文档库 最新最全的文档下载
当前位置:文档库 › 蜘蛛丝纤维

蜘蛛丝纤维

蜘蛛丝纤维
蜘蛛丝纤维

蜘蛛丝纤维

蜘蛛是地球上最古老的物种之一,是自然界的神奇动物,经历了几百万年漫长的进化,蜘蛛已能够适应地球上几乎所有环境而生存下来,其最大的臂助正是本身独特的纺丝能力和令人惊讶的蛛丝性能。蜘蛛是自然界产丝和用丝的“专家”,它们一生都离不开丝。蜘蛛生产性能最优异的丝线,并用这种丝线织成蛛丝网,用以捕获猎物,赖以生存,繁衍后代。蜘蛛,属节肢动物门蛛形纲蛛形目,种类繁多,会吐丝结网的大约有2万多种,按吐出丝种类的多少分为古蛛亚目、原蛛亚目和新蛛亚目。

科学家们早就注意到蜘蛛丝非同一般的性能并将它利用了起来。早在1709年就出现了人类利用蜘蛛丝的记载,而且在第二次世界大战时,蜘蛛丝曾被广泛用作显微镜、望远镜、枪炮的瞄准系统等光学装置的十字准线。进入20世纪80年代,蜘蛛丝,尤其是牵引丝,以高强度、高弹性、高断裂功、低密度、良好的耐温及耐紫外线性能、良好的生物相容性等优异性能引起了各国材料、生物和化学等众多领域研究人员的极大兴趣。科技的进步,亦使得破解蜘蛛丝的生物奥秘成为了可能。1996年,美国Science杂志连载3篇文章,揭示了蜘蛛丝性质与结构的关系以及蜘蛛丝的奥秘,近几年,又连续发表了10多篇关于蜘蛛丝研究的文章。美国、瑞士、加拿大、日本、德国、丹麦等国的一些实验室先后对蜘蛛丝做了深入的研究,在利用基因和蛋白质测定技术解开蜘蛛丝奥妙的同时,在蜘蛛丝人工生产方面也取得了突破性进展。

蜘蛛丝的结构与性能

蜘蛛丝能大量吸收动能,同时具有高弹性形变,究其原因,在于其奇妙的分子结构。蜘蛛丝的化学本质为蛋白质,蛛丝蛋白的复杂氨基酸序列和空间结构赋予了外显的性能。蜘蛛丝中分子排列是一种介于晶区与非晶区的中间相的存在。结晶区主要为聚丙氨酸链段,构象为β- 折叠链,分子链或链段沿着纤维轴线的方向呈反平行排列,相互间以氢键结合,形成折曲的栅片,栅片间距离是变化的,在0.93~1.57nm

之间。非结晶区由甘氨酸、丙氨酸以外的大侧基氨基酸组成,分子多呈α- 螺旋状结构。由丙氨酸组成的β-折叠(硬段)和富含脯氨酸的α-螺旋(软段),及其紧密堆砌的二级结构使之成为一种半结晶状态的分子弹簧结构,从而赋予蛛丝很好的抗张强度和韧性。蜘蛛拖丝抗拉力5×109Pa,断裂伸长率35%~50%,能大量吸收物体的高动能,其优越性能是包括蚕丝在内的天然纤维和合成纤维不能比拟的。

蜘蛛丝有良好的耐高温、低温性能。据报导,蜘蛛丝在300℃以上才变黄,开始分解;在零下40 ℃时仍有弹性,只有在更低的温度下才变硬。在需要高温、低温使用的场合下蛛丝纤维的优点特别显著。

蜘蛛丝的主要成分是蛋白质,目前尚未发现人体对蜘蛛丝所含的蛋白质有任何排异反应,另外蛛丝蛋白具有自装配行为,在器官移植和组织修复时可用来介导细胞和组织,或者它们相互之间的连接,以促进器官组织的复原。

由于蜘蛛丝本身的特性,决定了在纺织、医疗、军事等领域有着广泛的应用。

医疗卫生

蜘蛛丝主要成分是蛋白质,人们目前尚未发现人体对蜘蛛丝所含的蛋白质有任何排异反应,这正是蜘蛛丝应用在医学上最大的优点。又鉴于蜘蛛丝极轻、韧性好、强度大等现有材料不可比拟的优点,科学家认为用它可以生产人工关节韧带、人工肌腱、人造血管等组织,同时还可以做组织修复、用于眼外科和神经外科手术等特细和超特细生物可降解的外科手术缝合线及生物大分子的固定材料。

蜘蛛丝膜具有很好的透明性、生物可降解性和水-空气界面的通透性。与胶原蛋白和弹性蛋白相似,丝蛋白具有自装配性质,通过二级结构调节以提供机械支撑;与聚酯比较,丝的柔韧性和弹性使其经的起重压和疲劳。丝蛋白生物相容性好,与胶原起同样的细胞黏附、扩展、分化和生长作用。丝基质还有机械诱导作用,通过调整丝基质的硬度,提供控制基质的最终机械特性来模仿天然机体组织的机械特性和支持宿主组织内生长,蛛丝蛋白是组织工程支架材料的有力竞争者。

军事

蜘蛛丝强度大、弹性好、柔软、质轻等优良性能,尤其是具有吸收巨大能量的能力,非常适合防弹衣的制造,它可以阻挡子弹的侵入,使弹头或弹片击入人体内的危险降到最低程度。可用来制成坦克、飞机、雷达、卫星以及军事建筑物的理想的防护罩;用于制成质量小、抗风性能好、坚固耐用的降落伞。据报道,未来可能制成的高性能人工蜘蛛丝“蜘蛛网” ,甚至可以拦截F -6 战斗机。在航空航天方面, 可用作航天结构材料和织造航天服等。蜘蛛丝的高吸能功能是以大变形为前提的,如果将蜘蛛丝用作防弹衣,弹丸对人体的贯穿性损伤和非贯穿性损伤均无法防御,因此要将蜘蛛丝应用于弹道防护产品,至少应与其他高强高模纤维合理搭配,形成合理结构。美国陆军和麻省理工学院正在研究用蜘蛛丝制造一种全新的军装,这种军装不仅能成为士兵的防弹装甲,还可以自动适应不同温度环境,甚至能为生病或受伤的士兵起到一定的医疗作用。

蜘蛛丝的强度非常高,在拉断之前可以极大地延伸,因此是制造高强度纳米导线的理想材料。研究还发现,用紫外激光脉冲能够均匀地缩减蜘蛛丝的直径,经几次缩减后,可把3~5μm 直径的蜘蛛丝缩减到100nm 左右,且不会降低蜘蛛丝的强度。曾有德国某研究员将一种蜘蛛丝的直径减少到原来的二十分之一,将细蜘蛛丝缠在极细的导电金属丝上,可以得到强度极高的“纳米”导线。用这种蜘蛛的丝制成的导线,不像目前的纳米导线那样脆弱,可以在任何地方使用。专家认为,用蜘蛛丝制成的超细导线可能将会引起微型电子器件制造的一场革命。

高强度材料

蜘蛛丝可用于结构材料、复合材料和宇航员装等高强度材料。用蜘蛛丝编织成具有一定厚度的材料进行实验,可发现其强度比同样厚度的钢材高9倍,弹性比具有弹性的其它材料高2倍。因此,对蜘蛛丝进行进一步加工,可用于织造车轮外胎、高强度的渔

网等。在建筑方面,蜘蛛丝可用做结构材料和复合材料,代替混凝土中的钢筋,应用于桥梁、高层建筑和民用建筑等,可大大减轻建筑物自身的质量。

纺织制衣

蜘蛛丝弹性好、柔软, 而且穿着舒适。蜘蛛“牵引丝”通过转基因的方法让普通春蚕“大批量”吐丝,这种转基因蚕丝在紫外光下会发出闪耀迷人的绿光,绿色荧光蛋白质是融合于丝蛋白质分子中的天然蛋白质,如果将荧光丝与普通丝交织成的织物制成服装、围巾、帽子, 在紫色、蓝色灯光下发出荧光图案,其身价定会倍增。中科院上海生命科学院生物化学与细胞生物学研究所科研人员首次在国际上实现了绿色荧光蛋白与蜘蛛牵引丝融合基因在家蚕丝基因中的插入,并获得了荧光茧,已正式获得了国家发明专利申请号。

