文档库 最新最全的文档下载
当前位置:文档库 › 定积分教案

定积分教案

定积分教案
定积分教案

《数学分析》

之九

第九章定积分(14+4学时)

教学大纲

教学要求:

1.理解Riemann定积分的定义及其几何意义

2.了解上和与下和及其有关性质

3.理解函数可积的充要条件,了解Riemann可积函数类

4.熟练掌握定积分的主要运算性质以及相关的不等式

5.了解积分第一中值定理

6.掌握变上限积分及其性质

7.熟练掌握Newton-Leibniz公式,定积分换元法,分部积分法

教学内容:

问题的引入(曲边梯形的面积及变速直线运动的路程),定积分定义,几何意义,可积的必要条件,上和、下和及其性质,可积的充分条件,可积函数类,定积分的性质,积分中值定理,微积分学基本定理,牛顿一莱布尼兹公式,定积分的换元法及分部法。

第页

此表2学时填写一份,“教学过程”不足时可续页

第页

已知函数在区间

作为分法

.

第页

形式的极限

;

第页

, 和

. 和的几何意义

, <

此表2学时填写一份,“教学过程”不足时可续页

此表2学时填写一份,“教学过程”不足时可续页

此表2学时填写一份,“教学过程”不足时可续页

第页

.

和是.

.

第页

第页.

的导数恰为被积函数在上限的值

的一个原函数

,则存在

,则存在

此表2学时填写一份,“教学过程”不足时可续页

此表2学时填写一份,“教学过程”不足时可续页

《定积分》教学设计与反思

《定积分》教学设计与反思 学习目标 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分. 2、通过实例体会用微积分基本定理求定积分的方法. 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 教学难点:了解微积分基本定理的含义. 一、自主学习: 1.定积分的定义:, 2.定积分记号: 思想与步骤 几何意义. 3.用微积分基本定理求定积分 二、新知探究 新知1:微积分基本定理: 背景:我们讲过用定积分定义计算定积分,但如果要计算,其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 探究问题1:变速直线运动中位置函数S(t)与速度函数v(t)之间的联系 设一物体沿直线作变速运动,在时刻t时物体所在位移为S(t),速度为v(t)(), 则物体在时间间隔内经过的位移记为,则 一方面:用速度函数v(t)在时间间隔求积分,可把位移= 另一方面:通过位移函数S(t)在的图像看这段位移还可以表示为 探究问题2: 位移函数S(t)与某一时刻速度函数v(t)之间的关系式为 上述两个方面中所得的位移可表达为 上面的过程给了我们启示 上式给我们的启示:我们找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。 定理如果函数是上的连续函数的任意一个原函数,则

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。 例1.计算下列定积分: 新知2:用定积分几何意义求下列各式定积分: 若求 新知3:用定积分求平面图形的面积 1、计算函数在区间的积分 2、计算函数在区间的积分 3、求与在区间围成的图形的面积 通过此题的计算你发现了什么? 教学反思 本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了微积分的基本定理,具体反思如下: 1、改变定理的表述形式,丰富信息的呈现方式。 根据高中学生的认知特点,我在教学过程中,出示例题、习题时,呈现形式力求多样、新颖,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中实例分析顺序,重组和创设了这样一个情境,从而引入速度关于时间的定积分背景,即切合学生的生活实际,又让学生发现了定理的实际意义,理解了定理的本质,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。 2、突出数学应用价值,培养学生的应用意识和创新能力 《数学课程标准》中指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题中涉及路程和速度,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

定积分教学设计

定积分的简单应用 一、教学目标 1、 知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、 过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、 情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 二、 教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题,正确计算。 三、教学过程 (一)创设问题情境: 复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 引入:.计算 dx x ? --2 2 2 4 2.计算 ?-22 sin π πdx x 思考:用定积分表示阴影部分面积 选择X 为积分变量,曲边梯形面积为 (二)研究开发新结论 1计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成图形的面积S. 2计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成的图形的面积S. 总结解题步骤:1找到图形----画图得到曲边形. 2曲边形面积解法----转化为曲边梯形,做出辅助线. dx x f dx x f s b a b a ??-=)()(21

