文档库 最新最全的文档下载
当前位置:文档库 › 抽屉原理

抽屉原理

抽屉原理
抽屉原理

抽屉原理

一、抽屉原理的定义

(1)举例桌上有10个苹果,要把这10个苹果放到9个抽展里,无论怎样放,有的抽屉可以放1个,有的可以放2个,有的可以放5个,但最终我们会发规至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。

二、抽屉原理的解题方案

(一)、利用公式进行解题苹果÷抽屉=商……余数

余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里

(2)余数=x至少有(商+1)个苹果在同一个抽屉里

(3)余数=0,结论至少有“商”个苹果在同一个抽屉里

(ニ)、利用最值原理解题(最不利原则:一切最不利情况+1=成功)

将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法。类型:“必有2个”原理;必有m+1个”原理

要点:最不利原则;保证与至少

精讲例题一:

某校六年级有367名学生,请问有没有2名学生的生日是在同一天?为什么?

【思路导航】把一年的天数看成是抽屉,把学生数看成是元素即至少有2名学生的生日是在同一天。把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,至少在一个抽屉里有2名学生,因此肯定有2名学生的生日是在同一天。

试一试:

1.某校有370名1992年出生的学生,其中至少有2名学生的生日是在同一天,为什么?

2.某校有30名学生是2月份出生的。能否至少有2名学生的生日是在同一天?

3.15个小朋友中,至少有几个小朋友在同一个月出生?

精讲例题二:

某班学生去买语文书、数学书、英语书。买书的情况是:有买一本的、两本的,也有买三本的,问至少要去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)

试一试:

1.某班学生去买数学书、语文书、美术书、自然书。买书的情况是:有买一本的,有买两本的,有买三本、四本

的。问至少去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)

2学校图书室有历史、文艺、科普三种图书。每名学生从中任意借两本,那么至少要几名学生才能保证一定有2名学生所借的图书属于同一种?

3.学校的体育器材室有足球、乒兵球、羽毛球、篮球四种球,每名学生从中任意借两个球,那么至少有几名学生借球,才能保证有两名学生所借的球完全相同?

精讲例题三:

一个布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有3副各自同色的?

试一试:

1.一个布袋中装有大小相同、颜色不同的手套。颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证

有4副各自同色的?

2.一个布袋中有同样规格但颜色不同的袜子若干只。颜色有白、黑、蓝三种。问最少要摸出多少只袜子才能保证

有3双各自同色的?

3.一个布袋里有红色、黄色、蓝色的袜子各8只。每次从布袋中拿出1只袜子,最少要拿出多少只才能保证其中至少有2双颜色不同的袜子?

精讲例题四:

任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么?

1.任意6个不相同的自然数,其中至少有两个数的差是5的倍数,这是为什么?

3.证明在任意的n+1个不相同的自然数中,必有两个数之差为n的倍数。

精讲例题五:

能否在下图的5行5列方格表的每个空格中,分别填上1,2,3这三个数中的任何一个,使得行每列及对角线AC,BD上的各个数的和互不相同?

试一试:

1.能否在6行6列方格表的每个空格中分别填上1,2,3这三个数中的任何一个,使得每行、每列及对角线上的

各个数的和互不相同?为什么?

2.证明在8×8的方格表的每个空格中,分别填上3,4,5这三个数中的任何一个,在每行、每列及每条对角线上的各个数的和中至少有两个和是相同的。

3.在3×9的方格图将每一个小方格涂上红色或者蓝色,不论如何涂色,其中至少有两列的涂色方式相同。这是为什么?

精讲例题六:

幼儿园里有120个小朋友,各种玩具共有364件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?

试一试:

1.一个幼儿园大班有40名小朋友,班里有各种玩具125件,把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?

2.把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不于6支。这是为什么?

2.把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?

精讲例题七:

布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样?

试一试:

1.布袋中有足够多的5种不同颜色的球。最少取出多少个球才能保证其中一定有3个颜色一样的球?

2.一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。当你被蒙上眼睛去取出

容器中的木块时,为确保取出的木块中至少有4块顔色相同,应至少取出多少块木块?3一副扑克牌共54张,其中1~13点各有4张、还有两张王,至少要取出几张牌,才能保证其中必有4张牌的点数相同?

