現磁通密度會增加很慢,而且會趨近一漸進線,當趨近這一漸進線時這個時候的磁通密度我們就稱為的飽和磁通密度(Bms) Bms高:表明相同的磁通需要較小的橫截面積,磁性元件體積小

Brms:殘留磁束密度﹐也叫剩余磁束密度﹐表征材料在磁化過程結束以后﹐外磁場消失﹐而材料內部依然尚存少量磁力線的特性﹒ Hms:能夠使材料達到磁飽和狀態的最小外磁場強度﹐單位﹕A/m=104/2π奧斯特﹒ Hc:矯頑力﹐也叫保持力﹐是磁化過程結束以后﹐外磁場消失,因殘留 磁束密度而引起的剩余磁場強度﹒因為剩余磁場的方向与磁化方向一 致﹐所以﹐必須施加反向的外部磁場﹐才可以使殘留磁束密度減小到 零﹒ 從磁滯回線我們可以看出:剩磁大,表示磁芯ui值高。磁滯回線越傾斜,表示Hms越大磁芯的耐電流大。矯頑力越大,磁芯的功率損耗大。 鐵粉芯: 鐵粉芯是磁芯材料四氧化三鐵的通俗說法,主要成分是氧化鐵,價格比較低,飽和磁感應強度在1.4T左右:磁導率范圍從22-100,初始磁導率ui值隨頻率的變化穩定性好,直流電流疊加性能好,但高頻下消耗高。 該材料可以從涂裝顏色來辨認材質,例如:26材:黃色本體/白色底面,52材:綠色本體/藍色底面。該類材料價格便宜,如果感量不很高,該材料是首選。可以根據感量大小和IDC要求,選擇所需材料,8材耐電

磁芯材料知识

磁芯材料知識 摘要:1.磁芯材料基本概念ui值磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H)AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單 1.磁芯材料 基本概念 ui值 磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單匝電感值,單位是nH/N2 . 磁滯回線:1﹕B-H CURVES (磁滯曲線) Bms:飽和磁束密度﹐表征材料在磁化過程中﹐磁束密度趨于飽和狀態的物理量﹐磁感應強度單位﹕特斯拉=104高斯﹒ 我們對磁芯材料慢慢外加電流,磁通密度(磁感應強度)也會跟著增加,當電流加至某一程度時我們會發現磁通密度會增加很慢,而且會趨近一漸進線,當趨近這一漸進線時這個時候的磁通密度我們就稱為的飽和磁通密度(Bms)

Bms高:表明相同的磁通需要較小的橫截面積,磁性元件體積小 Brms:殘留磁束密度﹐也叫剩余磁束密度﹐表征材料在磁化過程結束以后﹐外磁場消失﹐而材料內部依然尚存少量磁力線的特性﹒ Hms:能夠使材料達到磁飽和狀態的最小外磁場強度﹐單位﹕A/m=104/ 2π奧斯特﹒ Hc:矯頑力﹐也叫保持力﹐是磁化過程結束以后﹐外磁場消失,因殘留磁束密度而引起的剩余磁場強度﹒因為剩余磁場的方向与磁化方向一致﹐所以﹐必須施加反向的外部磁場﹐才可以使殘留磁束密度減小到零﹒ 從磁滯回線我們可以看出:剩磁大,表示磁芯ui值高。磁滯回線越傾斜,表示Hms越大磁芯的耐電流大。矯頑力越大,磁芯的功率損耗大。 鐵粉芯: 鐵粉芯是磁芯材料四氧化三鐵的通俗說法,主要成分是氧化鐵,價格比較低,飽和磁感應強度在1.4T左右:磁導率范圍從22-100,初始磁導率ui值隨頻率的變化穩定性好,直流電流疊加性能好,但高頻下消耗高。