3定积分表示曲边梯形面积----确定积分区间、被积函数. 4计算定积分. (三)巩固应用结论 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得 到。 解:2 01y x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、 (1,1),面积 S=1 20 x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象; 2.求交点; 3.用定积分表示所求的面积; 4.微积分基本定理求定积分。 巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y =x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =- 与曲线y =的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线y = 的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组4 y y x ?=?? =-?? 得直线4y x =-与曲线y =8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28 4 4 [(4)]x dx = +--? ? ? -1

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

定积分的应用教案

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体 积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知 的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6. 1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) (是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以 [a,b]为积分区间的定积分: ?=b a dx x f A) (. 一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得 ?=b a dx x f U) (.用这一方法求一量的值的方法称为微元法(或元素法).

§6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图. (2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分 31]3132[)(10323102=-=-=?x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图. (2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,2 1)(2+==y y y y 右左??. (4)计算积分 ?--+=422)2 14(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+b y a x 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ?=a ydx S 04. 椭圆的参数方程为: x =a cos t , y =b sin t , 于是 ?=a ydx S 04?=0 )cos (sin 4πt a td b

定积分的概念教案知识讲解

定积分的概念教案

人教A版必修一教材 教材内容分析微积分的出现和发展,极大的推动了数学的发展,同时也推动了天文学、力学、物理学、化学、生物学等自然科学、社会科学及应用科学各个分支中的发展。本节课是定积分概念的第一节课,教材借助求曲边梯形的面积和物理中变速直线运动的路程,通过直观具体的实例引入到定积分的学习中,为定积分概念构建认知基础,为理解定积分概念及几何意义起到了铺垫作用,同时也为今后进一步学习微积分打下基础。 学生情况分析 本节课的教学对象是本校实验班学生,学生思维比较活跃,理解能力、运算能力和学习交流能力较强。学生前面已经学习了导数,并利用导数研究函数的单调性、极值及生活中的优化问题等,渗透了微分思想。从学生的思维特点看,比较容易把刘徽的“割圆术”与本节课知识联系到一起,能够初步了解到“以直代曲”和“无限逼近”的重要数学思想,但是在具体的“以直代曲”过程中,如何选择适当的直边图形来代替曲边梯形会有一些困难。在对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值及在对定积分定义的归纳中符号的理解上也会有一些困难。 教学目标 1.从物理问题情境中了解定积分概念的实际背景,初步掌握求曲边梯形的面积的方法和步骤:分割、近似代替、求和、取极限; 2.经历求曲变梯形面积的过程,借助几何直观体会“以直代曲”和“逼近”的思想,学习归纳、类比的推理方式,体验从特殊到一般、从具体到抽象、化归与转化的数学思想; 3.认同“有限与无限的对立统一”的辩证观点,感受数学的简单、简洁之美. 教学重点直观体会定积分的基本思想方法:“以直代曲”、“无限逼近”的思想; 初步掌握求曲边梯形面积的方法步骤——“四步曲”(即:分割、近似代替、求和、取 极限) 教学难点对“以直代曲”、“逼近” 思想的形成过程的理解. 教学方式教师适时引导和学生自主探究发现相结合. 辅助工具投影展台,几何画板. 教学过程 引入新课问题:汽车以速度v做匀速直线运动时,经过时间t所行驶的路程为 S vt =.如果汽车作变速直线运动,在时刻t的速度为()2 v t t=(单 位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程S (单位:km)是多少? 创设情境,引入 这节课所要研究的 问题. 类比探究,形成方法如图,阴影部分类似于一个梯形,但有一边是曲线() y f x =的一 段,我们把由直线,(),0 x a x b a b y ==≠=和曲线() y f x =所围 成的图形称为曲边梯形. 如何计算这个曲边梯形的面积? (1)温故知新,铺垫思想 问题1:我们在以前的学习经历中有没有用直边 图形的面积计算曲边图形面积这样的例子? 问题2:在割圆术中为什么用正多边形的面积计算圆的面积?为什么 要逐次加倍正多边形的边数? (2)类比迁移,分组探究 问题3:能不能类比割圆术的思想和操作方法把曲边梯形的面积问题 转化为直边图形的面积问题? 学生活动:学生进行分组讨论、探究。 (3)汇报比较,形成方法 学生需要用原有的 知识与经验去同化 或顺应当前要学习 的新知识,所以问 题1引导学生回忆 割圆术的作法,通 过问题2引导学生 思考割圆术中的思 想方法----“以直代 曲”,和“无限逼 近”。 通过问题3激 发学生探索的愿 望,明确解决问题 的方向。