精讲例题八:

某班共有46名学生,他们都参加了课外兴趣小组。活动内容有数学、美术、书法和英语,每人可参加1个、2个3个或4个兴趣,问班级中至少有几名学生参加的项目完全相同?

试一试:

1.某班有37名学生,他们都订阅了《小主人报》,《少年文艺》,《小学生优秀作文》三种报刊中的一、二、三种。其中至少有几名学生订的报刊相同?

2.学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。某班有52名学生。问至少有几名学生参加课外学习班的情况完全相同?

3.库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。同在31个搬运者中至少有几人搬运的球完全相同?

精讲例题九:

从1至30中,至少要取出几个不同的数,才能保证其中一院有一个数是3的倍数?

【思路导航】在1至30中,3的倍数有30÷3=10(个)、不是3的倍数的数有30-10=20(个),至少要取出20+1=21(个)不同的数,才能保证其中一定有一个数是3的倍数。

试一试:

1.在1,2,3……49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?

2.从1至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?

3.从1至36中,最多可以取出几个数,使得这些数中没有两个数的差是5的倍数?

例题精讲十:

一个袋子中装有8个白纽扣、10个蓝纽扣和13个黑纽扣,至少从袋子中一次模出多少个纽扣才能保三种颜色的纽扣至少都有一个?

试一试:

1、一副扑克有4种花色,每种花色都有13张,从中任意抽牌,至少要抽多少张,才能保证有4种花色的牌都有?

2、一个袋子里有100个球,其中红球有28个,绿球20个,黄球12个,蓝球20个,白球10个,黑球10个。从子中任意摸出球来,如果要使一次摸出的球中,至少有15个同色的球,那么至少要从袋子冲摸出多少个球?

3、一副扑克牌,共54张,问:至少从中模出多少张牌才能保: A:至少有3张牌是红桃;B:至少有5张的花色相同;C:四种花色的都有。

精讲例题十一:

一个小区里的125个住户,他们都订阅了《成都商报》、《成都晚报》、《华西都市报》三种报纸中的一种、两种或三种。他们当中至少有多少名住户订阅的报纸是相同的?

试一试

有150名同学,都参加篮球、足球和乒兵球三项体育活动中的1项、2项或3项,其中至少可以找到几个同学参加了相同的项目?精讲例题十二:学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生才能保证有不少于5名同学参加学习班的情况完全相同。

试一试:

篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?

达标检测

抽屉原理1

“抽屉原理”教学设计 【教学内容】 《义务教育课程标准实验教科书·数学》六年级下册第70-71页。例题1、例题2 【教学目标】 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。 3. 通过“抽屉原理”的灵活应用感受数学的魅力。 【教学重点】 经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 【教学难点】 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教具、学具准备】 每组都有相应数量的盒子、铅笔。 【教学过程】 一、课前游戏引入。 师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后) 师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。 师:开始。 师:都坐下了吗? 生:坐下了。 师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗? 生:对! 师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 二、通过操作,探究新知 (一)教学例1 1.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法? 师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况 (3,0) (2,1) 师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢? 生:不管怎么放,总有一个盒子里至少有2枝笔? 是:是这样吗?谁还有这样的发现,再说一说。 师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导) 师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各

小学奥数:抽屉原理(含答案)

教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

抽屉原理教案(1)

《抽屉原理》教案 仓山镇中心小学校伍莉 教学内容:教材P70-71页 教学目标: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2、通过操作发展学生的类推能力,形成比较抽象的数学思维。 通过“抽屉原理”的灵活应用,感受数学的魅力。 教学重点:认识“抽屉原理” 教学难点:灵活运用“抽屉原理”解决实际问题。 教学关键:结合具体事例,认真分析发生的现象,揭示内在规律。 教学方法:小组合作,自主探究 教学准备:吸管若干,4个纸杯 教学过程: 一、创设情境,导入新知 抽扑克牌的游戏导入新课 二、自主学习,初步感知 1、合作探究:出示3根吸管放入2个杯子里,摆一摆,想一想,共有几种放法?有什么发现。

