文档库 最新最全的文档下载
当前位置:文档库 › 金融数学第一章练习题详细讲解

金融数学第一章练习题详细讲解

金融数学第一章练习题详细讲解
金融数学第一章练习题详细讲解

金融数学第一章练习题详解

第 1 章 利息度量

1.1 现在投资$600,以单利计息,2 年后可以获得$150 的利息。如果以相同的复利利率投资$2000,试确定在 3 年后的累积值。

65

.2847%)5.121(2000%

5.1215026003=+=?=?i i

1.2 在第 1 月末支付 314 元的现值与第 18 月末支付 271 元的现值之和,等于在第 T 月末支付 1004 元的现值。年实际利率为 5% 。求 T 。

58

.1411205.1ln /562352.0ln 562352.0ln 05.1ln 12

562352.01004/)05.127105.1314(05.105.1%)51()1(271314100412/1812/112/12

/1812/112/=?-==-=?+?==+=+=+=------T T i v v v v T t

t t t T 两边取对数,其中

1.3 在零时刻,投资者 A 在其账户存入 X ,按每半年复利一次的年名义利率 i 计息。同时,投资者B在另一个账户存入 2X ,按利率 i (单利)来计息。 假设两人在第八年的后六个月中将得到相等的利息,求 i 。

094588

.02)12(2)2

1(2

)21()21()21())2

1()21((2

12:))21()21((:215/11515151615161516=?-==+?+=+-+==+-+=??+-+i i i i i i i Xi i i X Xi i X B i i X A i A 两边取对数

,的半年实际利率为

1.4 一项投资以 δ 的利息力累积,27.72 年后将翻番。金额为 1 的投资以每两年复利一次的名义利率 δ 累积 n 年,累积值将成为 7.04。求 n 。

()

80

2)05.1ln /04.7(ln 04

.7)21025

.072.27/2ln 2

)1()(1ln 2/5.072.27=?==+=====+=+=n i e e i t a i n t

t δδ

δδδδ(

1.5 如果年名义贴现率为 6%,每四年贴现一次,试确定$100 在两年末的累积值。 71.114%)641(10024/1=?-?-

1.6 如果 )(m i = 0.1844144 , )(m d = 0.1802608 ,试确定 m 。

81802608

.01844144.01802608.01844144.01111111111112

=-?=-?=?=-=?--+=??????-???????+=?????

?-???????+-=?????

?-=??????+=+-m m m m m

m m m m

m m m m m m m m m m m m m d i d i m m

d i d i m d i m d i m d m i m d m i d m d m i i

1.7 基金 A 以每月复利一次的名义利率 12 %累积。基金 B 以t δ= t / 6 的利息力累积。在零时刻,分别存入 1 到两个基金中。请问何时两个基金的金额将相等。

()43

.101.1ln 14412/01.1ln 1212/%121212/6/1220=?===?=+t t t e e t dt t t t

两边取对数,

1.8 基金 A 以 t δ= a+bt 的利息力累积。基金 B 以t δ= g+ht 的利息力累积。基金 A 与基金 B 在零时刻和 n 时刻相等。已知 a > g > 0 , h > b > 0 。求n 。

h

b a g n hn gn bn an n b n a b a e e t b e e t a ht gt dt ht g bt at dt bt a t t --=?+=+?===?==?=++++)(22

121)()(),0()0()()(2

2)

21()()2

1()(2020

1.9 在零时刻将 100 存入一个基金。该基金在头两年以每个季度贴现一次的名义贴现率支付利息。从 t = 2 开始,利息按照 t

t +=

11δ的利息力支付。在 t = 5 时,存款的累积值为 260。求δ。 ()()

1290

.0)2100/(26014260

)4/1(100260)4/1(1008/1-)3ln 6(ln 24-11

24-52=?-?==?-=??--?+?δδδδe e dt t 现率

指前两年内的年名义贴

1.10 在基金 A 中,资金 1 的累积函数为 t+1,t>0;在基金 B 中,资金 1 的累积函数为1+t 2 。请问在何时,两笔资金的利息力相等。 41.012012121112,11222=-=?=-+?+=+?=+=+=t t t t

t t t t t B A B A δδδδ令

1.11 已知利息力为t

t +=12δ。第三年末支付 300 元的现值与在第六年末支付 600 元的现值之和,等于第二年末支付 200 元的现值与在第五年末支付 X 元的现值。求 X 。82

.315))51/(())21(200-)61(600)31(300()

5()2(200)6(600)3(300)1()()1()(22-2211112

12)1ln(212

0=++?+?++?=??+?=?+?+=?+==?=---------++X a X a a a t t a t e e t a t dt t t

1.12 已知利息力为100

3

t t =δ。请求)3(1-a 。 8167.0)3(2025.0400/81)03(400/110014303====?=---?---e e e e

a dt t

1.13 资金 A 以 10%的单利累积,资金 B 以 5%的单贴现率累积。请问在何时,两笔资金的利息力相等。

51.011.0-205.0105.01.011.005.0105.0)05.01()(05.01)%51()(:1.011

.01.01)%101()(:11=?+=?-=+?