结语

21世纪是生物技术的时代,蜘蛛丝作为一种新兴的生物材料,有着独特、优异的性能。随着科技手段的迅速发展,人们必定越来越了解这种比钢还要强的生物蛋白丝,深入了解蜘蛛丝的基因背景、蛋白质结构特性及其独特的纺丝过程。这将推动蜘蛛丝人工制造与工业化应用研究,使其产业化生产技术日趋成熟,尤其是基因微生物法合成蜘蛛丝技术的研究,使蜘蛛丝无法像蚕丝那样大量生产的历史宣告结束,蜘蛛丝将广泛应用于医疗卫生、军事、高强度材料及纺织工业。

新型纤维材料---蜘蛛丝

新型纤维材料——蜘蛛丝 蜘蛛是地球上最古老的物种之一,是自然界的神奇动物,经历了几百万年漫长的进化,蜘蛛已能够适应地球上几乎所有环境而生存下来,其最大的臂助正是本身独特的纺丝能力和令人惊讶的蛛丝性能。蜘蛛是自然界产丝和用丝的“专家”,它们一生都离不开丝。蜘蛛生产性能最优异的丝线,并用这种丝线织成蛛丝网,用以捕获猎物,赖以生存,繁衍后代。蜘蛛,属节肢动物门蛛形纲蛛形目,种类繁多,会吐丝结网的大约有2万多种,按吐出丝种类的多少分为古蛛亚目、原蛛亚目和新蛛亚目。 科学家们早就注意到蜘蛛丝非同一般的性能并将它利用了起来。早在1709年就出现了人类利用蜘蛛丝的记载,而且在第二次世界大战时,蜘蛛丝曾被广泛用作显微镜、望远镜、枪炮的瞄准系统等光学装置的十字准线。进入20世纪80年代,蜘蛛丝,尤其是牵引丝,以高强度、高弹性、高断裂功、低密度、良好的耐温及耐紫外线性能、良好的生物相容性等优异性能引起了各国材料、生物和化学等众多领域研究人员的极大兴趣。科技的进步,亦使得破解蜘蛛丝的生物奥秘成为了可能。1996年,美国Science杂志连载3篇文章,揭示了蜘蛛丝性质与结构的关系以及蜘蛛丝的奥秘,近几年,又连续发表了10多篇关于蜘蛛丝研究的文章。美国、瑞士、加拿大、日本、德国、丹麦等国的一些实验室先后对蜘蛛丝做了深入的研究,在利用基因和蛋白质测定技术解开蜘蛛丝奥妙的同时,在蜘蛛丝人工生产方面也取得了突破性进展。 蜘蛛丝的结构性能与用途 蜘蛛丝能大量吸收动能,同时具有高弹性形变,究其原因,在于其奇妙的分子结构。蜘蛛丝的化学本质为蛋白质,蛛丝蛋白的复杂氨基酸序列和空间结构赋予了外显的性能。蜘蛛丝中分子排列是一种介于晶区与非晶区的中间相的存在。结晶区主要为聚丙氨酸链段,构象为β- 折叠链,分子链或链段沿着纤维轴线的方向呈反平行排列,相互间以氢键结合,形成折曲的栅片,栅片间距离是变化的,在0.93~1.57nm之间。非结晶区由甘氨酸、丙氨酸以外的大侧基氨基酸组成,分子多呈α- 螺旋状结构。由丙氨酸组成的β-折叠(硬段)和富含脯氨酸的α-螺旋(软段),及其紧密堆砌的二级结构使之成为一种半结晶状态的分子弹簧结构,从而赋予蛛丝很好的抗张强度和韧性。蜘蛛拖丝抗拉力5×109Pa,断裂伸长率35%~50%,能大量吸收物体的高动能,其优越性能是包括蚕丝在内的天然纤维和合成纤维不能比拟的。 蜘蛛丝有良好的耐高温、低温性能。据报导,蜘蛛丝在300℃以上才变黄,开始分解;在零下40 ℃时仍有弹性,只有在更低的温度下才变硬。在需要高温、低温使用的场合下蛛丝纤维的优点特别显著。 蜘蛛丝的主要成分是蛋白质,目前尚未发现人体对蜘蛛丝所含的蛋白质有任何排异反应,另外蛛丝蛋白具有自装配行为,在器官移植和组织修复时可用来介导细胞和组织,或者它们相互之间的连接,以促进器官组织的复原。 由于蜘蛛丝本身的特性,决定了在纺织、医疗、军事等领域有着广泛的应用。 医疗卫生 蜘蛛丝主要成分是蛋白质,人们目前尚未发现人体对蜘蛛丝所含的蛋白质有任何排异反应,这正是蜘蛛丝应用在医学上最大的优点。又鉴于蜘蛛丝极轻、韧性好、强度大等现有材料不可比拟的优点,科学家认为用它可以生产人工关节韧带、人工肌腱、人造血管等组织,同时还可以做组织修复、用于眼外科和神经外科手术等特细和超特细生物可降解的外科手术缝合线及生物大分子的固定材料。 蜘蛛丝膜具有很好的透明性、生物可降解性和水-空气界面的通透性。与胶原蛋白和弹性蛋白相似,丝蛋白具有自装配性质,通过二级结构调节以提供机械支撑;与聚酯比较,丝的柔韧性和弹性使其经的起重压和疲劳。丝蛋白生物相容性好,与胶原起同样的细胞黏附、

新型纺织材料

新型纺织材料 纺织材料分化纤纺织材料和天然纺织材料。 一、新型化纤纺织材料 1.天丝纤维:它是采用天然木浆,将木浆溶解在氧化铵溶剂中直接纺丝,完全在物理作用下完成的。氧化铵溶剂可循环使用,回收率达99%以上,无毒、无污染,是一种新型纤维素溶剂。天丝纤维除具有天然纤维和粘胶纤维的性能外,还具有强力高,悬垂性好等特点。通过纯纺、混纺、交织的产品具有质感高雅、透气透湿、光泽柔和的风格,被广泛用作高级时装面料。由于其在生产过程中无毒性物质排放,天丝产品使用后可生化溶解,不会对环境造成污染,故有“绿色”纤维之称。 2.海岛纤维:海岛纤维属超细旦家族一员。海岛型丝是利用复合纺丝技术生产出的超细或超极细纤维,用海岛型超细纤维和高收缩原丝复合成的纤维,由于其表面的超细纤维效应被最大化,可以更好地表现人造皮革的效果。用海岛丝生产的魔皮绒柔软度高、弹性好、抗菌防霉、透气性强,是一种抗皱性能优良的防真皮面料,适用于男女上衣、风衣、马夹、女裙等服装;同时可制作箱包、鞋、窗帘、沙发布、汽车套等;用麂皮绒做拭净布,可擦拭飞机、精密仪器、计算机、玻璃制品等。 3.莫代尔纤维:莫代尔纤维是由毛樟木浆粕制成。浆粕的产生和纤维的生产是在对环境无污染的情况下进行的,是一种高强力、高