学生带着问题展开小组活动 2、汇报展示: (1)、指名代表到台上展示成果。边放边说,教师同时在黑板上板书几种放法: (2)、引导学生口述所发现的结果。 (3)、引导学生理解“不管怎么分”和“至少”的含义。 (4)、小组带着问题再次展开探究:4根吸管放入3个杯子里结果会怎样?(方法同上) 教师引导学生说出摆法,并口述结果: 3、比较优化: 如果把6根吸管放在4个杯子里,同学们猜一猜,会有什么结果,如果把各种放法一一列举,需要花很多时间,同学们能找到一种更简便的方法吗? 引导学生理解需要“平均放”。 4、总结规律 (1)、探究把5根吸管放进2个杯子里,不管怎么放总有一个杯里至少有几根吸管? a、先同桌说一说 b、指名口答,你是怎么分的? (2)、探究把15根吸管放进4个杯子里的结论。

(3)、引导学生观察、讨论,说说自己的发现。 教师板书:平均分——商+1 5、介绍原理:揭示课题 你们的这一发现在数学里被称为“抽屉原理”,也叫“鸽巢原理”最先是由19世纪德国数学家锹里克雷提出来的,所以,又称为“锹里克雷”原理,这一原理在解决实际问题中有广泛的应用。 解决问题的关键: (1)、确定待分物体和抽屉数 (2)、“平均分” (3)、总有一个抽屉至少有“商+1”个物体。 三、应用原理,解决问题 1、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里,为什么? 2、94件玩具分给30个小朋友,总有一个小朋友至少分得( )几件玩具。 3、把25个苹果放入10个盘子中,总有一个盘子放进( )个苹果。 4、在370名学生中至少有( )名学生在同一天过生日,在49名学生中至少有( )名学生在同一个月过生日。 5、给一个正方体木块的6个面分别涂上红、黄两种颜色。

抽屉原理公式及例题精编版

抽屉原理公式及例题“至少……才能保证(一定)…最不利原则 抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有: ①k=[n/m ]+1个物体:当n不能被m整除时。 ②k=n/m个物体:当n能被m整除时。 例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同?A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1 个“抽屉”里有6张花色一样。答案选C. 例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人? 每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同? 用最不利原则解题。四个专业相当于4个抽屉,该题要有70名找到工作的人专业相同,那最倒霉的情况是每个专业只有69个人找到工作,值得注意的是人力专业一共才50个人,因此软件、市场、财务各有69个人找到工作,人力50个人找到工作才是本题中最不利的情形,最后再加1,就必定使得某专业有70个人找到工作。即答案为69×3+50+1=258。 例6:调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员需要从这些调查问卷中随机抽多少份,才能保证一定能找到两个手机号码后两位相同的被调查者? 答:在435份调查问卷中,没有填写手机号码的为435×(1-80%)=87份。要找到两个手机号码后两位相同的被调查者,首先要确定手机号码后两位有几种不同的排列方式。因为每一位

小学抽屉原理

《数学广角—抽屉原理》教学设计 【教学目标】 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2.通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 3、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 4、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教学准备】 1、教学ppt课件 2、铅笔120支 (小棒代替) ,笔盒100个(杯子代替),每个小组3个杯子,5支小棒;扑克牌1副,凳子4把。 【教学流程】 一、问题引入。 师:在上课前,老师特别想和同学们做个游戏,谁愿来?老师准备了4把椅子,请5 位同学上来。

1.游戏要求:老师喊“准备”,你们5位同学围着椅子走动,等老师喊“开始”后请你们5个都坐在椅子上,每个人都必须坐下。 2.师:“准备”,“开始”,他们都坐好了吗?老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果反复再做,还会是这样的结果吗? (游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。) 3、引入:看来,不管怎么坐,总有一把椅子上至少坐两个同学。你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 4、明确学习目标与任务: 师:看到这个课题,你能想到这节课我们将要学习哪些知识吗?(学生表达想法) 课件出示学习目标与要求 1)、了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2)通过实验操作、自主探究、小组合作发现抽屉原理。 3)感受数学文化的魅力,提高对数学的兴趣。 二、探究新知 (一)教学例1 为了研究这个原理,我们做一组实验。 1、观察猜测 课件出示例1:把4支铅笔放进3个文具盒中,不管怎么放总有一个文具盒至少放 进____支铅笔。 猜一猜:不管怎么放,总有一个文具盒至少放进 ____支铅笔。