=-=

?-=?-=-=+=?+=+=--t t t t

t t t t a t t t a B t

t t t a A B A B A δδδδ令 1.14 某基金的累积函数为二次多项式,如果向该基金投资 1 年,在上半年的名义利率为 5%(每半年复利一次),全年的实际利率为 7%,试确定5.0δ。

06829.0103.004.003.008.01

03.004.0)(,1,03.0,04.0%

71)1(2

/%515.025.0)5.0(1

)0()(5.025.022=+++=

++====?+=++=+=++===++==t t t t t t t a c b a c b a a c b a a c a c

bt at t a δ设累积函数为

1.15 某投资者在时刻零向某基金存入 100,在时刻 3 又存入 X 。此基金按利息力

100

2

t t =δ累积利息,其中 t > 0。从时刻 3 到时刻 6 得到的全部利息为 X ,求 X 。 61

.784)42.109(8776.0)3()6()42.109(8776.1)42.109()6(42.109100)3(632

302

100100=?=+=-+=?+=+=+?=X X X A A X e X A X

X e A dt t dt t

1.16 一位投资者在时刻零投资 1000,按照以下利息力计息:

???>≤≤=3

,045.030,02.0t t t t δ

求前 4 年每季度复利一次的年名义利率。

%

39.30339.0)11445.1(41445.11000)4/1(1000,1445.1)4(16/144045.009.0045.002.04

330==-?=??=+==??=?++x x x e e a dt dt t 设年名义利率为

1.17 已知每半年复利一次的年名义利率为 7.5%,求下列两项的和:(1)利息力;(2)每季度贴现一次的年名义贴现率。

14658

.007295

.0))2/%5.71(-1(4)2/%5.71()4/1(,07363

.0)2/%5.71ln()2/%5.71()()4/1(22422=+=+?=?+=-=+=+=-?-x x x x t a t t t t t

δδ设名义贴现率为

注:个人认为,求这两个数的和并没有实际意义

1.18 假设利息力为?????≤<≤<=105,25

150,2t kt t kt t δ,期初存入单位 1 在第 10 年末将会累积到 2.7183。试求 k 。

0414

.07183.2)(1667.24)1251000(751225251105250=?===??=-++k e e e

t a k k k dt kt ktdt

1.19 已知利息力为t

t +=

21δ,一笔金额为 1 的投资从 t=0 开始的前 n 年赚取的总利息是 8。试求 n 。 1681211)(21)(2ln )2ln(21

0=?=-+=-+

==?=-++n n n a t e e t a t dt t t

1.20 1996 年 1 月 1 日,某投资者向一个基金存入 1000,该基金在 t 时刻的利息力为 0.1(t-1)2 ,求 1998 年 1 月 1 日的累积值。

94.10681000100006667.0)1(1.0202==?=-e e A dt t

1.21 投资者 A 今天在一项基金中存入 10,5 年后存入 30,已知此项基金按单利 11%计息;投资者 B 将进行同样数额的两笔存款,但是在 n 年后存入 10, 在 2n 年后存入 30,已知此项基金按复利 9.15%计息。在第 10 年末,两基金的累积值相等。求 n 。

5244

.20915.1ln /8017.0ln 40014

.20915.18017.00915

.1302)5.67(0915.1304)0915.110(0915.1105

.670915.1300915.1100915

.1ln /ln ,0915.15

.67%)15.91(30%)15.91(10%)15.91(30%)15.91(10:5

.67)5%111(30)10%111(10:10101021010210102101021010=-===??-???-?+?-==??+??-===+++?+++=?++?+-----n t t t t n t B A n n n n

n 即令 注:不知道为什么,笔者算出来的答案恰好是参考答案的两倍,将2.5244带进去右边=66,将1.262代进去,右边=80,由此可得2.5244接近真实结果

1.22 已知利息力为1

2-=t t δ,2 ≤ t ≤10 。请计算在此时间区间的任意一年内,与相应利息力等价的每半年贴现一次的年名义贴现率。

)

1(2))1()2(1(2))1(1(21)2/1()1()2()1()()1()()1()2()2()(2/1)2(2)2(2

222

12

2-=---

?=--?=-=-----=--=-?=??=-n n n d d d d n n n n a n a n a d n a e a n a n n

n dt t n

北大版金融数学引论第二章答案

版权所有,翻版必究 ~ 第二章习题答案 1.某家庭从子女出生时开始累积大学教育费用5万元。如果它们前十年每年底存 款1000元,后十年每年底存款1000+X 元,年利率7%。计算X 。 解: S = 1000s 20 ?p 7%+Xs 10 ?p 7% X = 50000 ? 1000s 20 ?p 7% s 10 ?p7% = 2.价值10,000元的新车。购买者计划分期付款方式:每月底还250元,期限4年。 月结算名利率18%。计算首次付款金额。 解: 设首次付款为X ,则有 10000 = X + 250a 48 ?% 解得 X = 3.设有n 年期期末年金,其中年金金额为n ,实利率i =1 。试计算该年金的现值。 解: P V = na?n pi 1 ? v n n = n 1 n = (n + 1)n n 2 ? n n +2 (n + 1)n 4.已知:a?n p = X ,a 2 ?n p = Y 。试用X 和Y 表示d 。 解: a 2 ?n p = a?n p + a?n p (1 ? d)n 则 Y ? X d = 1 ? ( X ) 5.已知:a?7 p = , a 11 ?p = , a 18 ?p = 。计算i 。 解: a 18 ?p = a?7 p + a 11 ?p v 7 解得 6.证明: 1 1?v =