常用磁芯材料总结

常用磁芯材料 (一)粉芯类 1.磁粉芯 可以隔绝涡流,材料适用于较高频率;材料具有低导磁率及恒导磁特性,磁导率随频率的变化也就较为稳定。主要用于高频电感。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 (1).铁粉芯 在粉芯中价格最低。磁导率范围从22~100; 初始磁导率me随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 (2).坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯 MPP主要特点是:磁导率范围大,14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,在不同的频率下工作时无噪声产生。粉芯中价格最贵。 高磁通粉芯主要特点是:磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。 价格低于MPP。 (3).铁硅铝粉芯 铁硅铝粉芯主要是替代铁粉芯,损耗比铁粉芯低80%,可在8KHz以上频率下使用;导磁率从26~125;在不同的频率下工作时无噪声产生;具有最佳的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。 2. 软磁铁氧体 软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物。有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,一般在100KHZ以下的频率使用。Cu-Zn、Ni-Zn铁氧体在100kHz~10兆赫的无线电频段的损耗小。 由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。 综上所述,可以选择Mn-Zn铁氧体作为磁芯的材料。 轴套材料选择

磁材介绍

? Spang & Co 公司分部 开关电源使用的 磁芯

简介 开关电源(SPS)的优点大家都很清 楚。这些装置中所用的各种电路也在文献中 说明得非常清楚。磁芯在开关电源电路中起 重要作用。磁芯可由多种原料经一系列工序 制成,可以有各种形状和大小,如图1所 示。 每种材料都有自己的特性。因此,必须 参考材料特性考察具体情况下对电源磁芯的 要求,从而选择适当磁芯。 本文介绍开关电源磁芯所用的各种磁 性材料、制造方法以及和电源主要部分相 关的有效磁特性。 磁芯可分为以下三种基本类型:(1) 绕帶磁芯,(2)磁粉芯,(3)铁氧体。 图1:各种磁芯。 以下 MAGNETICS 资料详细讲述另外一些磁芯资料,包括材料说明和特性,以及尺寸和特别设计资料: 铁氧体磁芯……………….…………………………….…技术公报FC-601 钼坡莫合金和高磁通磁粉芯.…………………………….技术公报MPP-400 铁硅铝磁粉芯…………….…………………………….…技术公报KMC-2.0 高磁通磁粉芯…………….…………………………….…技术公报HFPC-01 绕帶磁芯…………….…………………………….………技术公报TWC-500 切割型磁芯…………….…………………………….……技术公报MCC-100 电感器磁粉芯设计软件https://www.wendangku.net/doc/9d16536770.html, 共模电感器设计软件https://www.wendangku.net/doc/9d16536770.html, 目錄 绕帶磁芯 (1) 磁粉芯 (3) 铁氧体磁芯 (5)

图 2:TWC 剖视图。 绕帶磁芯 图 2 是典型绕帶磁芯的剖视图。这个磁芯由磁合金窄带制成,厚度为 1/2 密尔到 14 密尔。宽度为 1/8” 到若干英寸。金属带首先切成所需宽度,并覆盖上薄的绝缘材料涂层,然后绕制在芯棒上,一圈包着一圈,一直绕到预定厚度。最后一圈通过点焊焊接在前一圈上,防止松开。 绕制时磁芯材料受压,所以会丧失部分磁性。为了恢复这些失去的磁特性,磁芯必须在氢气炉中退火,退火温度接近 1000°C 。 *频率极限是根据处于磁通饱和或接近饱和状态下的材料获得的。频率越高越好,这样磁感应强度就越低-参见正文。 1 MAGNESIL ? 16.5 750 0.012 (3% SiFe ) 0.006 0.004 0.002 100 Hz 250 Hz 1 kHz 2 kHz SUPERMENDUR (铁钴钒合金材料铁钴钒合金材料)) ORTHONOL ? (50% Ni ) 21 940 0.004 0.002 15 500 0.004 0.002 0.001 750 Hz 1.5 kHz 1.5 kHz 4 kHz 8kHZ 坡莫合金 (80% Ni ) 非晶 2605SC (铁基) 7.4 460 15.5 370 0.004 0.002 0.001 0.0005 0.001 4 kHz 10 kHz 20 kHz 40 kHz 20 kHz 非晶 2605-S3 (铁基铁基)) 14 370 0.001 100 kHz 非晶 2714A (钴基钴基)) 5.75 205 0.001 300 kHz kHz 磁材料 饱和饱和磁感应磁感应 强度千高斯 (B m ) 表 1:绕帶磁芯材料的磁特性 居里温度 °C (T C ) 使用使用频率上限频率上限* 带厚带厚((英寸英寸)) 频率