湿系数的纤维素纤维。其优点是将天然纤维的质感与人造纤维的实用性合二为一,具有棉的柔软、丝的光泽、麻的滑爽,而且吸水透气性都优于棉,同时可在传统的染整设备上进行加工。具有较高的上染率。制成的布料悬垂性、尺寸稳定性好,经多次水洗后仍能保持鲜艳色彩,主要作为高档时装面料。莫代尔纤维取之于大自然,而后又可通过自然界的生物降解回归大自然,充分体现了它绿色环保再生的特性。 4.醋酸纤维:主要原料是天然木浆粕,经萃取净化后的纤维素制成的,是一种半合成纤维。其特性既体现天然纤维的风格,又具有合成纤维的功能,尺寸稳定性好,具有蚕丝般的光泽、凉爽感和悬垂性。同时它和其他纤维具有良好的柔和性,可与天然纤维、合成纤维进行混纺、交织,产生出变化多样的面料,如醋酸/涤、醋酸/粘、醋酸/棉、醋酸/绢丝的混纺织物。在女装市场上,醋酸纤维一向因其干爽、柔顺的触感,在流行成衣中占有一席之地,特别是在晚装设计上尤其出众。采用弹性纤维加上醋酸纤维制成的无缝胸罩,以简单的素面罩杯搭配外衣穿着成为一种时尚。醋酸纤维是属于一种符合消费者对纺织品严格要求的高级纤维。 5.大豆蛋白纤维:以往只能用作饲养和肥料的大豆豆粉,如今可以用来纺纱织布。被称为“人造羊绒”的大豆蛋白纤维,是目前唯一由我国自主开发并在国际上率先取得工业化试验成功的纤维材料。大豆蛋白纤维是从豆粕中提取植物蛋白质形成的纤维,属可再生性植物蛋白纤维。大豆蛋白纤维不仅具有单丝细度细、比重轻、强伸度高、耐酸耐碱性好等特点,而且具有羊绒般的手感和保暖性。大豆纤维纯

《材料与社会》蜘蛛丝里有学问

4.5 蜘蛛丝里有学问 你听说过用一小束细丝就能把小型飞机吊起来的事吗?这种丝就是我们许多人都看见过的蜘蛛丝。 曾经有人做过试验,发现扯断蜘蛛丝所需的力,比扯断同样粗细的钢丝所需的力足足大上100倍。通过对蜘蛛丝研究,还发现蜘蛛丝在目前已知的所有的高强度纤维里,是最柔软的,重量也最轻。 蜘蛛丝是由蛋白质分子构成的,因此,它和人体有生物的亲和性,可被微生物所分解,也有一定的吸湿性能,用它做的防弹衣将是世界上最坚固而又最轻柔、最舒适的防弹衣了。 据英国《每日邮报》报道,坚韧如钢、交错如织的蛛网无疑是大自然的神奇造物,富有弹性的蛛网甚至能抵御飓风的侵袭。日前,美国的科学家们正试图揭示蛛网的奥秘,希望能将其用于未来的建筑设计或耐用材料的研发。 美国麻省理工学院的研究人员表示,蛛网的成功之处在于:即使有多根蛛丝断掉,蛛网也不会垮掉,甚至会变得更牢固。实验中,研究人员在蛛网各处去掉了总计10%的蛛丝,蛛网的韧性不单没因此而降低,却反而增强了10%。 研究人员发现,这种韧性不单是源自每根蛛丝在质地上的强度,也同时源自蛛丝的内部结构。蛛丝纤维能够根据所承受压力的不同而变化柔韧程度,这种特性是其他任何自然纤维或人造纤维所不具有的。科学家们已经证明,蛛丝的强度是等质量钢丝的5倍。实验表明,蛛网的韧性是其他网格的6倍有余。 工程师可以将蜘蛛丝的构造原理应用到其它方面。蜘蛛丝在受到破坏时只受很小的损坏、而不影响整个结构这一特性可以应用于设计虚拟网络,如互联网,在遭受攻击期间只有本地节点被破坏,而整个系统可继续运行。了解其微观的蛋白质结构和其宏观性质,可能有助于将碳纳米管串在一起,可能有一天会用于生产太空电梯。 蜘蛛丝具有广泛的用途:这是用蜘蛛丝做成小的提琴琴弦。 在医学领域,这种精细的蜘蛛丝是外科医生手术时是理想的缝合线,和医用尼龙线相比,这种蜘蛛丝既有尼龙线的灵活和结实,而且还有可以打结的优点。此外,它还可以用来制作人造肌腱或合成韧带。 由于蜘蛛丝的强度大,人们还可利用它制作降落伞绳,或航空母舰上帮助战斗机在甲板上降落的缆绳、高强度的轮胎帘子线和高强度渔网等。 既然蜘蛛丝有这么好的性能,有人会说我们也可以像养蚕宝宝那样来养殖蜘蛛,不就能得到好多蜘蛛丝了吗?事实上,这是不可能的,因为蜘蛛是一种同类相食的动物,如将众多的蜘蛛饲养在一个房舍里,它们会相互残杀吞噬。 能不通过蜘蛛来得到蜘蛛丝呢? 科学家们告诉我们,完全有这样的可能。 这有两个方面的工作,第一要得到蜘蛛丝的蛋白质,利用转基因技术,将蜘蛛的相关基因转移到细菌、植物体、哺乳动物的乳腺上皮或肾细胞中,进行表达,生成蜘蛛丝蛋白质,并进行提纯。 第二把这蛋白质纺成丝,这样就可得到人造蜘蛛丝了。

蜘蛛丝

蜘蛛丝纤维之我见 高(101)张春娟 1008093006 摘要:蜘蛛丝是一种具有特殊品质的材料,迄今为止人类还无法生产出像它那样具有超强强度和弹性极强的化合物。人类一直梦想着利用蜘蛛丝的奇特性能来造福社会大众。 关键词:蜘蛛丝,性能,应用 节肢动物门(Arthropoda)蛛形纲(Arachnida)蜘蛛目(Araneida或Araneae)所有种的通称。除南极洲以外,全世界分布[1]。蜘蛛在整个生命过程中会产生许多不同的丝,它的柔韧性和弹性都很好,耐冲击力也很强。无论是在干燥状态或是潮湿状态下都有很好的性能,是一种目前已知弹性和强度最高的天然动物纤维。首先蜘蛛丝很细而强度却很高,它比人发还要细而强度比钢丝还要大。其次它的柔韧性和弹性都很好,耐冲击力强。无论是在干燥状态或是潮湿状态下都有很好的性能。蜘蛛丝网还有很好的耐低温性能。由于蜘蛛丝是由蛋白质构成,是生物可降解的,把这些优良的性能集中在同一种纤维上十分困难。人们开始考虑,如果能够用人工的方法大量而经济地生产这种纤维,必将对纤维和纺织业的发展产生 深远的影响。目前美国、加拿大、德国和英国等发达国家已投入大量的人力和物力进行研究,并已取得相当的进展,对蜘蛛丝的研究,已成为当今纤维界的热 门课题。 1 蜘蛛丝的形成原理及其性能 1.1 形成原理 在显微镜下,我们看到丝从蜘蛛的分泌出来,蜘蛛的腹腔里有许多丝浆,它的尾端有很小的孔眼。结网的时候,蜘蛛便将这些丝浆喷出去。丝浆一遇到空气,就凝结,且富有粘性和惊人的强度。每根蜘蛛丝的抗拉强度是钢材的2倍,弹性也比人造纤维好得多。比如,蜘蛛网可以延伸到原长的10倍,而尼龙一旦延展到原长的20%就会发生断裂无论什么飞虫,一撞到网上就别想再跑掉。而蜘蛛的身上和脚上经常分泌出一层油质,粘丝是不粘油的。但是,一般飞虫是没有这层油质的,所以,蜘蛛网能牢牢地粘住飞虫却粘不住蜘蛛[2]。