s i = % ?+a?。 s? 北京大学数学科学学院金融数学系第 1 页

版权所有,翻版必究 证明: s 10 ?p + a ∞?p (1+i)?1+1 1 s 10 ?p = i (1+i)?1 i i = 1 ? v 10 7.已知:半年结算名利率6%,计算下面10年期末年金的现值:开始4年每半 年200元,然后减为每次100元。 解: P V = 100a?8p3% + 100a 20?p 3% = 8.某人现年40岁,现在开始每年初在退休金帐号上存入1000元,共计25年。然 后,从65岁开始每年初领取一定的退休金,共计15年。设前25年的年利率为8%, 后15年的年利率7%。计算每年的退休金。 解: 设每年退休金为X ,选择65岁年初为比较日 1000¨25?p8%=X¨15?p7% 解得 9.已知贴现率为10%,计算¨?8 p 。 X = 解: d = 10%,则 i =1 10.求证: (1) ¨?n p = a?n p + 1 ? v n ; 1?d ? 1 =1 9 ¨?= (1 + i) 1 ? v 8 i = (2) ¨?n p = s? ?n p 1 + (1 + i)n 并给出两等式的实际解释。 证明: (1)¨?n p =1?d v =1 ?v =1 ?v i + 1 ? v n 所以 (2)¨?n p = (1+ i)?1 ¨?n p = a?n p + 1 ? v n (1+i )?1=(1+i)?1 n ? 1

金融数学习题

第一章 简单市场模型 考虑单时段情形。假设股票、债券在期初的价格分别为S(0)和A(0),在期末的价格分别为S(1)和A(1),资产组合在期初和期末的价值分别为V(0)和V(1)。 1.股票在该时段的收益率为S K = ,债券在该时段的收益率为 A K = ,若采用对数收益率表示,则相应的股票和债券的对数收益率 分别为S k = 和A k = 。(列式即可) 2. 设资产组合在该时段的股数和债券份数分别为x,y ,则V(0)= ,V(1)= ,组合的收益率为 V K = 。(列式即可) 3.假设A(0)=90元,A(1)=100元,S(0)=25元,且假设{ 3020(1)S = ,概率为p ,概率为1-p , 式中0

第二章无风险资产 2.1.某人在未来15 年中每年年初存入银行20 000 元。前 5 年的年利率为 5.2%,中间5 年的年利率下调至3.3%,后 5 年由于通货膨胀率的提高,年利率上调至8.3%。则第15 年年末时这笔存款的积累值为()元。 (A)496 786 (B) 497 923 (C) 500 010 (D) 501 036 (E) 502 109 2.2已知在未来三年中,银行第一年按计息两次的名义年利率10%计息,第二年按计息四次的名义年利率12%计息,第三年的实际年利率为6.5%。某人为了在第三年末得到一笔10 000元的款项,第一年年初需要存入银行()元。 (A) 7 356 (B) 7 367 (C) 7 567 (D) 7 576 (E) 7 657 2.3.将9000元存入银行账户2个月(61天),按单利计算,期末终值9020元。计算利率r和这个投资的收益率。 2.4.如果存款按年复合计息,10年以后可以翻翻,则利率是多少? 2.5.假设存在一个承诺一年以后支付110元的凭证,现在可以买入或卖出该凭 证,也可以在本年期间任意时间以100元买卖,在按年复合之下,与常数利率 10%一致。如果一个投资者决定买入该凭证,半年以后卖出,卖出的合理价格是 多少?

电大经济数学基础练习题附答案

一、选择题: 1.设 x x f 1 )(= ,则=))((x f f (x ). 2.已知1sin )(-=x x x f ,当( x →0)时,)(x f 为无穷小量. 3. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ). B . )()(d )(a F x F x x f x a -=? 4.以下结论或等式正确的是(对角矩阵是对称矩阵). 5.线性方程组?? ?=+=+0 1 2121x x x x 解的情况是(无解). 6下列函数中为偶函数的是( x x y sin =). 7.下列函数中为奇函数的是( x x y -=3 ) 8.下列各函数对中,(1)(,cos sin )(2 2=+=x g x x x f )中 的两个函数相等. 9.下列结论中正确的是(奇函数的图形关于坐标原点对称). 10.下列极限存在的是( 1 lim 22-∞→x x x ). 11.函数 ?? ? ??=≠+-=0,0,211)(x k x x x x f 在x = 0处连续,则k =(-1). 12.曲线x y sin =在点)0,π((处的切线斜率是(1-). 13.下列函数在区间(,)-∞+∞上单调减少的是(x -2). 14.下列结论正确的是0x 是)(x f 的极值点,且)(0x f '存在, 则必有0)(0='x f ). 15.设某商品的需求函数为2 e 10)(p p q -=,则当p =6时,需求弹性为(-3). 16.若函数 x x x f -= 1)(, ,1)(x x g +=则=-)]2([g f ( -2 ). 17.下列函数中为偶函数的是( x x y sin =). 18.函数 ) 1ln(1 -= x y 的连续区间是) ,(),(∞+?221 19.曲线 1 1 += x y 在点(0, 1)处的切线斜率为( 21- ). 20.设 c x x x x f += ? ln d )(,则)(x f =( 2ln 1x x - ). 21.下列积分值为0的是( ?--1 1-d 2 e e x x x ). 22.设)21(= A ,)31(-= B ,I 是单位矩阵, 则I B A -T =( ?? ? ???--5232 ) . 23.设B A ,为同阶方阵,则下列命题正确的是( ).