§1.5.3定积分的概念教案

1.5.3定积分的概念 教学目标 能用定积分的定义求简单的定积分; 理解掌握定积分的几何意义; 重点 定积分的概念、定积分法求简单的定积分、 定积分的几何意义 难点 定积分的概念、定积分的几何意义 复习: 1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤 2.对这四个步骤再以分析、理解、归纳,找出共同点. 新课讲授 1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?=), 在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ= ,作和式: 1 1 ()()n n n i i i i b a S f x f n ξξ==-= ?= ∑ ∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数 S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为: ()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分()b a f x dx ?是一个常数,即n S 无限趋近的常数S

(n →+∞时)称为()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()n i i b a f n ξ=-∑ ; ④取极限:() 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑ ? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1 ()t t S v t dt =?; 变力做功 ()b a W F r dr = ? 2.定积分的几何意义 如果在区间[,]a b 上函数连 续且恒有 ()0 f x ≥,那么定积分 ()b a f x dx ? 表示由直线,x a x b ==(a b ≠),0y =和曲线() y f x = 所围成的 曲边梯形的面积。 例1.计算定积分2 1 (1)x dx +? 分析:所求定积分即为如图阴影部分面积,面积为5 2 。 即:2 1 5(1)2 x dx += ? 思考:若改为计算定积分 22 (1)x dx -+? 呢? 改变了积分上、下限,被积函数在 [2,2]-上出现了负值如何解决呢? (后面解决的问题) 练习 计算下列定积分 1.50(24)x dx -? 解:5 0(24)945x dx -=-=? 2.1 1x dx -? 解:11 111111122 x dx -= ??+ ??=?

北师大版数学高二定积分的简单应用教案 选修2-2

高中数学 定积分的简单应用教案 选修2-2 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积S=1 1 20 0xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 2 x y =y x A B C D O

定积分教案教学提纲

《数学分析》 之九 第九章定积分(14+4学时) 教学大纲 教学要求: 1.理解Riemann定积分的定义及其几何意义 2.了解上和与下和及其有关性质 3.理解函数可积的充要条件,了解Riemann可积函数类 4.熟练掌握定积分的主要运算性质以及相关的不等式 5.了解积分第一中值定理 6.掌握变上限积分及其性质 7.熟练掌握Newton-Leibniz公式,定积分换元法,分部积分法 教学内容: 问题的引入(曲边梯形的面积及变速直线运动的路程),定积分定义,几何意义,可积的必要条件,上和、下和及其性质,可积的充分条件,可积函数类,定积分的性质,积分中值定理,微积分学基本定理,牛顿一莱布尼兹公式,定积分的换元法及分部法。 第页