新型纤维综述

新型纤维综述 一、常规纺织纤维的类别和特征(举例) 1.植物纤维:棉、麻 棉:吸湿性好,穿着舒适,光泽较暗,手感柔软,风格朴实,耐用耐洗,物美价廉,易折皱,服装保形性欠佳,耐碱不耐酸。 麻:吸湿散湿性好,干爽利汗,风格粗犷,有光泽,粗硬,弹性差,易折皱。耐碱不耐酸。 2.动物纤维:羊毛、蚕丝 羊毛:吸湿性强,手感丰满柔软,光泽柔和莹润,因表面有鳞片具有独特的缩绒性,保暖性能好,干燥时抗皱弹性好,湿态易皱,易虫蛀,耐酸不耐碱。 蚕丝:吸湿透气,舒适性极佳,滑爽柔软,光泽优雅悦目,风格高雅华丽,变形时弹性好,悬垂性好,湿态易皱,不耐汗,耐光性差,多晒会泛黄变脆,耐酸强于耐碱。 3.人造纤维:粘胶 粘胶:吸湿性好,穿着舒适,光滑明亮,柔软,悬垂性好,易皱,水洗易变形,缩水严重,湿强低,耐碱不耐酸。 4.化学纤维:锦纶、涤纶、腈纶 锦纶:耐用性,弹性好 涤纶:洗可穿的佼佼者 腈纶:最不怕光的合成羊毛 共性:强度高,不易起皱,悬垂性好,服装保形性好,易洗快干,不缩水,不霉不蛀,热定型性能好,可形成稳定造型,吸湿性差,易产生静电,易起毛起球。 二、新型纤维的种类和特性(举例) 1.天然纤维:(竹纤维)植物纤维、(蜘蛛丝)动物纤维、(银纤维)金属纤维及其他 竹纤维:竹原纤维具有良好的透气性、瞬间吸水性、较强的耐磨性和良好的染色性等特性,具有天然抗菌、抑菌、除螨、防臭和抗紫外线功能。竹再生纤维素纤维不具抗菌功能。 用途:竹纤维纱线用于服装面料、凉席、床单、窗帘、围巾等,如采用与维纶混纺的方法可生产轻薄服装面料。与棉、毛、麻、绢及化学纤维进行混纺,用于机织或针织,生产各种规格的机织面料和针织面料。机织面料可用于制作窗帘、夹克衫、衬衫、床单和毛巾等。针织面料适宜制作内衣、汗衫、T恤衫、袜子等。竹原纤维含量30%以下的竹棉混纺纱线更适合于内裤、袜子,还可用于医疗护理用品。 蜘蛛丝:高强度,高弹性,高断裂功,低密度,有良好的耐温及耐紫外线性能,有良好的生物相容性,理化性质优,每根蜘蛛丝的抗拉强度是钢材的五倍,弹性也比人造纤维好,开发前景广阔。

新型仿生材1

新型仿生材料 1.引言 仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。 在自然界,通过二氧化碳、水和阳光周而复始地合天然材料,这些天然材料具有优良的性能,废弃物可以靠微生物降解,参加自然界生态大循环;同时生物界奇妙的遗传技术将材料的特性一代一代地传递下去。因此,如何运用生物技术来合成高分子材料得到广大科学工作者的关注,他们不断致力于该领域的研究,并且取得了重大的进展。世界最大的合成纤维制造商美国杜邦公司已经将发展重点转移到生物科技上,推出了三道曙光计划,并称生物科技将巩固杜邦公司作为世界领先科学公司的地位。杜邦公司经过在这一领域20年的不懈努力,发现采用生物科技合成高分子材料比传统方法更安全、更环保,成本也更低廉。本文主要介绍蜘蛛丝、聚乳酸纤维以及生物医用材料的研究情况。 (一) 蜘蛛丝的研究数百万年来,蜘蛛制造着最细的丝。这种蛋白质蜘蛛丝是人们所知道的强度最高的纤维,并且具有优异的弹性,其特性很像高强度合成纤维芳纶1414和弹性纤维氨纶。就强度而论,蜘蛛丝甚至优于高性能的Kevlar 纤维,虽然两种纤维都有类似的高强度水平,但Kevlar纤维在断裂之前仅能延伸其原长的4%,而蜘蛛丝的断裂伸长可达30%。蜘蛛丝的特殊品质引起了科学工作者的兴趣。 美国杜邦公司在该领域进行了多年的研究。他们提出获得这种新结构材料的基础是要有能力从分子层面开始控制材料构架的所有方面,切实可行的方法是重组DNA技术,即使用生物合成过程的能量来控制聚合的顺序和链的长度。他们收集所有数据,通过计算机模拟技术设计出一种分子模型,并将迄今所得到的有关这种纤维的结构信息全部集成进去,他们还设计了合成基因为这种丝蛋白的复制品编码。这些基因被植入酵母和细菌,蛋白质的复制品由此产生。他们采用的方法是把细菌打开,分离出蛋白质微滴,并把它作为起始材料。而在采用酵母的过程中,可以设计基因系统,使酵母能在其体外生成蛋白质。不管采用哪种方法,细菌和酵母都制出了类似的蛋白质,其结构等同于蜘蛛用来拉出网丝的蛋白质,蜘蛛是将这种蛋白质溶解在一种水基溶剂中,然后一步到位地将它纺成坚固的纤维。研究人员把这种蛋白质溶解于一种化学溶剂中,溶液通过湿法成型由小孔挤出,纺出了坚固的纤维。

人体骨骼的形态和各部位的名称

人体骨骼得形态与各部位得名称 成年人得全身骨骼共有 206 块,每块骨头都有一定得形态与功能,形态与功能就是相互制约得,功能不同,形态也就各异。通常可分为长骨、短骨、扁骨、不规则骨四种形态: <1>长骨?形体较长而坚硬,分布于人体四肢,在运动中起杠杆作用。长骨多呈管状,内含空腔,有骨髓,如股骨、胫骨、肱骨、尺骨、挠骨、指骨等。?〈2> 短骨?形似立方体,富于而压性,往往集群地连在一起,多位于承受压力而运动得复杂部位,如手腕得腕骨与脚腕得跗骨等。 <3>扁骨 多呈板状,富于弹性与坚固性,主要构成骨性腔得壁,对腔内器官起到保护作用、如颅骨部位得顶骨、枕骨与胸部得肋骨等。? <4> 不规则骨?形态很不规则,不属于上述任何一类得骨骼。如髋骨、椎骨、颞骨等、 2、人体骨骼各部位得名称与数量 ? 人体骨骼依据结构、功能、位置又可分为颅骨、躯干骨、上肢 1> 颅骨 骨、下肢骨四个部分: ? < 共 29 块,除下颌骨与舌骨外,都借助于骨缝或软骨牢固地结合在一起。依据功能与位置,又可细分为脑颅与面颅两部分: ?①脑颅: 共 14 块,位于颅骨后上方,构成颅腔,起容纳与保护脑子得作用。

额骨1—位于颅得上前方,由额部与眼眶上部构成。 顶骨 2 - 位于颅顶中部线两侧、额骨与枕骨之间。 枕骨1—位于颅骨得后下部,形成颅后与颅底得一部分、 ?蝶骨 1 —位于颅底中部、枕骨得前方,因其形似蝴蝶,故名、?颞骨 2 —位于颅骨两侧、参于颅底与颅腔侧壁得构成。?筛骨 1 - 位于额骨之下、蝶骨前方及左右眼眶之间。?听小 骨 6 —位于左右耳室之内,可分为锤骨、砧骨、镫骨。 ②面颅: 共 15 块,位于颅骨得前下方,构成口腔,并与脑颅共同 构成鼻腔与眼眶,以维持面部形态。 上颌骨 2 - 位于面颅中央,上方与额骨、颧骨等围成眼眶,与鼻骨围成鼻腔。 鼻骨 2 - 位于两眼眶之间,构成鼻梁上部。?下鼻甲 2 - 位于鼻腔得外侧壁,为一对卷曲得薄骨片。 泪骨 2 —位于两眼眶内侧壁得前部,为一对薄而不规则得小骨片、?颧骨2—位于上颌骨得外上方,构成面颊及眼眶底与外侧壁得一部分。 腭骨 2 —位于上颌骨得后方。 犁骨 1 - 位于鼻腔内及颅下部,为一斜方形骨板,构成鼻中隔得后下部。?下颌骨1—位于面颅得前下部、上颌骨得下方。?舌骨 1 —位于下颌骨与喉之间,借助肌肉与韧带悬于颈得前正中。