华东师大数学分析习题解答1

《数学分析选论》习题解答 第 一 章 实 数 理 论 1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ?=ξinf ,试证: (1)存在数列ξ=?∞ →n n n a S a lim ,}{使; (2)存在严格递减数列ξ=?∞ →n n n a S a lim ,}{使. 证明如下: (1) 据假设,ξ>∈?a S a 有,;且ε+ξ<'<ξ∈'?>ε?a S a 使得,,0.现依 次取,,2,1,1 Λ== εn n n 相应地S a n ∈?,使得 Λ,2,1,=ε+ξ<<ξn a n n . 因)(0∞→→εn n ,由迫敛性易知ξ=∞ →n n a lim . (2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取 Λ,3,2,,1min 1=? ?? ???+ξ=ε-n a n n n , 就能保证 Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □ 2.证明§1.3例6的(ⅱ). 证 设B A ,为非空有界数集,B A S ?=,试证: {}B A S inf ,inf m in inf =. 现证明如下. 由假设,B A S ?=显然也是非空有界数集,因而它的下确界存在.故对任何 B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有 {}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥?≥. 另一方面,对任何,A x ∈ 有S x ∈,于是有

S A S x inf inf inf ≥?≥; 同理又有S B inf inf ≥.由此推得 {}B A S inf ,inf m in inf ≤. 综上,证得结论 {}B A S inf ,inf m in inf =成立. □ 3.设B A ,为有界数集,且?≠?B A .证明: (1){}B A B A sup ,sup m in )sup(≤?; (2){}B A B A inf ,inf m ax )(inf ≥?. 并举出等号不成立的例子. 证 这里只证(2),类似地可证(1). 设B A inf ,inf =β=α.则应满足: β≥α≥∈∈?y x B y A x ,,,有. 于是,B A z ?∈?,必有 {}βα≥?? ?? β≥α≥,max z z z , 这说明{}βα,max 是B A ?的一个下界.由于B A ?亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥?成立. 上式中等号不成立的例子确实是存在的.例如:设 )4,3(,)5,3()1,0(,)4,2(=??==B A B A 则, 这时3)(inf ,0inf ,2inf =?==B A B A 而,故得 {}{}B A B A inf ,inf m ax inf >?. □ 4.设B A ,为非空有界数集.定义数集 {}B b A a b a c B A ∈∈+==+,, 证明: (1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.

金融数学附答案

金融数学附答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数 50 60 40 55 1/2 1000 (1)求看涨期权的公平市场价格。 (2)假设以公平市场价格+美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少 答案:(1)d u d r S S S e S q --=τ0=56.040 6040505.005.0=--??e (2)83.2>73.2,τr e S V -?+?='00 83.2> τr e S -?+?'0 40 6005--=--=?d u S S D U =25.0股 104025.00'-=?-=?-=?d S D 753.9975.0105.005.0'-=?-=??-e 美元 则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元 所以无风险利润为1.85835.005.0=?e 美元 2、假定 S 0 = 100,u=,d=,执行价格X=105,利率r=,p=,期权到期时间t=3, 请用连锁法则方法求出在t=0时该期权的价格。(答案见课本46页) 3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。波动率σ为. 问题:(1)、他要支付多少的期权费【参考N (=;N ()= 】 {提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系}

解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(),N(d2)=N ()。给出最后结果为 4、若股票指数点位是702,其波动率估计值σ=,指数期货合约将在3个月后到期,并在到期时用美元按期货价格计算,期货合约的价格是715美元。关于期货的看涨期权时间与期货相同,执行价是740美元,短期利率位7%,问这一期权的理论价格是多少(N()=,N)= *= 解:F=715,T-t=,σ=,X=740,r= F/X=715/740=,σ(T-t)=*= d1=ln/+2= d2== G=**740) =美元 5、根据看涨期权bs定价公式证明德尔塔等于N(d1)(答案见课本122页)