四年级奥数抽屉原理

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 四、应用抽屉原理解题的具体步骤 知识框架 抽屉原理 发现不同

第二步:构造抽屉。这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。第三步:运用抽屉原理。观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。 例题精讲 【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业. 【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天? 【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

抽屉原理的经典解题思路

抽屉原理的经典解题思路 抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题的一个范例,我们可以从日常工作中的实例来体会抽屉原理的应用。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 先来看抽屉原理的一般叙述: 抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 抽屉原理(2):将多于件的物品任意放到抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。也可以表述成如下语句:把m个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。其中k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。 掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。一般来讲,首先得分析题意,分清什么是“物品”,什么是“抽屉”,也就是什么作“物品”,什么可作“抽屉”。接着制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。最后运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 下面两个典型例题的解题过程充分展现了抽屉原理的解题过程,希望读者能有所体会。 例1:证明任取6个自然数,必有两个数的差是5的倍数。 证明:考虑每个自然数被5除所得的余数。即自然数可以作为物品,被5除所得余数可以作为抽屉。显然可知,任意一个自然数被5除所得的余数有5种情况:0,1,2,3,4。所以构造5个抽屉,每个抽屉中所装的物品就是被5除所得余数分别为0,1,2,3,4的自然数。运用抽屉原理,考虑“最坏” 的情况,先从每个抽屉中各取一个“物品”,共5个,则再取一个物品总能在先取的5个中找到和它出自于同一抽屉的“物品”,即它们被5除余数相同,所以它们的差能整除5。

用抽屉原理解决问题

浙江省农村中小学现代远程教育工程资源建设多媒体教学课件 数学广角:用抽屉原理解决问题 使用范围:小学数学(人教版)六年级下册第五单元第72页 作者:高牡丹 单位:仙居县安洲小学 撰稿时间:2011年7月 ●教学目标: 1.进一步掌握抽屉原理,掌握抽屉原理的反向求法,会用“抽屉原理”解决简单的实际问题。 2.通过操作发展学生的类推能力,培养学生的发散性思维,形成比较抽象的数学思维。 3.通过“抽屉原理”的灵活应用感受数学的魅力,培学生大胆发表自己的见解和倾听他人意见,了解他人思维的好习惯。 ●教学重点: 用抽屉原理的逆向思维解决问题。 ●教学难点: 理解抽屉原理的反向求法并能灵活地运用抽屉原理解决问题。 ●教学准备: 多媒体课件、投影仪。 ●教学过程: 一、复习旧知 1、关于抽屉原理,我们已经知道了什么? 小结:把一些物体放进几个抽屉中,不管怎么放,有一个抽屉里至少有物体个数÷抽屉个数“所得的商+1”个物体。 2、抽屉原理中的抽屉一定是指真正的抽屉吗?还可以指什么?

3.增加复习题:如:13人中至少有2个人的生肖是相同的,为什么? 二、学习例3 1.出示例题,分析题意:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球? (1)通读题目,你知道了什么?和咱们前两节课学的抽屉原理一样吗?怎么不一样? 小结比较结果:已经知道了一个抽屉里至少有2个物体,求至少要摸出几个球。这节课我们是根据抽屉原理来解决问题的。板书课题:用抽屉原理解决问题。 (2)解决这个问题的关键是什么呢?是的,要先找到抽屉。抽屉是指什么?对啊,就是指红球和蓝球。 (3)有几个抽屉呢?你是怎么知道的? 预设1:4个,因为题目中说红球和蓝球各4个。 预设2:2个,因为就只有两种球,红球和蓝球。 师:到底谁的说法是对的呢?请大家先在小组里讨论一下。 反馈:红球4个,蓝球4个,有种颜色,所以应该是2个抽屉。 2.解决问题:要想摸出的球一定有2个同色的,最少要摸出几个球? (1)如果把这句话说完整:在2个抽屉里,最少摸出几个球就能保证一定有2个同色的?请大家思考一下。 (2)反馈: 生1:2个,摸两个球都是红色的,或者摸两个球都是蓝色的。 生2:不行,摸2个万一一个红球一个蓝球呢?应该是3个。 生3:摸出5个球,肯定有2个是同色的。因为红球和蓝球各4个。 (3)到底哪种说法是正确的呢?请大家在小组里讨论一下。 只摸2个球肯定是不行的,因为可能是一个红球、一个蓝球。 (有可能但不能保证) 根据5÷2=2……1,可以知道,摸出5个球时至少有3个球同色。因此,摸出5个球是没有必要的。(能保证但不是最少的) 得出结论:要想摸出的球一定有两个同色的,只要摸出的球比颜色种数多1,也就是比2多1,因此是3次。