磁芯参数参看

z变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)‐‐magnetizing inductance 漏感‐‐‐leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流 ●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核 1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。 其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。 2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。 3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。 磁通单方向变化时:ΔB=Bs‐Br,既受饱和磁通密度限制,又更主要是受损耗限制,(损耗引起温升,温升又会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙,或者在电路设计时加隔直流电容。 4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。 4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。 5.组装结构:

各种合金金属磁芯非晶微晶磁芯介绍

各种合金金属磁芯、非晶、微晶磁芯介绍 一、性能特点: 坡莫合金金属磁芯:各类坡莫合金材料有着各自不同的,较硅钢材料与铁氧体优异的典型磁性能,有着较高的温度稳定性和时效稳定性.高初始磁导率类坡莫合金材料(IJ79,IJ85,IJ86)铁芯常制作电流互感器,小信号变压器;高矩形度类坡莫合金材料(IJ51)铁芯常制作磁放大器,双级性脉冲变压器;低剩磁类坡莫合金材料(IJ67h)铁芯常制作中小功率单极性脉冲变压器. 二、非晶磁芯: ⑴铁基非晶铁芯:在几乎所有的非晶合金铁芯中具有最高的饱和磁感 应强度(1.45~1.56T),同时具有高导磁率,低矫顽力,低损耗,低激磁电流和良好的温度稳定性和时效稳定性.主要用于替代硅钢片,作为各种形式,不同功率的工频配电变压器,中频变压器,工作频率从50Hz到10KHz;作为大功率开关电源电抗器铁芯,使用频率可达50KHz. ⑵铁镍基非晶铁芯:中等偏低的饱和磁感应强度(0.75T),高导磁率, 低矫顽力,耐磨耐蚀,稳定性好.常用于取代坡莫合金铁芯作为漏电开关中的零序电流互感器铁芯. ⑶钴基非晶铁芯:在所有的非晶合金铁芯中具有最高的磁导率,同时 具有中等偏低的饱和磁感应强度(0.65T),低矫顽力,低损耗,优异的耐磨性和耐蚀性,良好的温度稳定性和时效稳定性,耐冲击振动.主要用于取代坡莫合金铁芯和铁氧体铁芯制作高频变压器,滤波电感,磁放大器,脉冲变压器,脉冲压缩器等应用在高端领域(军用) 三、微晶磁芯: 较高的饱和磁感应强度(1.1~1.2T),高导磁率,低矫顽力,低损耗及良的稳定性,耐磨性,耐蚀性,同时具有较低的价格,在所有的金属软磁材料芯中具有最佳的性价比,用于制作微晶铁芯的材料被誉为"绿色材料".泛应用于取代硅钢,坡莫合金及铁氧体,作为各种形式的高频(20KHz100KHz)开关电源中的大中小功率的主变压器,控制变压器,波电感,储能电感,电抗器,磁放大器和饱和电抗器铁芯,EMC滤波器共电感和差模电感铁芯,IDSN微型隔离变压器铁芯;也广泛应用于各种类同精度的互感器铁芯. 环型规格范围: 磁芯最大外径:750mm 磁芯最小内径:6mm 磁芯最小片宽:5mm 磁芯最大片宽:40mm (可叠加得到更宽) 其他规格可以根据客户需求订做 四、参考说明: 坡莫合金金属磁芯,非晶,微晶磁芯电磁性能状态: 横磁热处理,低Br,有一定的恒导特性,适用于小功率单极性脉冲变压器,单端开关电源变压器,滤波电感,电抗器; 常规热处理,低Pc,极低的激磁电流;适用于中频变压器; 纵磁热处理,高Br,适用于配电变压器,中频变压器,双端开关电源变压器,大功率双极性脉冲变压器,饱和电抗器及脉冲压缩器. 摘要:结合应用实例,重点介绍了在不同应用场合选用非晶与超微晶材料的种类及其特点,并与其它磁性材料作了对比。关键词:铁基非晶材料;铁基超微晶材料;磁导率;矫顽力;损耗 五、非晶与超微晶材料的应用 磁材料120×60×40磁芯。按照 E=4.44f×Bm×N×Sc×10-4(1)