金融数学课后习题

第一章 利息的度量 1.现在投资600元,以单利计息,2年后可以获得150元的利息。如果以相同的复利利率投资2000元,试确定在3年后的累计值。 2.在第1月末支付314元的现值与第18月末支付的271元的现值之和,等于在第T 月末支付1004元的现值。年实际利率为5%,求T 。 3.在零时刻,投资者A 在其账户存入X ,按每半年复利一次的年名义利率i 计息。同时,投资者B 在另一个账户存入2X ,按利率i (单利)来计息。假设两人在第8年的后6个月中将得到相等的利息,求i 。 3.如果年名义贴现率为6%,每四年贴现一侧,试确定100元在两年末的累计值。 4.一项投资以δ的利息力累积,27.72年后将翻番。金额为1的投资以每两年复利一次的年名义利率δ累积n 年,累计值将成为7.04.求n 。 5.一直利息力为t t += 21δ,一笔金额为1的投资从0=t 开始的前n 年赚取的总利息是8.求n 。 6.已知利息力为100 3 t t =δ,求)3(1-a 。 第二章 等额年金 1.某人想用分期付款的方式购买一辆现价为10万元的汽车,如果手气支付一笔款项后,在今后5年内每月末付款2000元即可付清车款,假设每月复利一次的年名义利率为8%,试计算他首期付款金额为多少? 2.某人将在10年后退休,他打算从现在开始每年初向一种基金存入2000元,如果基金的收益率为6%,试计算他在退休时可以积存多少退休金。 3.某人从2000年3月1日起,每月末可以领取200元,2010年5月末是最后一次领取。如果每月复利一次的年名义利率是6%,试计算:(1)年金的现值;(2)年金的终值;(3)年金在2005年12月31日的值。 4.某人在今后20年内,每年初向一基金存入10000元。从第30年开始,每年末可以领取一笔退休金。该基金的收益率为6%。(1)如果限期领取20年,每次可以领取多少?(2)如果无限期的领下去(当他死亡后,由其继承人领取),每次可以领取多少? 5.借款人原计划在每月末偿付1000元,用5年的时间还清贷款。每月复利一次的年名义利率为12%,如果他现在希望一次性的支付60000元还清贷款,他应该何时偿还? 6.投资者每月初向基金存入一笔款项,5年后可以积存到60000元。前2年每月初存1000元,后3年每月初存入500元,试计算每月复利一次的名义利率。

金融数学第一章练习试题详解

金融数学第一章练习题详解 第 1 章 利息度量 1.1 现在投资$600,以单利计息,2 年后可以获得$150 的利息。如果以相同的复利利率投资$2000,试确定在 3 年后的累积值。 65.2847%)5.121(2000% 5.1215026003=+=?=?i i 1.2 在第 1 月末支付 314 元的现值与第 18 月末支付 271 元的现值之和,等于在第 T 月末支付 1004 元的现值。年实际利率为 5% 。求 T 。 58 .1411205.1ln /562352.0ln 562352.0ln 05.1ln 12 562352.01004/)05.127105.1314(05.105.1%)51()1(271314100412/1812/112/12 /1812/112/=?-==-=?+?==+=+=+=------T T i v v v v T t t t t T 两边取对数,其中 1.3 在零时刻,投资者 A 在其账户存入 X ,按每半年复利一次的年名义利率 i 计息。同时,投资者B在另一个账户存入 2X ,按利率 i (单利)来计息。 假设两人在第八年的后六个月中将得到相等的利息,求 i 。 094588 .02)12(2)2 1(2 )21()21()21())2 1()21((2 12:))21()21((:215/11515151615161516=?-==+?+=+-+==+-+=??+-+i i i i i i i Xi i i X Xi i X B i i X A i A 两边取对数 ,的半年实际利率为 1.4 一项投资以 δ 的利息力累积,27.72 年后将翻番。金额为 1 的投资以每两年复利一次的名义利率 δ 累积 n 年,累积值将成为 7.04。求 n 。 () 80 2)05.1ln /04.7(ln 04 .7)21025 .072.27/2ln 2 )1()(1ln 2/5.072.27=?==+=====+=+=n i e e i t a i n t t δδ δδδδ(

经济数学基础-概率统计课后习题答案

习 题 一 写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次; (3) 掷一枚硬币,直到首次出现正面为止; (4) 一个库房在某一个时刻的库存量(假定最大容量为M ). 解 (1) Ω={正面,反面} △ {正,反} (2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m } 掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”, B =“奇数点”, C =“点数小于5”, D =“小于5的偶数点”,讨论上述各事件间的关系. 解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;A ?D ,C ?D. 3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++= B - C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B = 321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解 B A A B A +=+ C B A B A A C B A ++=++ C B A B B AC +=+ BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对立的区别何在,举例说明. 解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容. 7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系. 解 由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有 A =C +F ,C 与F 互不相容, D ?A ?F ,A ?C. 8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率. 解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1 315 C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有 图1-1 图1-2

数学分析课本(华师大三版)-习题及答案04

第四章 函数的连续性 习题 §1 连续性概念 1. 按定义证明下列函数在其定义域内连续: (1)()x x f 1 = ; (2) ()x x f = 2. 指出下列函数的间断点并说明其类型: (1)()x x x f 1+ =; (2)()x x x f sin =; (3)()[] x x f cos =; (4)()x x f sgn =; (5)()()x x f cos sgn =; (6)()?? ?-=为无理数; 为有理数, x x x x x f ,, (7)()()?? ? ? ??? +∞<<--≤≤--<<-∞+=x x x x x x x x f 1,11sin 11 7,7,71 3. 延拓下列函数,使其在R 上连续: (1)()2 8 3--=x x x f ; (2)()2cos 1x x x f -=; (3)()x x x f 1cos =. 4. 证明:若f 在点0x 连续,则f 与2f 也在点0x 连续。又问:若f 与2f 在I 上连续, 那么f 在I 上是否必连续? 5. 设当0≠x 时()()x g x f ≡,而()()00g f ≠。证明:f 与g 两者中至多有一个在0 =x 连续 6. 设f 为区间I 上的单调函数。证明:若I x ∈0为f 的间断点,则0x 必是f 的第一类间 断点 7. 设f 只有可去间断点,定义()()y f x g x y →=lim ,证明:g 为连续函数 8. 设f 为R 上的单调函数,定义()()0+=x f x g ,证明:g 在R 上每一点都右连续 9. 举出定义在[]1,0上分别符合下述要求的函数: (1)只在 41,31,21三点不连续的函数; (2)只在4 1 ,31,21三点连续的函数;