此表2学时填写一份,“教学过程”不足时可续页 第页

=i 1 。 则称函数)(x f 在[b a .]上可积或黎曼可积。数J 称为函数)(x f 在[b a .]上 的定积分或黎曼积分,记作: ?=b a dx x f J )( 其中)(x f 称为被积函数,x 称为积分变量,[b a .]称为积分区间,dx x f )(称为被积式,b a ,分别称为积分的下限和上限。 定积分的几何意义; 连续函数定积分存在(见定理9.3) 三、举例: 例1 已知函数 在区间 上可积 .用定义求积分 . 解 取 等分区间 作为分法 n b x T i = ?, 取 .= . 由函数)(x f 在区间],0[b 上可积 ,每个特殊积分和之极限均为该积分值 . 例2 已知函数2 11 )(x x f += 在区间]1,0[上可积 ,用定义求积分 . 解 分法与介点集选法如例1 , 有 . 上式最后的极限求不出来 , 但却表明该极限值就是积分

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

《定积分在几何中的应用》教学教案

1.7.1定积分在几何中的应用 学习目标: 1.体会“分割、以直代曲、求和、逼近”求曲边梯形面积的思想方法; 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 3.理解定积分的几何意义以及微积分的基本定理。 学习方法: 情境一:展示精美的赵州桥图片,讲述古代数学家的故事及伟大发现:拱形的面积 问题1:桥拱与水面之间的切面的面积如何求解呢? 问题2:需要用到哪些知识?(定积分) 问题3:求曲边梯形的思想方法是什么? 问题4:定积分的几何意义是什么? 问题5:微积分基本定理是什么? 情境二:利用定积分求平面图形的面积 例1. 计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 问题1:你能在平面直角坐标系内画出两条抛物线吗? 问题2:能在图中找出所要求的图形吗?(用阴影部分表示出来) (如右图) 问题3:这个图形以前见过吗?有没有直接的公式求它的面积吗? 问题4:既然没有直接的公式求其面积,那能不能转化成我们学过的曲边梯形的面积来间接求解呢?(可看做两个曲边梯形的面积之差,进而可以用定积分来解决) 解:解方程组?????==2 2x y x y 得到交点横坐标为0=x 或1=x x y O A B C D 2 x y =x y =2 1 1 -1 -1 4 x y O 8 4 2 2

∴ OABD OABC S S S 曲边梯形曲边梯形-=dx x ? = 1 dx x ?-1 2 1031 0233132x x -=313132=-= 情境三 学生探究: 例2.计算由直线4y x =-,曲线y =x 轴所围图形的面积S. 分析:模仿例1,先画出草图(左图),并设法把所求图形的面积问题转化为求曲边梯形的面积问题. 问题1:阴影部分图形是曲边梯形吗? 问题2:不是曲边梯形怎么办?能否构造出曲边梯形来呢? 问题3:如果转化成两部分的面积和,应该怎样作辅助线?(过点(4,0)作x 轴的垂线将阴影部分分为两部分) 问题4:两部分面积用定积分分别应该怎样表示?(注意积分上下限的确定) 问题5:做辅助线时应该注意什么?(尽量将曲边图形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合成的图形.) 规范的解题过程此处略去 思考:1.本题还有没有其它的解决方案?(可以将此阴影部分看做一个曲边梯形和一个三角形的面积之差) 2.上面的解法是将x 看作积分变量,能不能将y 看作积分变量?尝试解决之。 情境四:结合以上两个例题,总结利用定积分求平面图形面积的基本步骤。 解由曲线所围的平面图形面积的解题步骤: 1.画草图,求出曲线的交点坐标 2.将曲边形面积转化为曲边梯形面积 3.根据图形特点选择适当的积分变量 4.确定被积函数和积分区间 5.计算定积分,求出面积.

定积分的概念(教案)

1.5.3.定积分的概念 一、复习回顾: 1. 回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤: 2.上述两个问题的共性是什么? 二、新知探究 1.定积分的概念 注: 说明:(1)定积分()b a f x dx ?是一个 ,即n S 无限趋近的常数S (n →+∞时)记为 ()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是: (3)曲边图形面积: 变速运动路程: 变力做功: 例1:利用定积分的定义,计算 dx x ?102 、 dx x ?1 03 的值.