新型纤维的种类及特点

新型纤维的种类及特点 当今社会飞速发展和科学技术的进步,以及人们生活水平的提高和社会物质的不断丰富,人们从单纯的追求外观、审美要求向穿着舒适性转化,原来的普通合成纤维已经不适应人们穿着舒适的要求。因此,新型合成纤维应运而生并蓬勃发展。 目前处在信息纺织、新原料纺织时代,新原料从质量、品种、功能、性能等方面开发新品引导潮流。根据服装面料要求舒适、健康、安全的总体趋势,关注服装面料的创新开发,要从研究新纤维的应用开始。目前,服装面料的织物纤维品种已不局限于棉、麻、丝及人棉纤维,开发出很多纺织新材料,有高湿模量的莫代尔和丽赛纤维、天丝、竹纤维、大豆蛋白纤维、聚乳酸(玉米)纤维、超细纤维、PTT纤维、吸湿排汗纤维和保暖纤维等。 一、莫代尔纤维 莫代尔纤维是高湿模量的纤维素再生纤维,原料采用欧洲的榉木,先将其制成木浆,再纺丝加工成纤维。因该产品原料全部为天然材料,是100%的天然纤维,对人体无害,并能够自然分解,对环境无害。柔软、顺滑、有丝质感和真丝一般的光泽,穿着舒适,频繁水洗后依然柔顺,有极好的吸湿性和透气性,富有亮丽的色彩。由于其杰出的透气性和易打理的特性,在女士外套,内衣,运动服装和家用纺织品中的应用越来越广泛。 二、丽赛纤维 丽赛纤维被业界称之为“植物羊绒”,是具有优异综合性能的植物纤维素纤维。由日本东洋纺专有技术及原料体系生产,它的生产原料来源于日本进口的天然针叶树精制专用木浆。在纺丝过程中,因为纺丝溶液粘度高,含酸量低,牵伸速度、固化速度慢,所以纤维分子是从内向外固化,分子内部结构整齐,取向度、结晶度高。 该纤维从根本上克服了粘胶纤维的缺点,秉承了该系列纤维的所有优点,实现了其它高湿模量纤维素纤维所不能突破的优良性能;具有较强的耐碱性,与棉混纺时,可做丝光整理,使混纺织物更具有特色;该纤维具有很高的湿强度,其优越的高湿模量使生产与服用更理想;该纤维良好的千伸与湿伸性能,便所有的织物具有良好的尺寸稳定性;光滑的圆形横截面和全芯结构使纤维光泽好,极富弹性,悬垂性和滑爽感;高吸湿度和千燥度,使该纤维的织物具有良好的舒适感和身体亲和性,是一种全新的绿色亲肤纤维;该纤维属于天然植物纤维,其废弃物可自然降解,安全环保。 三、天丝 天丝是一种纤维素纤维,采用溶剂纺丝技术,干强略低于涤纶,但明显高于一般的粘胶纤维,湿强比粘胶有明显的改善,具有非常高的刚性,良好的水洗尺寸稳定性(缩水率仅为2%),具有较高的吸湿性,纤维横截面为圆形或椭圆形,光泽优美,手感柔软,悬垂性好,飘逸性好。 天丝兼具普通型粘胶纤维优良的吸湿性、柔滑飘逸性、舒适性等优点外,克服了普通粘胶纤维强力低,尤其是湿强低的缺陷,它的强力几乎与涤纶相近。天

仿生材料

源于自然的力量——仿生材料 一、神奇的大自然——仿生学 自然界的创造力总是令人惊奇,天然生物材料经历几十亿年进化,大都具有最合理、最优化的宏观、细观、微观复合完美的结构,并具有自适应性和自愈合能力,如竹、木、骨骼和贝壳等。其组成简单,通过复杂结构的精细组合,从而具有许多独有的特点和最佳的综合性能。 例如,荷叶的表面有许多微小的乳突,让水不能在上面停留,滴形成后会从荷叶上滚落,同时将灰尘带走;海洋生物乌贼和斑马鱼体内的色素细胞决定了它们天生有一种改变自身颜色的能力;水稻表面突起沿平行于叶边缘的方向排列有序,使得排水十分便利;昆虫复眼的减反射功能,使得黑夜观看成为可能;水黾腿部有数千根按同一方向排列的多层微米尺寸的刚毛使其在水面行走自如;壁虎由壁虎脚底大量的细毛与物体表面分子间产生的“范德华力”累积使其有了特殊的粘附力…… 道法自然,向自然界学习,采用仿生学原理,设计、合成并制备新型仿生材料,是近年快速崛起和发展的研究领域,并已成为材料、化学、物理、生物、纳米技术、制造技术及信息技术等多学科交叉的前沿方向之一。 仿生学是模仿生物的科学,早在1960年9月13日美国召开第一次仿生学会上由Steele等提出。仿生学研究生物系统的结构、性质、原理、行为及相互作用,为工程技术提供新的设计思想、工作原理和系统构成;仿生材料指依据仿生学原理、模仿生物各种特点或特性而制备的材料;材料仿生设计包括材料结构仿生、功能仿生和系统仿生 3个方面。 二、了解仿生材料 仿生材料的定义 仿生材料是指模仿生物的各种特点或特性而研制开发的材料。通常把仿照生命系统的运行模式和生物材料的结构规律而设计制造的人工材料称为仿生材料。仿生学在材料科学中的分支称为仿生材料学(biomimetic materials science),它是指从分子水平上研究生物材料的结构特点、构效关系,进而研发出类似或优于原生物材料的一门新兴学科,是化学、材料学、生物学、物理学等学科的交叉。地球上所有生物体都是由无机和有机材料组合而成。由糖、蛋白质、矿物质、水等基本元素有机组合在一起,形成了具有特定功能的生物复合材料。仿生设计不仅要模拟生物对象的结构,更要模拟其功能。将材料科学、生命科学、仿生学相结合,对于推动材料科学的发展具有重大意义。自然进化使得生物材料具有最合理、最优化的宏观、细观、微观结构,并且具有自适应性和自愈合能力,在比强度、比刚度与韧性等综合性能上都是最佳的。 仿生材料的研究 国际上对天然生物材料及仿生材料研究的重视始于20世纪80年代。目前,国

骨结构

第二章骨的构造与骨折愈合 第一节骨的结构 人体有206块骨,通常依据骨的形态分为长骨、短骨、扁骨和不规则骨。每一块骨骼都是由四种基本组织构成的器官,具有一定的形态结构和功能,从解剖学和生理学上都可以视为一个相对独立的单位。虽然骨的形状各异,但是骨的结构具有共同的模式,即骨的表面被覆一层骨膜,骨膜深方是结构致密的皮质骨,虽然皮质骨的厚薄不等,但是都形成一个封闭的皮质骨壳,即骨的外表面。在表层皮质骨的深方是海绵状的松质骨。在长骨的内部和松质骨的小梁骨之间有骨髓腔,容纳骨髓。骨组织是组成骨器官最基本的成分。骨组织属于结缔组织,是由细胞和矿化的细胞外间质组成的、坚硬的结缔组织。在生活状态下,骨组织有活跃的新陈代谢,其对于环境的变化,特别是应力变化,有积极的反应,并且以其微细结构周期性的重塑建,适应内外环境和应力的变化。骨的基本功能可以概括为支持、运动和保护等3个主要方面。此外,骨组织是机体代谢所必需的、最重要的钙离子“库”;红骨髓是机体的造血器官;骨组织合成及分泌一些细胞因子参与机体造血、内分泌和免疫等许多系统的机能调节。 一、骨的组织学构造骨由骨膜、骨质和骨髓等3部分构成。骨膜是骨的被覆。骨质即骨组织,由骨系细胞和骨间质组成。骨系细胞主要指骨原细胞、成骨细胞、骨细胞与破骨细胞等,有时也涉及到中胚层间充质的多能干细胞。骨间质即骨组织的细胞外间质,通常分为有机间质与无机间质。有机间质由骨胶原纤维和无定形基质组成;无机间质即骨盐,它们主要沉积在骨的胶原原纤维上。为方便起见,拟分骨系细胞、细胞间质、骨膜和骨髓4个标题介绍。 (一)骨组织的细胞:骨组织的基本细胞有4种:骨原细胞、成骨细胞、骨细胞和破骨细胞。其中骨细胞最多,埋于骨间质内部,其它细胞均位于骨质的表面(边缘)。 1. 骨原细胞(Osteogenic cell):也称前骨母细胞(Preosteoblast)或骨祖细胞,它们是骨组织的干细胞。位于骨外膜和骨内膜的深方。骨内膜除贴覆在长骨干皮质骨内面外,也贴覆在小梁骨表面和骨内管道系统的腔面。换言之,在骨