抽屉原理优秀教案

《数学广角——抽屉原理》 实验小学 潘聪聪

《数学广角——抽屉原理》 【教学内容】: 我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】:一定数量的笔、铅笔盒、课件。 【教学过程】: 一、游戏激趣,初步体验 师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳

子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它? 【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。】 二、操作探究,发现规律 1、小组合作,初步感知。 师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快? (1)、学生动手操作,讨论交流,老师巡视,指导; (2)、全班交流。 师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。 师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔)。 师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答“平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1……1) 师:这里的4指的是什么?3呢?商1呢?余数1呢? 师:看来解决这个问题时,用平均分的方法比较简便。

抽屉原理及其简单应用

抽屉原理及其简单应用 一、知识要点 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。 把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。 原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。原理2:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至少要有k个元素。其中k=m/n(当n能整除m时)或k=〔m/n〕+1(当n不能整除m时),这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。 原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。二、应用抽屉原理解题的步骤 第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。 第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。 第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 三、应用抽屉原理解题例举: 1.张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?(教科书P73 T2) 解答:这道题物体个数和抽屉都比较明显。成绩41环看作个数,5镖看作抽屉,列式为:41÷5=8……1 8+1=9 2.有9支球队进行比赛,已经赛了10场,那么总有一支球队至少赛了几场? 解答:有些题目物体的个数没有直接告诉我们。根据问题至少赛了几场,那我们要知道已经赛过的总的场次。根据已经赛了10场,每场2支球队,总场次应该是20次。这就是物体的个数。9支球队可以看作抽屉。根据今天所教的知识(原理2)我们知道20÷9=2……2,2+1=3 3.有红、黄两种颜色在下面的长方形格子中随意涂色,每个格子涂一种颜色。青青发现无论怎样涂,至少有两列涂法完全相同。请你先试一试,再说明理由。(作业本P29 T4) 解答:根据至少有两列涂法完全相同。我们要知道总的列数。这道题已经知道物体的个数是5列。但抽屉的个数却掩藏起来,我们需要根据排列知识找出抽屉的个数。已知颜色有2种,在一列的排列组合中有这么4种情况。(红红、红黄、黄黄、黄红)所以可以做成4个抽屉。用算式5÷4=1……1,1+1=2就说明问题。 4.任意写出5个非零的自然数,我能找到两个数,让这两个数的差是4的倍数。(作业本P29 T5) 解答:这题已经告诉我们物体的个数是5。但什么做为抽屉?要做几个抽屉却需要我们去构建。根据条件4的倍数,我们知道一个数除以4没有余数那就是4的倍数,在这些数中除以4的过程中会出现这四种情况(整除、余数是1、2、3)那就可以根据这四种情况做成四个

浅谈抽屉原理问题解题技巧

浅谈抽屉原理问题解题技巧 令狐采学 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果[是“至少两个苹果”吧?]。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素[这个定义是有问题的。苹果的问题还可以认为抽屉不能空,“多于N+1个元素在n个集合中必定有两个元素的集合”无论集合空不空肯定是不对的。应该也是“至少两个元素”]。它是组合数学中一个重要的原理[这一段应该是百度百科里的内容。但是注意百科左边的图片里也是“至少有2个苹果”,下面的解析里的狄利克雷原则也是正确定义的。希望老师在引用的时候仔细分辨。]。抽屉原理看似简单,但它是近年来公考行测广大考生很容易丢分的部分。考生不能有效得分的主要原因:一是考生只是去背诵抽屉原理相关定理与公式;二是考生不能透彻理解应用“最不利原则”的思维角度。 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。下面利用几道例题对抽屉原理问题的解法进行一下探讨。