金融数学附答案定稿版

金融数学附答案精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数 50 60 40 55 0.55 1/2 1000 (1)求看涨期权的公平市场价格。 (2)假设以公平市场价格+0.10美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少 (3) 答案:(1)d u d r S S S e S q --=τ0=56.040 6040505.005.0=--??e (2)83.2>73.2,τr e S V -?+?='00 83.2> τr e S -?+?'0 406005--=--= ?d u S S D U =25.0股 104025.00'-=?-=?-=?d S D 753.9975.0105.005.0'-=?-=??-e 美元 则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元 所以无风险利润为1.85835.005.0=?e 美元

2、假定 S0 = 100,u=1.1,d=0.9,执行价格X=105,利率r=0.05,p=0.85,期权到期时间t=3,请用连锁法则方法求出在t=0时该期权的价格。(答案见课本46页) 3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。波动率σ为0.318. 问题:(1)、他要支付多少的期权费【参考N(0.506)=0.7123;N(0.731)=0.7673 】{提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系} 解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(-0.506),N(d2)=N(-0.731)。给出最后结果为0.608 4、若股票指数点位是702,其波动率估计值σ=0.4,指数期货合约将在3个月后到期,并在到期时用美元按期货价格计算,期货合约的价格是715美元。关于期货的看涨期权时间与期货相同,执行价是740美元,短期利率位7%,问这一期权的理论价格是多少( N(-0.071922)=0.4721,N(-0.2271922)=0.3936 e-0.07*0.25=0.98265 解:F=715,T-t=0.25,σ=0.4,X=740,r=0.07 F/X=715/740=0.9622,σ(T-t)=0.4*0.5=0.2 d1=ln(0.9662)/0.2+0.2/2=-0.071922 d2=d1-0.2=-0.071922

金融数学人才培养模式的探索与创新

金融数学人才培养模式的探索与创新 摘要:本文基于国内外对金融数学人才的需求现状,对金融数学人才培养模式进行了探索与创新,树立科学的人才培养目标,建立以微观金融和定量分析为主,重理论、方法、实践和创新的专业特色,创建一流人才培养体系,建立先进的人才管理机制,培养数学和统计基础宽厚、既掌握现代金融数学理论,又能综合运用金融分析工具进行金融实务分析,具有国际视野的金融数学人才。 关键词:金融数学,人才培养模式,创新 一、研究背景 金融数学专业是随着经济发展而设立的一门新的交叉学科,融汇了数学、统计学、金融学和经济学等多学科知识,是一个宽口径、厚基础、适应性强、发展空间大的专业。金融数学人才的培养顺应了国际和国内金融发展,特别是金融改革和金融风险防范的需要。 近些年来,数学在金融领域中发挥的作用越来越重要,无论在哪个国际大都市,金融数学专业人才都供不应求。在美国,金融数学家成为华尔街最抢手的人才之一。美国花旗银行副总裁柯林斯曾说过“从事银行业务而不懂数学的人无非只能做些无关紧要的小事”,“花旗银行70%的业务依赖于数学,如果没有数学发展起来的工具和技术,许多事情我

们一点办法也没有,没有数学我们不可能生存”,这形象地体现了数学在金融领域中的至关重要性。 随着金融一体化和经济全球化的发展,我国金融体制改革和金融行业发展逐步加快,社会对金融人才的需求,不仅在数量上要求越来越多,而且在层次上要求也越来越高,特别是对掌握现代金融工具,能对金融做定量分析的专业人才更是求贤若渴。近年来发生的墨西哥金融危机,亚洲金融风暴及百年老店巴林银行倒闭等事件都在警告我们,如果不掌握金融数学等现代化金融技术,缺乏该领域人才就可能在国际金融竞争中蒙受重大损失。金融数学人才的培养可以极大地提高中国的竞争力,促进我国顺利融入经济和金融的全球化进程。 二、金融数学人才培养模式的探索与创新 为培养高素质的金融数学人才,我们对金融数学人才培养模式进行探索与创新,建立了一流的人才培养结构体系。 1、树立科学的人才培养目标 为满足社会对能做定量分析的金融专业人才的大量需求,我们建立了科学的金融数学人才培养目标:培养具有扎实的数学和统计学基础,掌握经济学和金融学的基本理论与方法,具备综合运用各种金融分析工具解决金融实务问题的能力,接受科学研究的初步训练,能够在政府机关、各类

金融数学引论答案第一章--北京大学出版[1]