几种新型纤维简介

新型纤维介绍汇总 丽赛纤维,芳纶纤维,功能性透气纤维,大豆纖維,玉米纤维,恩卡纤维,VILOFT纤维,竹纤维,新型合成纤维,差别化纤维等新兴纤维简介 Tencel: ****Tencel纤维是由英国Courtaulds公司以木浆为原料经溶剂纺丝方法生产的一种崭新的纤维,是三十年发明的第一种天然纤维。因其生产过程无毒害且纤维本身可被自然界完全分解,因此Tencel又被称为21世纪的绿色纤维。Tencel 纤维集人造纤维与天然纤维的优点于一身. ****在欧洲,除了(Courtaulds) 公司以Tencel的品名生产服装面料用Lyocell。还有:Lenzing公司和AKZO公司则分别以Lenzing-Lyocell和Newcel的名称生产Lyocell (长丝型)。 ****在日本也已经有纤维制造厂引进Lyocell的生产技术。 其面料主要具有以下特色: 1.坚韧耐用 2.非凡触感 3.坠性良好 4.色彩绚丽 Tencel纤维的生产工艺 Tencel纤维生产工艺就是用N-甲替吗啉-N-氧化物 (NMMO) 为溶剂的纺丝工艺。其具体方法是把纤维素浆粕与N-甲替吗啉-N-氧化物 (NMMO) 直接混合,加入添加剂(如CaCl2)和抗氧化剂(如PG)以防止纤维在溶解过程中氧化分解,并调节溶液的粘性和改善纤维的性能。控制水分的含量小于13.3%,使之达到最好不溶解能力。在85-125℃下溶解,得到较高浓度的溶液,溶液经过滤,脱泡,在8 8-125℃下用湿法或干法纺丝,在低温水溶或水/NMMO体系凝固成形,经拉伸,水洗,去油,干燥和溶剂回收等工序,制成Tencel纤维。 NMMO在制造工程中可以回收,因而具有不会给地球环境带来危害的特点。 Tencel纤维及其织物的性能及特点 1.较高的干强和湿强。 2.Tencel的应力应变特点便它与纤维素纤维间抱合力较大,较易混纺。

蜘蛛丝

第三节蜘蛛丝 蜘蛛丝是一种天然高分子蛋白纤维和生物材料。纤维具有很高的强度、弹性、伸长、韧性及抗断裂性,同时还具有质轻、抗紫外线、比重小、耐低温的特点,是其它纤维所不能比拟的。纤维初始模量高、断裂功大、韧性强,是加工特种纺织品的首选原料。蜘蛛丝由蛋白质组成,是一种可生物降解且无污染的纤维。 蜘蛛丝纺织品的生产可追溯至18世纪,最具代表性的是1710年巴黎科学院展出的蜘蛛丝长统袜和手套,这是人类历史上第一双用蜘蛛丝织成的长统袜与手套;1864年美国制作了另外一双薄蛛丝长统袜,所用的蛛丝是从500个蜘蛛喷丝头中抽取出来的,这种长统袜由于太薄而不能穿;1900年巴黎世界博览会上展示了用2.5万只蜘蛛吐出的9.14万米长的丝织成的一块长16.46m、宽0.46m 的布,该产品花费太高,没有带来商业利润。到1997年初,美国生物学家安妮·穆尔发现,在美国南部有一种被称为“黑寡妇”的蜘蛛,它吐出的丝比现在所知道的任何蜘蛛丝的强度都高。蜘蛛丝特殊的结构和性能已引起世界各国的关注,并在纺织、医疗卫生和军事领域产生了极其重要的影响。目前,国内外许多科学家已通过基因工程将蜘蛛的基因移植到其它动植物体内,从而使蜘蛛丝纤维实现工业化生产的梦想成为现实。 一、蜘蛛丝的组成 蜘蛛丝产生于蜘蛛体内特殊的分泌腺,这些分泌腺因蜘蛛的种类不同而各异。到目前为止,生物学家共发现了7种类型的分泌腺,常见的有葡萄腺、梨状腺、壶状腺、叶状腺、集合腺等。蜘蛛的种类繁多,会吐丝结网的大约有2万多种。按吐丝种类的多少,蜘蛛可分为古蛛亚目、原蛛亚目和新蛛亚目。古蛛亚目的蜘蛛只能吐出一种丝;原蛛亚目的蜘蛛可吐出3种丝;新蛛亚目的蜘蛛可吐出7种丝。一般来说,新蛛亚目所有的蜘蛛都会有7种丝腺,各种丝腺分别能吐出不同性质的蜘蛛丝(见表1-6)。 蜘蛛丝的主要成份是蛋白质,其基本组成单元为氨基酸。蜘蛛丝中含17种左右的氨基酸,各种氨基酸的含量因蜘蛛的种类不同而存有一定的差异。蜘蛛丝中含量最高的7种氨基酸的总和约占其总量的90%,它们分别为甘氨酸、丙氨酸、谷氨酸、脯氨酸、丝氨酸、亮氨酸和精氨酸(见表1-7)。 表1-6 圆蛛族7种丝腺吐丝及其性质

蜘蛛丝纤维

蜘蛛丝纤维 蜘蛛是地球上最古老的物种之一,是自然界的神奇动物,经历了几百万年漫长的进化,蜘蛛已能够适应地球上几乎所有环境而生存下来,其最大的臂助正是本身独特的纺丝能力和令人惊讶的蛛丝性能。蜘蛛是自然界产丝和用丝的“专家”,它们一生都离不开丝。蜘蛛生产性能最优异的丝线,并用这种丝线织成蛛丝网,用以捕获猎物,赖以生存,繁衍后代。蜘蛛,属节肢动物门蛛形纲蛛形目,种类繁多,会吐丝结网的大约有2万多种,按吐出丝种类的多少分为古蛛亚目、原蛛亚目和新蛛亚目。 科学家们早就注意到蜘蛛丝非同一般的性能并将它利用了起来。早在1709年就出现了人类利用蜘蛛丝的记载,而且在第二次世界大战时,蜘蛛丝曾被广泛用作显微镜、望远镜、枪炮的瞄准系统等光学装置的十字准线。进入20世纪80年代,蜘蛛丝,尤其是牵引丝,以高强度、高弹性、高断裂功、低密度、良好的耐温及耐紫外线性能、良好的生物相容性等优异性能引起了各国材料、生物和化学等众多领域研究人员的极大兴趣。科技的进步,亦使得破解蜘蛛丝的生物奥秘成为了可能。1996年,美国Science杂志连载3篇文章,揭示了蜘蛛丝性质与结构的关系以及蜘蛛丝的奥秘,近几年,又连续发表了10多篇关于蜘蛛丝研究的文章。美国、瑞士、加拿大、日本、德国、丹麦等国的一些实验室先后对蜘蛛丝做了深入的研究,在利用基因和蛋白质测定技术解开蜘蛛丝奥妙的同时,在蜘蛛丝人工生产方面也取得了突破性进展。 蜘蛛丝的结构与性能 蜘蛛丝能大量吸收动能,同时具有高弹性形变,究其原因,在于其奇妙的分子结构。蜘蛛丝的化学本质为蛋白质,蛛丝蛋白的复杂氨基酸序列和空间结构赋予了外显的性能。蜘蛛丝中分子排列是一种介于晶区与非晶区的中间相的存在。结晶区主要为聚丙氨酸链段,构象为β- 折叠链,分子链或链段沿着纤维轴线的方向呈反平行排列,相互间以氢键结合,形成折曲的栅片,栅片间距离是变化的,在0.93~1.57nm