2.定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1 ?b a dx x kf )(= ; 性质2 dx x g x f b a ?±)]()([= 性质3 ??=c a b a dx x f dx x f )()( + 3.定积分的几何意义 从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥, 那么定积分()b a f x dx ?表示由直线 和曲线 所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分 ()b a f x dx ?的 几何意义。 思考: (1)在[,]a b 上0)(≥x f ,()b a f x dx ?= (2)在[,]a b 上0)(≤x f ,()b a f x dx ?= (3)在[,]a b 上)(x f 变号,()b a f x dx ?=

⑤ 练习: 1、利用定积分的几何意义,判断下列定积分值的正、负号。 (1) dx x ?20sin π (2)dx x ?-212 (3)dx x ?-1 23 2、利用定积分的几何意义,说明下列各式成立 (1) 0sin 22=?-dx x π π , 0sin 20=?dx x π (2)dx x dx x ??=200sin 2sin π π 3、计算下列定积分 (1)dx b a ?1 (2)11x dx -?. (3) 5 0(24)x dx -? (4) dx x ?-1021 (5)120(2)x x dx -? 三、课堂小结: ①定积分的概念及性质②用定义法求简单的定积分③定积分的几何意义

定积分计算例题

第5章 定积分及其应用 (一)、单项选择题 1.函数()x f 在区间[a ,b]上连续是()x f 在[a ,b]上可积的( )。 A .必要条件 B 充分条件 C 充分必要条件 D 既非充分也非必要条件 2.下列等式不正确的是( )。 A . ()()x f dx x f dx d b a =??????? B. ()()()[]()x b x b f dt x f dx d x b a '=???? ??? C. ()()x f dx x f dx d x a =??????? D. ()()x F dt t F dx d x a '=???? ??'? 3.? ?→x x x tdt tdt sin lim 的值等于( ). A.-1 B.0 C.1 D.2 4.设x x x f +=3 )(,则 ? -2 2 )(dx x f 的值等于( )。 A .0 B.8 C. ? 2 )(dx x f D. ?2 )(2dx x f 5.设广义积分 ? +∞ 1 dx x α收敛,则必定有( )。 A.1-<α B. 1->α C. 1<α D. 1>α 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( )。 A.[0,2e ] B.[0,2] C.[1,2] D.[0,1] 7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。 A.dy y ? 2 1 ln B. dy e e x ? 2 C.dy y ? 2 ln 1ln D. ()d x e x ?-2 1 2 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为( )。 A. ()[]dy y y ?--1 1 B. ()[]dx x x ? -+-21 1 C. ()[]dy y y ? --210 1 D.()[]dx x x ? +--1 1 9.由e x x y x y e ===,log ,ln 1围成曲边梯形,用微法求解时,若选x为积分变量,面积微元为 ( )。 A.dx x x e ???? ? ? +1 log ln B.dy x x e ???? ? ?+1log ln C.dx x x e ???? ? ?-1log ln D.dy x x e ??? ? ? ?-1log ln 10.由0,1,1,2==-==y x x x y 围成平面图形的面积为( )。 A. ? -1 1 2dx x B. ? 1 2dx x C. ? 1 dy y D.? 1 2 dy y

定积分的应用教学设计比赛一等奖

3.1定积分的应用:平面图形的面积 教材分析: 《定积分的简单应用》是人教版选修2-2第1章第7节的内容,从题目中可以看出这节教学的要求,就是让学生在充分认识导数与积分的概念、计算、几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 教学构思:应用型的课题是培养学生观察分析、发现、概括、推理和探索能力的极好素材,本节课通过创设情景、问题探究、抽象归纳、巩固练习、应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生们掌握定积分解题的规律,体会数学学科研究的基本过程与方法。 学情分析:知识层面,学生已经学习了定积分的定义,由来及微积分基本定理。在定积分与曲边梯形面积关系中,许多学生默认相等,这就与定积分本质相违背。能力层面,学生有一定的推理和探索能力,面对知识点,学生还需有归纳概括的能力。还需体会数学学科研究的基本过程与方法。情感层面,学生对数学新内容的学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡,有待加强。 教学理念:以学生发展为主线。新型的教学方式,新型的呈现方式。 教学目标: 知识与技能: 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积. 2.掌握利用定积分求曲边梯形面积的几种常见题型及方法. 过程与方法:通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 情感态度与价值观:通过教学过程中的观察思考总结,养成自主学习的良好学习习惯,培养数学知识应用于生活的意识。