单端反激式开关电源磁芯尺寸和类型的选择

单端反激式开关电源磁芯尺寸和类型的选择字体大小:大|中|小2008-08-28 12:53 - 阅读:1655 - 评论:1 单端反激式开关电源磁芯尺寸和类型的选择徐丽红王佰营wbymcs51.blog.bokee .net A、InternationalRectifier 公司--56KHz 输出功率推荐磁芯型号 0---10WEFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25 10-20WEE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25 20-30WEI25 EF(D)25

EPC25 EPC30 EF(D)30 ETD29 EER28(L) 30-50WEI28 EER28(L) ETD29 EF(D)30 EER35 50-70WEER28L ETD34 EER35 ETD39 70-100WETD34 EER35 ETD39 EER40 E21 摘自 InternationalRectifier,AN1018- “应用 IRIS40xx 系列单片集成开关 IC 开关电源的反激式变压器设计” B、ELYTON公司https://www.wendangku.net/doc/9d16536770.html, 型号输出功率( W) <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K

EI EI12.5 EI16 EI19 EI25 EI40 -- EI50 EI60 EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65 EF EF12.6 EF16 EF20 EF25 EF30 EF32 EFD -- EFD12 EFD15 EFD20 EFD25 EFD30 EPC -- EPC13 EPC17 EPC19 EPC25 EPC30 EER EER9.5 EER11 EER14.5 EER28 EER35 EER42 EER49 -- ETD ETD29 ETD34 ETD44 ETD49 ETD54 -- EP EP10 EP13 EP17 EP20 -- RM RM4 RM5 RM6 RM10 RM12 POT POT1107 POT1408 POT1811 POT2213POT3019 POT3622 POT4229 -- PQ -- -- -- PQ2016 PQ2625 PQ3230 PQ3535 PQ4040 EC ---------------------------- -- EC35 EC41 EC70 摘自 PowerTransformers OFF-LINE Switch Mode APPLICATION NOTES

磁芯材料分析

磁性材料 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ 降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。2. 常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: (1) 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯

磁芯参数表

常用磁芯参数表 【EER磁芯】 ■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。 【EE磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。 【EI 磁芯】 ■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。 【ET 磁芯】 ■ 用途:滤波变压器 【EFD 磁芯】 ■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】 ■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。 【PQ 磁芯】 ■ 用途高频开关电源变压器、整流变压器等。 【RM 磁芯】 ■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。 【EP 磁芯】 ■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】 ■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。 软磁铁氧体磁芯形状与尺寸标准(一) 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。 磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样: 磁芯按磁力线路径分类 磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。 第一类为开路磁芯。这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。由于开路磁芯存在大的气隙,磁路受到退磁场作用,使磁芯的有效磁导率μe比材料的磁导率μi有所降低,降低的程度决定于磁芯的几何形状及尺寸。 开路磁芯有棒形、螺纹形、管形、片形、轴向引线磁芯等等。IEC 1332《软磁铁氧体材料分类》标准中称开路磁芯为OP类磁芯。 第二类磁芯为闭路磁芯。这类磁芯的磁路是闭合的(closed magnetic circuits),或基本上是闭合的。IEC 1332称闭路磁芯为CL类磁芯。磁路完全闭合的磁芯最典型的是环形磁芯。此外,还有双孔磁芯、多孔磁芯等等。