简述骨的构造

. 简述骨的构造。 骨的基本结构包括:骨膜、骨质和骨髓。骨膜是一层坚韧的结缔组织膜,覆盖在骨的表面;内含有丰富的血管、神经和成骨细胞,对骨营养、再生、和感觉有重要作用。骨质有骨密质和骨松质两种。前者质地坚硬致密,布于骨的表层;后者呈海绵状,由许多片状的骨小梁交织而成,布于骨的内部。骨髓填充在骨髓腔和骨松质的空隙内,分为红骨髓和黄骨髓,红骨髓有造血功能。胎、幼儿的骨髓全是红骨髓。5岁之后,长骨骨干内的红骨髓逐渐被脂肪组织代替,称黄骨髓,失去造血功能。 。 2. 椎骨的一般形态如何?颈、胸、腰椎各有哪些主要特征和区别? 椎骨由前方短圆柱形的椎体和后方板状的椎弓组成; 第1颈椎:又名寰椎,环状、无椎体、棘突和关节突。 第2颈椎:又名枢椎,自椎体向上有一突起,称齿突。 第7颈椎:又名隆椎,棘突特别长,末端不分叉。 胸椎:共12块,棘突较长,棘突尖斜向后下方,重叠呈复瓦状. 椎骨体两侧和横突前两面有关节面,与肋骨小头和肋骨结节相连,上下关节的 关 节面呈额状位.椎体从上向下逐渐增大,横断面呈心形。上关节突关节面朝向后, 下关节突关节面朝向前。 腰椎:共5块,椎骨最大,棘突似四方形的薄板,上下关节突的关节面呈矢位. 骶骨的形态特点: 由5个骶椎融合而成,呈三角形,底向上,尖向下,前面凹,背面隆凸。骶骨岬、骶前孔、骶正中嵴、骶后孔、骶管、骶管裂孔、骶角,上份有耳状面(与髋骨相关节)、骶粗隆。 尾骨的形态特点: 仅第一尾椎还有横突和上关节突的痕迹 3. 试述肩关节的结构和运动。 结构:由肱骨头与肩胛骨关节盂构成,也称盂肱关节,是典型的多轴球窝关节。 运动:可做三轴运动,即冠状轴上的屈和伸,矢状轴上的收和展,垂直轴上的旋转运动。 4. 过度张口可造成下颌关节脱位,发生这种情况时该关节处于怎样的状态?应 该如何正确复位? 张口过大使关节囊过分松弛,下颌头滑至关节结前方而不能退回关节窝,造成下颌关节脱位。复位时,先将下颌骨拉向下,超过关节结,再将下颌骨向后推,就能将下颌头纳回下颌窝内 5. 试述膝关节的构造和运动 构造:由股骨下端,胫骨上端和髌骨构成,是人体最大最复杂的关节。髌骨与股骨的髌面相接,股骨的内、外侧髁分别与胫骨的内、外髁相对。主要为屈伸,在屈膝时由于侧副韧带松驰,稍可作旋转运动。 6. 试比较肩关节与髋关节结构特点的差异之处?为什么会出现这些差异?

新型纤维的种类及特点教学内容

新型纤维的种类及特 点

新型纤维的种类及特点 当今社会飞速发展和科学技术的进步,以及人们生活水平的提高和社会物质的不断丰富,人们从单纯的追求外观、审美要求向穿着舒适性转化,原来的普通合成纤维已经不适应人们穿着舒适的要求。因此,新型合成纤维应运而生并蓬勃发展。 目前处在信息纺织、新原料纺织时代,新原料从质量、品种、功能、性能等方面开发新品引导潮流。根据服装面料要求舒适、健康、安全的总体趋势,关注服装面料的创新开发,要从研究新纤维的应用开始。目前,服装面料的织物纤维品种已不局限于棉、麻、丝及人棉纤维,开发出很多纺织新材料,有高湿模量的莫代尔和丽赛纤维、天丝、竹纤维、大豆蛋白纤维、聚乳酸(玉米)纤维、超细纤维、PTT纤维、吸湿排汗纤维和保暖纤维等。 一、莫代尔纤维 莫代尔纤维是高湿模量的纤维素再生纤维,原料采用欧洲的榉木,先将其制成木浆,再纺丝加工成纤维。因该产品原料全部为天然材料,是100%的天然纤维,对人体无害,并能够自然分解,对环境无害。柔软、顺滑、有丝质感和真丝一般的光泽,穿着舒适,频繁水洗后依然柔顺,有极好的吸湿性和透气性,富有亮丽的色彩。由于其杰出的透气性和易打理的特性,在女士外套,内衣,运动服装和家用纺织品中的应用越来越广泛。 二、丽赛纤维 丽赛纤维被业界称之为“植物羊绒”,是具有优异综合性能的植物纤维素纤维。由日本东洋纺专有技术及原料体系生产,它的生产原料来源于日本进口

的天然针叶树精制专用木浆。在纺丝过程中,因为纺丝溶液粘度高,含酸量低,牵伸速度、固化速度慢,所以纤维分子是从内向外固化,分子内部结构整齐,取向度、结晶度高。 该纤维从根本上克服了粘胶纤维的缺点,秉承了该系列纤维的所有优点,实现了其它高湿模量纤维素纤维所不能突破的优良性能;具有较强的耐碱性,与棉混纺时,可做丝光整理,使混纺织物更具有特色;该纤维具有很高的湿强度,其优越的高湿模量使生产与服用更理想;该纤维良好的千伸与湿伸性能,便所有的织物具有良好的尺寸稳定性;光滑的圆形横截面和全芯结构使纤维光泽好,极富弹性,悬垂性和滑爽感;高吸湿度和千燥度,使该纤维的织物具有良好的舒适感和身体亲和性,是一种全新的绿色亲肤纤维;该纤维属于天然植物纤维,其废弃物可自然降解,安全环保。 三、天丝 天丝是一种纤维素纤维,采用溶剂纺丝技术,干强略低于涤纶,但明显高于一般的粘胶纤维,湿强比粘胶有明显的改善,具有非常高的刚性,良好的水洗尺寸稳定性(缩水率仅为2%),具有较高的吸湿性,纤维横截面为圆形或椭圆形,光泽优美,手感柔软,悬垂性好,飘逸性好。 天丝兼具普通型粘胶纤维优良的吸湿性、柔滑飘逸性、舒适性等优点外,克服了普通粘胶纤维强力低,尤其是湿强低的缺陷,它的强力几乎与涤纶相近。天丝产品服用性能非常好,具有柔软、舒适、透气性好、光滑凉爽、悬垂性好,耐穿耐用等特点。 四、竹纤维