定积分的概念教案

定积分的概念 教学目标: 知识目标:掌握定积分的含义,理解定积分的几何意义。 能力目标: 1、理解定积分概念中归纳思维的运用; 2、掌握例题求解过程中对比思维的运用。 素质目标:提升分析与解决问题的能力 教学重点和难点: 教学重点 :定积分的概念和思想 教学难点:理解定积分的概念,领会定积分的思想 教学方法: 1、直观法:让抽象的数学与具体的生活结合。 2、归纳法:让严整的数学定义与休闲的娱乐生活结合。 3、类比法:让例题求解过程与社会事例结合。 4、总结法:数学学习中培养的能力贯穿生活、社会、科学等各方面。 教学过程: 一、引入新课 我们已经学过规则平面图形的面积:三角形 四边形 梯形 圆等,那么不规则平面图形的面积该怎么求呢? 二、讲解新课 实例1曲边梯形的面积 曲边梯形:若图形的三条边是直线段,其中有两条垂直 于第三条底边,而其第四条边是曲线,这样的图形称为曲边梯形,如左下图所示. 曲边梯形面积的确定步骤: 推 广 为 y O M P Q N B x C A A 曲边梯形面积的确定方法:把该曲边梯形沿着 y 轴方向切割成许多窄窄的长条,把每个长条近似看作一个矩形,用长乘宽求得小矩形面积,加起来就是曲边梯形面积的近似值,分割越细,误差越小,于是当所有的长条宽度趋于零时,这个阶梯形面积的极限就成为曲边梯形面积的精确值了.如下图所示: O x y y = f (x )

(1)分割 任取分点b x x x x x a n n =<<<<<=-1210 ,把底边[a ,b ]分成n 个小区间 []21,x x ,(),,2,1n i =.小区间长度记为 ); ,,2,1(1n i x x x i i i =-=?- (2) 取近似 在每个小区间[i i x x ,1-]上任取一点i ξ竖起高线)(i f ξ,则得小长条面积 i A ?的近似值为 i i i x f A ?≈?)(ξ (n i ,,2,1 =); (3) 求和 把n 个小矩形面积相加(即阶梯形面积)就得到曲边梯形面积A 的近似值 i n i i n n x f x f x f x f ?=?++?+?∑=)()()()(1 2211ξξξξ ; (4) 取极限 令小区间长度的最大值{}i n i x ?=≤≤1max λ 趋于零,则和式 i n i i x f ?∑=)(1ξ的 极限就是曲边梯形面积A 的精确值,即 i n i i x f A ?=∑=→1 )(lim ξλ 实例2 路程问题 解决变速运动的路程的基本思路: 把整段时间分割成若干小时间段,每小段上速度看作不变,求出各小段的路程的近似值,再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值. (1)分割 (2)近似 (3)求和 (4)取极限 路程的精确值 2、归纳总结曲边梯形的面积和变速运动的路程得出定积分的概念。 3、定积分的概念 定义 3.1 设函数)(x f y =在[b a ,]上有定义,任取分点 <<<=321x x x a n n x x <<-1b =,分],[b a 为n 个小区间],[1i i x x -),,2,1(n i =. 记 {}i n i i i i x n i x x x ?==-=?≤≤-11max ),,,2,1(λ , 212101T t t t t t T n n =<<<<<=- 1--=?i i i t t t i i i t v s ?≈?)(τi i n i t v s ?≈∑ =)(1τ0},,,m ax {21→???=n t t t λi n i i t v s ?=∑=→)(lim 1 0τλ