磁芯材料(基础)

2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直到现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 2.常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: (1)粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(HighFlux)、坡莫合金粉 芯(MPP)、铁氧体磁芯 (2)带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金 三常用软磁磁芯的特点及应用 (一)粉芯类 1.磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主

磁芯材料分析

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度 M或磁感 应强度B,它们随磁场强度 H的变化曲线称为磁化曲线(M?H或B?H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度 M达到一个确定的饱 和值Ms,继续增大H , Ms保持不变;以及当材料的 M值达到饱和后,外磁场 H降低为零时,M并不恢复为零,而是沿 MsMr曲线变化。材料的工作状态相当于M?H曲线或B?H曲线上的某一点,该点常称 为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs :其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br / Bs 矫顽力He :是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率”是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率卩、1最大磁导率gm>微分磁导率gd振幅磁导率ga有效磁导率ge脉冲磁导率gp 居里温度Te:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ e Pe f2 t2 / ,p降低, 磁滞损耗Ph的方法是降低矫顽力 He;降低涡流损耗Pe的方法是减薄磁性材料的厚度 t及提高材料的电阻率p。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW) /表面积(cm2 ) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压?电流特性。器件的电压?电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压 器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制岀了硅 钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。 到20年代,无线电技术的兴起,促进了高导磁材料的发展,岀现了坡莫合金及坡莫合金磁粉芯等。从40 年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产岀了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发 展,研制岀了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料一非晶态软磁合金。 2.常用软磁磁芯的种类 铁、钻、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: ⑴粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux )、坡莫合金粉芯(MPP )、

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.2 4.05±0.303.40±0.20 5.00±0.207.60 2.65±0.201.90±0.20 5.30 EPC13/13 13.30±0.3 6.60±0.304.60±0.205.60±0.2010.50 4.50±0.302.05±0.208.30 EPC17/17 17.60±0.5 8.55±0.306.00±0.307.70±0.3014.30 6.05±0.302.80±0.2011.50 EPC19/20 19.60±0.5 9.75±0.306.00±0.308.50±0.3015.80 7.25±0.302.50±0.2013.10 EPC25/25 25.10±0.512.50±0.38.00±0.3011.50±0.320.65 9.00±0.304.00±0.2017.00

EPC功率磁芯电气特性及有效参数

注:AL值测试条件为1KHz,0.25v,100Ts,25±3℃ Pc值测试条件为100KHz,200mT,100℃ EE、EEL、EF型功率磁芯

特点:引线空间大,绕制接线方便。适用围广、工作频 率高、工作电压围宽、输出功率大、热稳定性能好 用途:广泛应用于程控交换机电源、液晶显示屏电源、 大功率UPS逆变器电源、计算机电源、节能灯等领域。 EE、EEL、EF型功率磁芯尺寸规格 Dimensions(mm)尺寸 磁芯型号TYP A B C D Emin F EE5/5.3/2 5.25±0.15 2.65±0.15 1.95±0.15 1.35±0.15 3.80 2.00±0.15 EE8.3/8.2/3.6 8.30±0.30 4.00±0.25 3.60±0.20 1.85±0.20 6.00 3.00±0.15 EE10/11/4.8 10.20±0.30 5.60±0.30 4.80±0.25 2.50±0.257.50 4.40±0.30 EE12.8/15/3.6 12.70±0.307.40±0.30 3.60±0.25 3.60±0.258.60 5.50±0.30 EE13/12/6 13.20±0.30 6.10±0.30 5.90±0.30 2.70±0.309.80 4.70±0.30 EE13/13W 13.00±0.40 6.50±0.30 9.80±0.30 3.60±0.209.00 4.60±0.20 EE16/14/5 16.10±0.407.10±0.30 4.80±0.30 4.00±0.3011.70 5.20±0.20 EE16/14W 16.10±0.407.25±0.30 6.80±0.30 3.20±0.3512.50 5.60±0.30 EE19/16/5 19.10±0.408.00±0.30 4.85±0.30 4.85±0.3014.00 5.60±0.30 EE19/16W 19.30±0.408.30±0.307.90±0.30 4.80±0.3014.00 5.70±0.30 EE22/19/5.7 22.00±0.509.50±0.30 5.70±0.30 5.70±0.3015.60 5.70±0.30 EE25/20/6 25.40±0.5010.00±0.30 6.35±0.30 6.35±0.3018.60 6.80±0.30