第一章习题答案 1.解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)/A(0)=(t 2 + 2t + 3)/3 In = A(n) ? A(n ? 1) = (n 2 + 2n + 3) ? ((n ? 1)2 + 2(n ? 1) + 3)) = 2n + 1 2. 解:()n n-1t 11I A(n)A(t)I I I n(n 1)/2t(t 1)/2+=-=+++=+-+??? (2)1t 11 I A(n)A(t) 22n n k k t I ++=+=-= =-∑ 3.解: 由题意得 a(0) = 1, a(3) =A(3)/A(0)= ? a = , b = 1 ~ ∴ A(5) = 100 A(10) = A(0) ? a(10) = A(5) ? a(10)/ a(5)= 100 × 3 = 300. 4. 解:(1)i5 =(A(5) ? A(4))/A(4)=5120≈ % i10 =(A(10) ? A(9))/A(9)=5145≈ % (2)i5 =(A(5) ? A(4))/A(4) ()()()54410 9 109 100(1 0.1)100(1 0.1) 10% 100(1 0.1)100(1 0.1)100(1 0.1) i (A 10A 9)/A 9 10%100(1 0.1) +-+==++-+=-= =+ 5.解:A(7) = A(4)(1 + i5)(1 + i6)(1 + i7) ; = 1000 × × × = 6.解: 设年单利率为i 500(1 + = 615 解得i = % 设500 元需要累积t 年 500(1 + t × %) = 630 解得t = 3 年4 个月 } 7.解: 设经过t 年后,年利率达到% t 1 4%t (1 2.5%)+?=+ t ≈ 8. 解:(1 + i)11 = (1 + i)5+2*3 = XY 3 9. 解: 设实利率为i 600[(1 + i)2 ? 1] = 264 解得i = 20% ∴ A(3) = 2000(1 + i)3 = 3456 元 10.解: 设实利率为i

数学分析华东师大反常积分

数学分析华东师大反常 积分 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第十一章反常积分 §1 反常积分概念 一问题提出 在讨论定积分时有两个最基本的限制: 积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制, 考虑无穷区间上的“积分”, 或是无界函数的“积分”, 这便是本章的主题. 例1 ( 第二宇宙速度问题) 在地球表面垂直发射火箭( 图 11 - 1 ) , 要使火箭克服地球引力无限远离地球, 试问初速度v0 至少要多大设地球半径为R, 火箭质量为m, 地面上的重力加速度为 g .按万有引力定律,在距地心x( ≥R) 处火箭所受的引力为 mg R2 F = . x2 于是火箭从地面上升到距离地心为r ( > R) 处需作的功为

r mg R ∫ ∫ 2 ∫ d x = m g R 2 1 - 1 .R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = m g R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = mg R . 用 g = 9 .81 ( m 6s /2 ) , R = 6 .371× 106 ( m ) 代入 , 便得 v 0 = 2 g R ≈ 11 .2( k m 6s /) . 例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图 11 - 2) .试问从盛满水开始打开小孔直至流完桶中的水 , 共需多少时间

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

届金融数学毕的业论文题目

金融数学专业毕业论文选题 一、论文选题说明 该选题表是某重点大学多名在校教师多年指导毕业论文的总结,为了更好地引导学生写作论文。 另外,在论文写作、格式规范以及论文答辩等等方面有困难的同学,请仔细看这些题目,看几个后你就会有所收获。这些题目写作以及答辩都比较容易!! 二、论文参考题目 1.浅析反证法思想在金融数学教学中的应用 2.金融类“应用型”人才培养中经济数学的教学与改革 3.关于金融数学教学的思考 4.将经济数学与金融专业课程有效结合以培养金融类“应用型”人才 5.本科生“金融数学”课程案例教学模式探讨 6.金融数学专业人才培养模式的改革与探索 7.金融数学方向建设的几点建议 8.金融数学研究最新进展综述 9.数学专业拓办金融数学方向教学改革的探索 10.代写论文抠抠舞衣衣漆久吧漆久叁 11.金融经济分析应用经济数学的探讨 12.复制资产策略在金融数学教学中的应用 13.金融数学概述与介绍 14.数学与应用数学专业方向建设教学改革探索——浅谈在高校数学系开设金融数学本科专业 15.金融数学教学初探 16.经济数学在金融经济分析中的应用浅析 17.金融理论发展对数学化的依赖 18.应用型本科高校金融数学专业建设的思考 19.浅谈数学在金融中的应用

20.高校金融数学专业建设新探 21.金融数学在西部高校的融合式教学发展研究 22.金融数学专业“概率论”课程教学例题选题研究23.金融数学专业课程设置与人才培养质量分析 24.金融类“应用型”人才培养中经济数学的教学与改革25.金融数学模型 26.浅谈金融专业数学教学的改革 27.金融类院校开设数学建模课程应解决的几个问题28.案例教学法在金融数学教学中的应用 29.金融数学研究综述及其前景展望 30.“金融数学”探究式教学的探索与实践 31.金融数学金融工程和金融电子化 32.浅析金融经济分析中经济数学的应用 33.金融数学中的若干前沿问题 34.金融数学与金融工程专业介绍及其发展前景 35.浅析数学建模教育在金融人才培养中的作用及对策36.针对金融数学专业进行金融工程学课程教学改革的探索37.金融危机中企业受波及的数学模型 38.财经院校金融数学高层次人才培养模式研究 39.当前行为金融研究中数学建模应用的价值分析 40.地方院校金融数学专业(方向)的课程设置 41.高校金融数学专业实验课程的设置 42.以辩证的观点浅析数学金融研究 43.金融数学概述及其展望 44.金融数学研究综述与展望 45.金融数学概述 46.浅谈金融与数学 47.金融数学的教学与研究 48.浅析数学方法在金融领域的应用