高性能蛋白质纤维蜘蛛丝的研究与应用1

万方数据

一一一一一一一一一一一一一一一一一一一一一一一一一一一一呈四尘篷野詈翼第7p期有良好的弹性和强度,一根直径几微米的丝纤维能承受不同力学性能的,能满足不同用途要求的蜘蛛丝纤维。 几克重的蜘蛛,这些现象引起了人们对蛛丝研究的极大兴趣。蜘蛛丝力学性能的具体测试结果的报道最早见于1907年,在随后的几十年中,人们对络新妇、十字园蛛、大腹园蛛以及黑寡妇等多种不同蜘蛛牵引丝、包卵丝、捕获丝、框丝等做了大量的研究和分析”e|。研究结果表明,蜘蛛牵引丝具有优于其他天然纤维、化学纤维的综合力学性能。强度高、弹性大、韧性好,单位重量的蜘蛛丝承受外加能量的能力不但大于蚕丝,而且大于钢丝及Kevlar等高性能合成纤维。表l所示为主要的几种蜘蛛牵引丝的力学性能以及与其他纤维的比较。 表1蜘蛛丝与其他纤维力学性能的比较1.1.2超收缩性能1.2蜘蛛丝的结构特点 蜘蛛丝是具有多级结构的蛋白质纤维,牵引丝具有皮芯层结构,芯层内含有数十根纳米级的微纤维。蜘蛛丝的基本组成单元为氨基酸,纤维性能受分子的构象、结晶度、取向度、纤维的形态结构等多种结构因素的综合影响。下面以牵引丝为例,分析其结构和性能间的关系。 1.2.1氨基酸组成 如图l所示,为不同种类蜘蛛分泌的牵引丝的氨基酸组成,牵引丝中含量最多的是甘氨酸、其次是丙氨酸,两者之和占总氨基酸含量的50%~70%,同时含有较多的谷氨酸和脯氨酸。研究表明[17 ̄20I,聚丙氨酸分子链段为B一折叠结构,主要存在于结晶区,甘氨酸含量较多的氨基酸片段为螺旋或更复杂的结构。谷氨酸和脯氨酸对分子结构有重要作用。谷氨酸为酸性氨基酸,其侧基上的氨基和羧基使分子问的键合作用加强,而脯氨酸的存在将有利于分子链形成类似于B一转角的弹性螺旋状结构,增强纤维的弹性。牵引丝中小侧基氨基酸含量普遍比蚕丝丝素低得多,而极性氨基酸含量远大于后者,蜘蛛牵引丝的这 蜘蛛牵引丝的另一重要性能特征是在水中具有超收种氨基酸组成特征,对于多肽大分子链的构象以及纤缩能力。在湿态下蜘蛛大囊状腺分泌丝的横截面增加约维的聚集态结构有很大的影响。 60%n31。牵引丝在不同极性溶剂中的收缩能力有较大差、。50,..R面丽习 异,在水中,牵引丝的收缩率达50%左右,在乙醇中§40}摘。旧嚣景警l筹鬈雾妻嚣磊淼焉袅?兰筹鬈篙磊曩菲圳.痂.圃.妇血盘盥惹趔纤维所受的原始伸长有很大的关系,当给纤维一定的预翟‘钏叫叫.岫lj瞄田整.缝.盥.嗌。盥.堡.堡墼 伸长时,收缩率下降…1。牵引丝的这种超收缩性能对氨基酸成分 于解决仿生蜘蛛丝的加工和蜘蛛丝的基础研究中纤维性能多变性的困扰有重要作用。研究证明n6|,通过控制牵引丝的收缩可以预测和重演丝纤维的拉伸行为。虽然天然牵引丝的力学性能有较大的分散性,但对人工卷取的牵引丝进行不同程度的收缩,可以获得力学行为和各组天然丝纤维十分接近的纤维,因此通过人工卷取和控制牵引丝在水中收缩度的方法可以得到具有不同力学性能的蜘蛛丝,并且这些纤维的力学性能有良好的重现性。如果人造蜘蛛丝在水中也具有超收缩性,则可以将控制水中收缩率引入丝纤维的后加工中,从而获得具有十字园蛛氨基酸组成。2“,脂肋』ja氨基酸组成”…,黑寡妇氨基酸组成【23] 图1不同种类蜘蛛牵引丝氨基酸组成比较1.2.2分子构象与聚集态结构 蜘蛛丝纤维中分子的存在状态和排列形式的解析,是分析其力学性能的形成机理的关键因素之一,尤其是天然蜘蛛丝的成丝条件和其分子结构及聚集态结构问关系的研究,对人造蜘蛛丝生产工艺的研究具有十分重要的作用。 络新妇牵引丝含有B一折叠、3,。一螺旋、Q一螺旋、 4l 万方数据

蜘蛛丝与蚕丝的比较研究

蜘蛛丝与蚕丝的比较研究 王来力 (上海 东华大学 200051) [摘 要]:从形态结构、物理性能、力学性能、热学性能及成丝机理等几个方面对蜘蛛丝和蚕丝进行了对比分析,指出了蜘蛛丝与蚕丝的异同点,介绍了人造蜘蛛丝的发展趋势和应用前景。[关键词]:蜘蛛丝;蚕丝;结构;性能;比较 1.引言 蚕丝发源于我国,到现在已有六千多年的历史。蚕丝是高档纺织原料,具有强伸度好、细而柔软、富有弹性、光泽好、吸湿性好等优点,被誉为“纤维皇后”,蚕丝织物广泛应用于人们的日常生活,在工业及国防上也有重要的用途[1]。蜘蛛丝作为另一种蛋白质纤维,从上世纪90年代开始成为新材料的研究热点。蜘蛛丝具有高强度、高韧性、高弹性和良好的耐热性能,被称为“生物钢”,在军事、航空航天以及医疗等方面具有很大的应用潜力[2]。本文结合国内外的文献资料,对蜘蛛丝和蚕丝进行了多方面的比较研究,指出了二者的异同之处。 2.蜘蛛丝与蚕丝的形态结构比较 纤维的形态结构在很大程度上决定纤维的性能,蜘蛛丝与蚕丝在力学性能、机械性能方面存在较大的差异,必然是由二者形态结构的不同引起的。 蜘蛛丝是具有多级结构的蛋白质纤维,外观呈金黄色,透明,横截面为圆形,具有皮芯层结构,芯层内含有数十根纳米级的微纤维。蜘蛛丝纤维直径平均为6.9μm,大约为蚕丝的一半,体积重量为1.34g/cm3。蜘蛛丝蛋白质是由各种氨基酸组成的多肽链按照一定方式组合而成的,其中的氨基酸主要以甘氨酸和丙氨酸为主,约占总量的70%,其他为丝氨酸、谷氨酸、亮氨酸等[3]。 蚕丝纤维多为白色或乳白色,主要由丝素和丝胶两部分组成,里面为两根平行的丝素,外面包裹着丝胶,其他物质为蜡质、色素和无机物等。蚕丝纤维横截面呈半椭圆形或略呈三角形,单根丝素截面呈三角形。蚕丝纤维的蛋白质是由一条长链和一条短链构成的亚单位结构,长链主要由甘氨酸、丙氨酸和丝氨酸等组成,短链含有较多疏松残基的氨基酸[4]。蜘蛛丝和蚕丝的氨基酸含量对比如表1所示。

仿生材料研究与进展 王一安 刘志刚

齐齐哈尔大学 综合实践课程论文 题目仿生材料研究进展 学院材料科学与工程学院 专业班级无机非金属材料工程无机112班 学生姓名王一安刘志刚 指导教师李晓生 成绩 2014年 5月9 日

仿生材料学研究进展 摘要:仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。 关键词:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料 Abstract:The“biomimeticmaterialsscience”formedbytheintersectionofmaterialscien ceandlifesciencehasgreattheoreticalandpracticalsignificance.Biomimeticmaterialsscie ncetakesmaterialstructureandformationastarget,considersartificialmaterialattheviewof bio2material,exploresthedesignandmanufactureofmaterialfromtheangleofbiologicalfu nction.Atpresent,thehotresearchesonbiomimeticmaterialsscienceincludeshellbiomime ticmaterial,spidersilkbiomimeticmaterial,bonebiomimeticmaterial,andnano2biomimet icmaterial,etc.whichhavetheirownspecialmicro2structuralcharacteristics,formationstyl e,andbio2mechanicalproperties.Biomimeticmaterialsaredevelopingtowardscompound ,intellectual,active,andenvironmentaltendency,willbringrevolutionaryimprovementfor manufactureandapplicationofmaterial,andwillchangegreatlythestatusofhumansociety. Keywords:Bionics,Materialsscience,Review 1.前言 仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。

相关文档