磁芯的种类及应用

磁芯的种类及应用: 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br?Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 一、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软

变压器输出功率与磁芯尺寸的关系

变压器输出功率与磁芯尺寸的关系 发布者:admin 发布时间:2012-4-20 阅读:64次 要使变压器输出更大的功率,我们希望在电压一定的情况下,圈数要尽可能的少、导线尽可能的粗。 这样才有利于提供较大的电流,输出更大的功率。前者需要较大的磁芯截面积,后者需要较大的磁芯窗口面积。因此要获得较大的输出功率磁芯尺寸必须够大才行。 变压器初级绕组的圈数可用下式来算: N = k *10^5 * U /(f *Ae* Bmax ) k 为最大导通时间与周期之比,通常取k=0.4; U 是初级绕组输入电压(V),(近似等于直流输入电压); f 是变压器的工作频率(KHZ); Ae 是磁芯的截面积(cm2); Bmax 是允许的磁通密度最大变化幅度(G) 因此,在一定电压下,增大截面积Ae、提高工作频率f和选择更大的峰值磁通密度Bmax,都有利于减少圈数,提高输出功率。但是,磁芯的损耗(铁损)是按Bmax的2.7次幂和f的1.7次幂呈指数增长的,Bmax还受磁芯饱和的限制。因此,提高工作频率f和选择更大的峰值磁通密度Bmax都是有限度的。大多数适合做开关电源的铁氧体磁芯频率通常限制在10-50KHZ以内,Bmax限制在2000G (高斯)以内,一般取Bmax=1600G较为合适。因此,功率主要靠磁芯截面积Ae、其次靠工作频率f控制。 但必须明确的是,这种控制关系是间接的而不是直接的,Ae加大和f提高只是表示对同样的电压,允许绕的圈数更少,只有实际把圈数减少了才能提高功率。如果在同样材料的一个大磁芯和一个小磁芯上,用一样的导线绕同样的圈数,对同样的输入电压输出功率是基本相同的。同样,如果一个做好的变压器,仅仅靠改变工作频率,也是不会使输出功率提高的。 联想到楼主张伟明的问题,因为变压器已经做好,所以我建议提高输入电压来提高功率;如果从变压器入手的话,可以尝试把导线适当加粗,同时把频率提高一些,以允许圈数能有所减少,这样就可加大输出功率。 导线加粗受到磁芯窗口面积Ac限制。用截面积为Ad的导线绕N圈,占用的窗口面积为: Awc = N *Ad = k * 10^5 * U *Ad / (f *Ae* Bmax ) 设,初级绕组窗口占用系数为Sn =Awc / Ac, Ad用电流I(有效值)和允许的电流密度J表示为 Ad=I/J/100,(Ad-平方厘米,I-A有效值,J-A/平方毫米) 则上式可写成:Ac* Sn = k * U *I*10^3 / ( f *Ae* Bmax * J) 或,U*I = Sn * Bmax * J * f *Ae* Ac * 10^-3 / k 因为输入功率等于输入电压U与电流平均值k*Ip的乘积,而电流有效值I 与峰值Ip的关系为 Ip= 1.58*I,所以输入功率Pi = 1.58*k*U*I = 1.58*Sn * Bmax * J * f *Ae* Ac * 10^-3 再乘上效率Ef就得到最大输出功率的表达式