一.基础题型 【例1】从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解析:题目要求保证:6张牌的花色相同.考虑最不利情形:每种花色取5张,一共20张,然后抽出大小王共2张,总共22张,再抽取任意一张都能保证6张花色相同,共23张.因此,答案选C. 【例2】一副无“王”的扑克牌,至少抽取几张,方能使其中至少有两张牌具有相同的点数?() A.10 B.11 C.13 D.14 解析:题目要求:两张牌具有相同的点数.考虑最不利情形:从中任取一种花色的牌13张,每张牌点数都不同,再抽取任何一张点数都会重复,总共抽取14张。因此,答案选D. 【例3】调研人员在一次市场调查活动中收回了435份调查试卷,其中80%的调查问卷上填写了被调查者的手机号码.那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?() A.101 B.175 C.188 D.200

抽屉原理(中)

一、抽屉原理 美国一家杂志上曾刊登这样一副漫画:三只鸽子同时往两个鸽笼里飞。这是一副含义深刻的漫画,它有趣的揭示了抽屉原理:三只鸽子同时飞进两个鸽笼里,则一定有一只鸽笼里至少飞进两只鸽子。抽屉原理俗称鸽笼原理,最先是由19世纪的德国数学家狄利克雷(P.G.Dirichlet 1805--1859)运用于解决数学问题的,所以抽屉原理又叫狄利克雷原理。 1.抽屉原理 (1)第一抽屉原理 设有m 个元素分属于n 个集合(其两两的交集可以非空),且m kn >(m n k ,,均为正整数),则必有一个集合中至少有1k +个元素。 (2)第二抽屉原理 设有m 个元素分属于n 个两两不相交的集合,且m kn <(m n k ,,均为正整数),则必有一个集合中至多有1k -个元素。 (3)无限的抽屉原理 设有无穷多个元素分属于n 个集合,则必有一个集合中含有无穷多个元素。 2.平均值原理 设12n a a a ∈R ,, ,,且 ()12121 ||n n n A a a a G a a a n = +++ , 则12n a a a , ,,中必有一个不大于A ,亦必有一个不小于A ;12||||||n a a a ,,,中必有一个不大于G ,亦有一个不小于G 。 3.面积重叠原理 n 个平面图形12n A A A ,, ,的面积分别为12n S S S ,,,,将它们以任意方式放入一个面积为S 的平面图形A 内。 7 抽屉原理与极端原理

(1)若12n S S S S +++> ,则存在1i j n <≤≤,使图形i A 与j A 有公共内点; (2)若12n S S S S +++< , 则A 存在一点,不属于图形12n A A A ,,,中的任意一个。 以上命题用反证法很容易证明,大家可以自行完成。 一般来说,适合应用抽屉原理解决的数学问题具有如下特征:新给的元素具有任意性.如1n +个苹果放入n 个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原理解决的数学问题还应搞清三个问题: (1)什么是“苹果”? (2)什么是“抽屉”? (3)苹果、抽屉各多少? 用抽屉原理解题的本质是把所要讨论的问题利用抽屉原理缩小范围,使之在一个特定的小范围内考虑问题,从而使问题变得简单明确. 用抽屉原理解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律.关键是构造适合的抽屉,抽屉之间可以有公共部分,亦可以没有公共部分。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。这一简单的思维方式在解题过程中却可以演变出很多奇妙的变化和颇具匠心的运用。抽屉原理常常结合几何、整除、数列和染色等问题出现,从小学奥数、中学奥数、IMO 到Putnam 都可以见到它的身影。实际应用中,抽屉原理常常与反证法结合在一起。 二、极端原理 让我们先看一个有趣的放硬币游戏. 两人相继轮流往一张圆桌上平放一枚同样大小的硬币,条件是后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略? 这是一个古老而值得深思的难题.当有人向一位确有才能的数学家提出这个难题时,引出了如下一段意味深长的对话: 数学家:这有什么难?如果圆桌小到只能容纳一枚硬币,那么先放的人当然能够取胜。 提问者:这还用你讲?简直废话! 数学家:不!这是一个很重要的特殊情况,它的解决将导致一般问题的解决. 提问者:怎么解决? 数学家:我先将第一枚硬币放在桌子的中心,利用圆桌的对称性,我就可以获胜.不管是圆桌还是方桌,也不管是桌子有多大,只要有一个对称中心就行. 数学家独具慧眼,能从一般性问题中一下子找到一个极易求解的极端情形,并能将极端情形下的解法推向一般,轻而易举地解决了上述难题,而且还作了推广. 这位数学家大概是这样思考的: 一般性的问题比较复杂,先将其极端化,注意到所放硬币总数1n ≥,取其极端情形1n =即假设桌子小到只能放下一枚硬币,得出特殊问题的解,即先占中心者为胜.然后根据圆桌的对称性,先放者把硬币放在中心位置O ,若后放者把硬币放在C 处,则先放者把硬币放在中心位置O 的对称点'C 处,这样只要后放者能放下硬币,先放者总能根据对称性,放下硬币,最后获胜. 这种思考问题的方法称为极端原理.