经济数学基础试题及答案

经济数学基础(05)春模拟试题及参考答案 一、单项选择题(每小题3分,共30分) 1.下列各函数对中,( )中的两个函数是相等的. A .1 1)(2--=x x x f ,1)(+=x x g B .2)(x x f =,x x g =)( C .2ln )(x x f =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g 2.设函数?????=≠+=0, 10,2sin )(x x k x x x f 在x = 0处连续,则k = ( ). A .-2 B .-1 C .1 D .2 3. 函数x x f ln )(=在1=x 处的切线方程是( ). A .1=-y x B . 1-=-y x C . 1=+y x D . 1-=+y x 4.下列函数在区间(,)-∞+∞上单调减少的是( ). A .x sin B .2 x C .x 2 D .3 - x 5.若 c x F x x f +=?)( d )(,则x x xf d )1(2?-=( ). A. c x F +-)1(212 B. c x F +--)1(2 12 C. c x F +-)1(22 D. c x F +--)1(22 6.下列等式中正确的是( ). A . )cos d(d sin x x x = B. )1d(d ln x x x = C. )d(ln 1d x x a a x a = D. )d(d 1x x x = 二、填空题(每小题2分,共10分) 7.若函数54)2(2++=+x x x f ,则=)(x f . 8.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性为E p = . 9.=?x x c d os d .

数学分析 上册 第三版 华东师范大学数学系 编

数学分析 上册 第三版 华东师范大学数学系 编 部分习题参考解答 P.4 习题 1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。 证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。这与题设“x 为无理数”矛盾,故a + x 是无理数。 (2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故 ax 是无理数。 3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。 证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P .3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。 另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。 5.证明:对任何R x ∈有 (1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x , 所以2|3||2||1|≥-+-+-x x x 6.设+ ∈R c b a ,,证明|||| 2 22 2c b c a b a -≤+-+ 证明 建立坐标系如图,在三角形OAC 中,OA 的长度是2 2 b a +,OC 的长度是2 2 c a +, AC 的长度为||c b -。因为三角形两边的差 大于第三边,所以有

北大版金融数学引论第二章答案,DOC

版权所有,翻版必究 第二章习题答案 1.某家庭从子女出生时开始累积大学教育费用5万元。如果它们前十年每年底存 款1000元,后十年每年底存款1000+X 元,年利率7%。计算X 。 解: S=1000s 20 ?p 7%+Xs 10 ?p 7% X= 50000?1000s 20 ?p 7% s 10 ?p7% =651.72 2.价值10,000元的新车。购买者计划分期付款方式:每月底还250元,期限4年。 月结算名利率18%。计算首次付款金额。 解:设首次付款为X ,则有 10000=X+250a 48 ?p1.5% 解得 X=1489.36 3.设有n 年期期末年金,其中年金金额为n ,实利率i=1 。试计算该年金的现值。 解: PV = na?n pi 1?v n n = n 1 n = (n+1)n n 2 ?n n +2 (n+1)n 4.已知:a?n p =X ,a 2 ?n p =Y 。试 用X 和Y 表示d 。 解:a 2 ?n p =a?n p +a?n p (1?d)n 则 Y ?X 1 d=1?( X )n 5.已知:a?7 p =5.58238,a 11 ?p =7.88687,a 18 ?p =10.82760。计算i 。 解: a 18 ?p =a ?7p +a 11 ?p v 7 解得 6.证明: 1 1?v 10 = s 10?p +a ∞?p 。 s 10?p i=6.0% 北京大学数学科学学院金融数学系 第1页

版权所有,翻版必究 证明: s 10 ?p +a ∞?p (1+i)10 ?1+1 1 s 10?p = i (1+i)10 ?1 i i = 1?v 10 7.已知:半年结算名利率6%,计算下面10年期末年金的现值:开始4年每半 年200元,然后减为每次100元。 解: PV =100a?8p3% +100a 20?p 3% =2189.716 8.某人现年40岁,现在开始每年初在退休金帐号上存入1000元,共计25年。然 后,从65岁开始每年初领取一定的退休金,共计15年。设前25年的年利率为8%, 后15年的年利率7%。计算每年的退休金。 解:设每年退休金为X ,选择65岁年初为比较日 1000¨25?p8%=X¨15?p7% 解得 9.已知贴现率为10%,计算¨?8 p 。 X=8101.65 解:d=10%,则 i=1 10.求证: (1)¨?n p =a?n p +1?v n ; 1?d ?1=1 9 ¨?8 p =(1+i) 1?v 8 i =5.6953 (2)¨?n p =s??n p 1+(1+i)n 并给出两等式的实际解释。 证明:(1)¨?n p =1 ? d v n =1 ?i v n =1 ?v n i +1?v n 所以 (2)¨?n p = (1+ i)n ?1 1+i ¨?n p =a?n p +1?v n (1+i )n ?1=(1+i)n ?1 n ?1 d = i 1+i i +(1+i) 所以 ¨?n p =s??n p 1+(1+i) n

相关文档
相关文档 最新文档