磁芯材料类别

据这个电感的电感量量以及所通过的电流,由此计算出需要的漆包线的直径和绕制的圈数,大致估算出体积,然后再选购磁芯。 1、铁粉芯。 铁粉芯是工字电感磁芯中最常用的一种软磁铁粉芯,这种磁芯一般是通过采用纯铁粉,加入绝缘剂、粘结剂然后挤压成型而成的。这类磁芯的表面电阻较小,初始导磁率为75以下,拥有很高的饱和磁通密度B,因此它主要用于功率型的磁环电感的各种开关电源上。 2、镍锌磁芯。 工字电感磁芯中应用的镍锌磁芯属于一种软磁铁氧体磁芯,它具有电阻高、导磁率偏低、初始导磁率范围在5~1500的特点。另外,由于这类镍锌磁芯具有较高的表面电阻(100MΩ以上),因此一般用于中高频电路上。 3、锰锌磁芯。 锰锌磁芯与镍锌磁芯一样,也是一种软磁磁芯,具有表面电阻低、较高的初始导磁率、很高的饱和磁通密度,所以它是100KHz左右最理想的功率电感。而且由于磁芯的初始导磁率越高,其表面电阻越低,因此它一般使用在1MHz以下电路。 4、铁氧体磁芯。 工字电感磁芯中常用的铁氧体磁芯是一种高频导磁材料,主要由铁(Fe),锰(Mn),和锌(Zn)3种金属元素组成。这种铁氧体磁芯可以增大导磁率,提高电感品质因素的特点,但是它最大特点是高渗透性,

良好的温度特性,和低衰减率。因此它是制造宽带变压器,可调电感器及其他一些从10kHz到50MHz的高频电路等应用最理想的一种材料。 工字磁芯有镍锌也有锰锌。镍锌u值低,抗饱和能力强、卷数多。锰锌u值高抗饱和能力弱些需卷数少。常见以扼流卷电感为主。磁棒属1000u/2000u中波磁棒。有扁有圆。属锰锌材料。现在工字磁芯里有高u值品种为贴片用工字磁芯,Dc/Dc较常见,材料为95/99锰锌料、u值在10000左右。镍锌材料电阻率较大,外观粗糙些有颗粒状。锰锌料电阻率低、表面光滑、有光泽。以导磁率400为中线400u以下镍锌为主400u以上锰锌为主

磁芯材料的介绍

电力电子电路常用磁芯元件的设计 一、常用磁性材料的基本知识 磁性元件可以说是电力电子电路中关键的元件之一,它对电力电子装置的体积、效率等有重要影响,因此,磁性元件的设计也是电力电子电路系统设计的重要环节。磁性材料有很多种类,特性各异,不同的应用场合有不同的选择,以下是几种常用的磁性材料。 1.低碳钢 低碳钢是一种最常见的磁性材料,这种材料电阻率很低,因此涡流损耗较大,实际应用时常制成硅钢片。硅钢片是一种合金材料(通常由97%的铁和3%的硅组成),它具有很高的磁导率,并且每一薄片之间相互绝缘,使得材料的涡流损耗显著减小。磁芯损耗取决于材料的厚度与硅含量,硅含量越高、电阻率越大。这种材料大多应用于低频场合,工频磁性元件常用这种材料。 2.铁氧体 随着工作频率的提高,对磁芯损耗的要求更高,硅钢片由于制造工艺的限制,已经很难满足这种要求,铁氧体就是在这种形势下出现的。 铁氧体是一种暗灰色或者黑色的陶瓷材料。铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。铁氧体材料非常容易磁化,并且具有相当高的电阻率。这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。 高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。 3.粉芯材料

相关文档