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

高数教案_定积分应用

课 题: 定积分的几何应用 目的要求: 掌握定积分的微分元素法 掌握利用定积分求平面图形面积的方法 掌握利用定积分求体积的方法 掌握利用定积分求弧长的方法 教学重点: 利用定积分求面积和体积的方法 教学难点: 利用定积分求面积和体积的方法 教学课时:4 教学方法:讲练结合 教学内容与步骤: 定积分解题的条件: (1) 所求量(设为 F )与一个给定区间 [a,b]有关,且在该区间上具有可加性. 就是说,F 是确定于 [a,b]上的整体量,当把 [a,b]分成许多小区间时,整体量等于各部分量之和,即1 n i i F F == ∑ . (2) 所求量 F 在区间 [a,b]上的分布是不均匀的,也就是说, F 的值与区间 [a,b]的长不成正比.(否则的话, F 使用初等方法即可求得,而勿需用积分方法了) 用定积分概念解决实际问题的四个步骤: 第一步:将所求量 F 分为部分量之和,即: 1 Δn i i F F ==∑; 第二步:求出每个部分量的近似值, Δi F ≈()Δ(1,2,,);i i f x i n ξ=L 第三步:写出整体量 F 的近似值,1 Δn i i F F == ∑≈1 ()Δn i i i f x ξ=∑;

第四步:取max{Δ}0i x λ=→时的 1 ()Δn i i i f x ξ=∑极限,则得 1 lim ()Δ()d n b i i a i F f x f x x λξ→===∑?. 观察上述四步我们发现,第二步最关键,因为最后的被积表达式的形式就是在这一步被确定的,这只要把近似式()Δi i f x ξ中的变量记号改变一下即可( i ξ换为x ;i x ?换为 dx ). 而第三、第四两步可以合并成一步:在区间 [a,b]上无限累加,即在 [a,b]上积分. 至于第一步,它只是指明所求量具有可加性,这是 F 能用定积分计算的前提,于是,上述四步简化后形成实用的微元法. 定积分应用的微元法: (一) 在区间 [a,b]上任取一个微小区间 [],d x x x +,然后写出在这个小区间上的部分量ΔF 的近似值,记为d ()d F f x x =(称为 F 的微元); (二) 将微元dF 在[a,b]上积分(无限累加),即得: ()d .b a F f x x =? 微元法中微元的两点说明: (1) ()d f x x 作为ΔF 的近似值表达式,应该足够准确,确切的说,就是要求其差是关于Δx 的高阶无穷小. 即 Δ()d (Δ)F f x x o x -=.这样我们就知道了,称作微元的量 ()d f x x ,实际上是所求量的微分 dF; (2) 具体怎样求微元呢? 这是问题的关键,这要分析问题的实际意义及数量关系,一般按着在局部 [],d x x x + 上,以“常代变”、“匀代不匀”、“直代曲”的思路(局部线性化),写出局部上所求量的近似值,即为微元 d ()d F f x x = . 用定积分求平面图形的面积 1. 直角坐标系下的面积计算 用微元法不难将下列图形面积表示为定积分. (1) 曲线()(()0),y f x f x =≥,x a x b ==及 OX 轴所围图形,如下页左图,面积微元d ()d A f x x =,面积()d b a A f x x = ? . (2) 由上、下两条曲线(),()(()())y f x y g x f x g x ==≥及,x a x b ==所围成的图形,如下页右图,面积微元d [()()]d ,A f x g x x =-,面积[()()]d b a A f x g x x = -? . (3)由左右两条曲线(),()x y x y ψ?==及,y c y d ==所围成图形(图见下左)面积微元(注意,这时就应取横条矩形 dA ,即取 y 为积分变量)

相关文档