抽屉原理(一)

抽屉原理 抽屉原理(1) 把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 1.游泳队有13名队员,教练说你们当中至少有两个人在同一个月过生日,为什 么? 2.某校的小学生年龄最小的6岁,最大的13岁,从这个学校中至少任选几位同学 就一定保证其中有两位同学的年龄相同? 3.布袋中装有红、黄、蓝三色小木棒若干根,至少摸出多少根,就一定保证有两 根小木棒的颜色相同? 4.布袋中装有红、黄、蓝三色小木棒若干根,每次取出两根,至少摸出多少次, 就一定保证有两次摸出的两根小木棒的颜色组合相同? 5.布袋中装有红、黄、蓝三色小木棒若干根,每人取出三根,至少需要多少人, 就一定保证有两人摸出的小木棒的颜色组合相同? 6.为了欢迎来宾,学校准备了红、黄、蓝三色小旗,每个同学两手各拿一面小旗 列队欢迎,试证明:任意8名同学中,至少有两人不但所拿小旗的颜色一样,而且左右顺序也相同。 7.体育器材室里有许多足球、排球和篮球,体育课学生来拿球。如果每人至少拿 1个球,至多拿2个球,至少来多少名学生,就能保证一定有两名学生所拿的球种类完全一样。 8.学校食堂中午有6种不同的菜和5种不同的主食。每人只能买一种菜和一种主 食,请你证明32名同学中,一定至少有两名学生所买的菜和主食是一样的。 9.证明:任取7个自然数,必有两个数的差是6的倍数。 10.从2、4、6、8……、24、26这13个偶数中,任取8个数,证明其中一定有两个数 之和是28。 11.求证:任意互异的8个整数中,一定存在6个整数A 、A2、A3、A4、A5、A6,使 1 得(A1-A2)×(A3-A4)×(A5-A6)恰是105的倍数。 12.从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍 数。

抽屉原理及其应用

抽屉原理及其应用 许莉娟 (数学科学学院,2003 ( 4)班,03213123号) [摘要]抽屉原理是数学中的重要原理,在解决数学问题时有非常重要的作用.各种形式的抽屉原理在高等数学和初等数学中经常被采用.本文着重从抽屉的构造方法阐述抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指岀了它在 应用领域中的不足之处. [关键词]抽屉原理高等数学初等数学 抽屉原理也称为鸽笼原理或鞋箱原理,它是组合数学中的一个最基本的原理.抽屉原 理主要用于证明某些存在性问题及必然性题目,如几何问题、涂色问题等?抽屉原理的简 单形式可以描述为:“如果把n ? 1个球或者更多的球放进n个抽屉,必有一个抽屉至少有两个球.”它的正确性十分明显,很容易被并不具备多少数学知识的人所接受,如果将其灵活地运用,则可得到一些意想不到的效果. 各种形式的抽屉原理在高等数学和初等数学中经常被采用,使用该原理的关键在于如何巧妙地构造抽屉,即如何找出合乎问题条件的分类原则,抽屉构造得好,可得出非常巧妙的结论,下面我们着重从抽屉的构造途径去介绍抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指出它在应用领域中的不足之处? 一、抽屉原理 陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理I把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素? 原理U把m个元素任意放到n(m ? n)个集合里,则至少有一个集合里至少有 k个元素,其中 当n能整除m时, 当n不能整除m时. 原理川把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个

抽屉原理精华及习题(附答案)

第九讲 抽屉原理 一、 知识点: 1. 把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一 个抽屉中的苹果数大于等于几? 2. 把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一 个抽屉中的苹果数大于等于几? 上述两个结论你是如何计算出来的? ★规律:用苹果数除以抽屉数,若余数不为零,则“答案”为商加1,若余数为零,则“答 案”为商。 ★抽屉原则一: 把n 个以上的苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。 ★抽屉原则二: 把多于m ×n 个苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(m +1)个苹果。 二、 基础知识训练(再蓝皮书) 1、 把98个苹果放到10个抽屉中, 无论怎么放, 我们一定能找到一个含苹果最多的抽屉,它里面至少含有 个苹果。 2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢, 它里面至少含有 只鸽子。 3、从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的 抽屉,从它里面至少拿出了 个苹果。 4、从 个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉, 从它当中至少拿了7个苹果。 三、 思路与方法: 在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。 训 练 题 1. 六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86 分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说的对吗?为什么? 2. 从100,,3,2,1 这100个数中任意挑选出51个数来,证明在这51个数中,一定: (1)有2个数互质; (2)有两个数的差为50; 3. 圆周上有2000个点,在其上任意地标上1999,,2,1,0 (每一点只标一个数,不同的点

抽屉原理基本介绍

基本介绍 应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:同年出生的400人中至少有2个人的生日相同。 解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。 “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少. 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 制造抽屉是运用原则的一大关键 例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

抽屉原理问题(公务员考试数学运算基础详解)

抽屉原理问题——基础学习 一、解答题 2、抽屉原理1例1:400人中至少有几个人的生日相同? 【解题关键点】将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 【结束】 3、抽屉原理1例2:五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 【答案】至少有3名学生的成绩是相同的。

【解题关键点】关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。 44÷21= 2……2, 根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 【结束】 5、抽屉原理2例1:某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 【答案】至少会有一个小朋友得到4件或4件以上的玩具。 【解题关键点】将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 【结束】 6、抽屉原理2例2:一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 【答案】一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【解题关键点】将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【结束】 7、抽屉原理2例3:六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 【答案】至少有15人所订阅的报刊种类是相同的。 【解题关键点】首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况;

抽屉原理优秀教案

讲课 教案 《数学广角——抽屉原理》 六年级下册 # # 镇中学 # # # 2015年4月17日

《数学广角——抽屉原理》【教学内容】: 我讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材68页的例1。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律,渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生类比推理能力,形成比较抽象的数学思维。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】: 多媒体课件、扑克牌、一定数量的笔、笔筒、练习纸。 【教学过程】:

一、游戏激趣,初步体验 师:同学们,你们玩过扑克牌吗? 生齐:玩过。 师:好,下面我们用扑克牌来玩个游戏。大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗? 生齐:对。 师:如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“这5张扑克牌至少有2张是同一种花色的,你们相信吗? 部分生说:信。 部分生说:不信。 师:那我们就来验证一下。 师先请一位同学洗牌(把牌混合均匀),然后请5名同学各抽一张,验证至少有两张牌是同一种花色的。 师:如果再请五位同学来抽,我还敢这样肯定地说:抽取的这5张牌中至少有两张是同一花色的,你们相信吗? 生齐:相信。 师再找5位同学各抽一张,进一步验证至少有两张牌是同一种花色的。 师:其实这里面蕴藏着一个非常有趣的数学原理,大家想不想研究啊? 生齐:想。 进入主题。 【设计意图:在课前进行的游戏激趣,一是使教师和学生进行自然的沟通交流;二是激发学生的兴趣,引起探究的愿望;三是为今天的探究埋

相关文档