文档库 最新最全的文档下载
当前位置:文档库 › 拉格朗日插值法总结

拉格朗日插值法总结

拉格朗日插值法总结
拉格朗日插值法总结

拉格朗日插值法总结

拉格朗日插值法

2008-05-12 16:44

一、问题的背景

在实际问题中常遇到这样的函数y=f(x),其在某个区间[a,b]上是存在的。

但是,通过观察或测量或试验只能得到在区间[a,b]上有限个离散点

x0,x1,…,xn上的函数值yi=f(xi),(i=0,1,…,n)。或者f(x)的函数f(x)表达

式是已知的,但却很复杂而不便于计算;希望用一个既能反映函数f(x)的特性,又便于计算的简单函数来描述它。

二、插值问题的数学提法:

已知函数在n+1个点x0,x1,…,xn上的函数值

yi=f(xi),(i=0,1,…,n)

求一个简单函数y=P(x),使其满足:

P(xi)=yi,(i=0,1,…,n)。

即要求该简单函数的曲线要经过y=f(x)上已知的这个n+1个点:

(x0,y0),(x1,y1),…,(xn,yn),

同时在其它x∈[a,b]上要估计误差:

R(x)=f(x)-P(x)

其中P(x)为f(x)的插值函数,x0,x1,…,xn称为插值节点,包含插值节点

的区间[a,b]称为插值区间,求插值函数P(x)的方法称为插值法。若P(x)是次

数不超过n的代数多项式,就称P(x)为插值多项式,相应的插值法称为多项式

插值。若P(x)是分段的多项式,就是分段插值。若P(x)是三角多项式,就称三角插值。

三、插值方法面临的几个问题

第一个问题:根据实际问题选择恰当的函数类。本章我们选择代数多项式类,其原因有两个:(1)代数多项式类简单;微分、积分运算易于实行;(2)根据著名的Weierstrass逼近定理,任何连续的函数都可以用代数多项式作任意精确的逼近。

第二个问题:构造插值函数P(x),使其满足:P(xi)=yi,(i=0,1,…,n)与此相关的问题是:插值问题是否可解(存在性的问题),如果有解,是否唯一?(唯一性的问题)

第三个问题:插值误差R(x)=f(x)-P(x)的估计问题。与此相关的问题是插值过程的收敛性的问题。

第一节拉格朗日插值公式

一.线性插值(一次插值)

已知函数f(x)在区间[xk,xk+1]的端点上的函数值yk=f(xk),yk+1=f(xk+1),求一个一次函数y=P1(x)使得yk=f(xk),yk+1=f(xk+1),其几何意义是已知平面上两点(xk,yk),(xk+1,yk+1),求一条直线过该已知两点。

1.插值函数和插值基函数

由直线的点斜式公式可知:

把此式按照yk和yk+1写成两项:

并称它们为一次插值基函数。该基函数的特点如下表:

从而

P1(x)=yk lk(x)+yk+1 lk+1(x)

此形式称之为拉格朗日型插值多项式。其中,插值基函数与yk、yk+1无关,而由插值结点xk、xk+1所决定。一次插值多项式是插值基函数的线性组合,相

应的组合系数是该点的函数值yk、yk+1.

例1:已知lg10=1,lg20=1.3010,利用插值一次多项式求lg12的近似值。

解:f(x)=lgx,f(10)=1,f(20)=1.3010,设

x0=10,x1=20,y0=1,y1=1.3010

则插值基函数为:

于是,拉格朗日型一次插值多项式为:

故:

即lg12由lg10和lg20两个值的线性插值得到,且具有两位有效数字(精确值lg12=1.0792).

二.二次插值多项式

已知函数y=f(x)在点xk-1,xk,xk+1上的函数值yk-1=f(xk-

1),yk=f(xk),yk+1=f(xk+1),求一个次数不超过二次的多项式P2(x),使其满足,

P2(xk-1)=yk-1,P2(xk)=yk,P2(xk+1)=yk+1.

其几何意义为:已知平面上的三个点

(xk-1,yk-1),(xk,yk),(xk+1,yk+1),

求一个二次抛物线,使得该抛物线经过这三点。

1.插值基本多项式

有三个插值结点xk-1,xk,xk+1构造三个插值基本多项式,要求满足:

(1)基本多项式为二次多项式;(2)它们的函数值满足下表:

因为lk-1(xk)=0,lk-1(xk+1)=0,故有因子(x-xk)(x-xk+1),而其已经是一个二次多项式,仅相差一个常数倍,可设

lk-1(x)=a(x-xk)(x-xk+1),

又因为

lk-1(xk-1)=1==a(xk-1-xk)(xk-1-xk+1)=1

从而

同理得

基本二次多项式见右上图(点击按钮"显示Li")。

2.拉格朗日型二次插值多项式

由前述,拉格朗日型二次插值多项式:

P2(x)=yk-1 lk-1(x)+yk lk(x)+yk+1 lk+1(x),P2(x)

是三个二次插值多项式的线性组合,因而其是次数不超过二次的多项式,且满足:

P2(xi)=yi,(i=k-1,k,k+1)。

例2已知:

xi 10 15 20 yi=lgxi 11.1761 1.3010

利用此三值的二次插值多项式求lg12的近似值。

解:设x0=10,x1=15,x2=20,则:

故:

所以

7利用三个点进行抛物插值得到lg12的值,与精确值lg12=1.0792相比,具有3位有效数字,精度提高了。

三、拉格朗日型n次插值多项式

已知函数y=f(x)在n+1个不同的点x0,x1,…,x2上的函数值分别为

y0,y1,…,yn,求一个次数不超过n的多项式Pn(x),使其满足:

Pn(xi)=yi,(i=0,1,…,n),

即n+1个不同的点可以唯一决定一个n次多项式。

1.插值基函数

过n+1个不同的点分别决定n+1个n次插值基函数

l0(x),l1(x),…,ln(X)

每个插值基本多项式li(x)满足:

(1)li(x)是n次多项式;

(2)li(xi)=1,而在其它n个li(xk)=0,(k≠i)。

由于li(xk)=0,(k≠i),故有因子:

(x-x0)…(x-xi-1)(x-xi+1)…(x-xn)

因其已经是n次多项式,故而仅相差一个常数因子。令:

li(x)=a(x-x0)…(x-xi-1)(x-xi+1)…(x-xn)

由li(xi)=1,可以定出a,进而得到:

空间插值算法汇总

空间插值算法: 1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类型。多元回

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

拉格郞日插值法总结

拉格朗日插值公式 2008-04-26 20:58 一.线性插值(一次插值) 已知函数f(x)在区间[xk ,xk+1 ]的端点上的函数值yk =f(xk ), yk+1 = f(xk+1 ),求一个一次函数y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其几何意义是已知平面上两点(xk ,yk ),(xk+1 ,yk+1 ),求一条直线过该已知两点。 1. 插值函数和插值基函数 由直线的点斜式公式可知: 把此式按照yk 和yk+1 写成两项: 记 并称它们为一次插值基函数。该基函数的特点如下表: 从而 P1 (x) = yk lk (x) + yk+1 lk+1 (x) 此形式称之为拉格朗日型插值多项式。其中, 插值基函数与yk 、yk+1 无关,而由插值结点xk 、xk+1 所决定。一次插值多项式是插值基函数的线性组合, 相应的组合系数是该点的函数值yk 、yk+1 . 例1: 已知lg10=1,lg20=1.3010, 利用插值一次多项式求lg12的近似值。 解: f(x)=lgx,f(10)=1,f(20)=1.3010, 设 x0 =10 ,x1 =20 ,y0 =1 ,y1 =1.3010 则插值基函数为:

于是, 拉格朗日型一次插值多项式为: 故: 即lg12 由lg10 和lg20 两个值的线性插值得到,且具有两位有效数字(精确值lg12=1.0792). 二.二次插值多项式 已知函数y=f(x)在点xk-1 ,xk ,xk+1 上的函数值yk-1 =f(xk-1 ),yk =f(xk ), yk+1 =f(xk+1 ), 求一个次数不超过二次的多项式P2 (x), 使其满足, P2 (xk-1 )=yk-1 , P2 (xk )=yk , P2 (xk+1 )=yk+1 . 其几何意义为:已知平面上的三个点 (xk-1 ,yk-1 ),(xk ,yk ),(xk+1 ,yk+1 ), 求一个二次抛物线, 使得该抛物线经过这三点。 1.插值基本多项式 有三个插值结点xk-1 ,xk ,xk+1 构造三个插值基本多项式,要求满足: (1) 基本多项式为二次多项式;(2) 它们的函数值满足下表: 因为lk-1 (xk )= 0,lk-1 (xk+1 )=0, 故有因子(x-xk )(x-xk+1 ), 而其已经是一个二次多项式, 仅相差一个常数倍, 可设 lk-1 (x)=a(x-xk )(x-xk+1 ), 又因为 lk-1 (xk-1 )=1 ==> a(xk-1 -xk )(xk-1 -xk+1 )=1 得

拉格朗日插值公式的证明及其应用

拉格朗日插值公式的证明及其应用 摘要: 拉格朗日(Lagrange)插值公式是多项式中的重要公式之一,在理论和实践中都有着广泛的应用.本文阐述了Lagrange 插值的基本理论,譬如:线形插值,抛物插值,Lagrange 多项式等.然后将线形插值,抛物插值,Lagrange 多项式插值分别应用到高中知识中,并且学会用计算机程序来编写.插值法的思想与中国剩余定理一脉相承, 体现了代数中"线性化" (即表示为求和和数乘的形式) 这一基本思路, 大巧若拙.本文的目的是通过介绍拉格朗日插值公式的推导,唯一性,证明过程及其在解题与实际生活问题中的应用来寻找该公式的优点,并且引人思考它在物理,化学等领域的应用.通过实际鉴定过程,利用插值公式计算生活中的成本问题,可以了解它的计算精度高,方法快捷. 关键词: 拉格朗日插值公式 唯一性 证明 解题应用 资产评估 曲线插值问题,直观地说,认为已知的一批数据点()n k k k f x 0,=是准确的,这些数据点所表现的 准确函数关系()x f 是未知的,在这种情况下要作一条近似曲线()x P 且点点通过这些点,插值问题不仅要讨论这种近似曲线()x P 的构造方法,还要讨论点增多时这种近似曲线()x P 是否稳定地收敛于未知函数()x f ,我们先研究一种简单常用的插值——拉格朗日插值. 一.定义,推导及其在解题中的应用 1.线性插值 1.1. 线性插值的定义 假定已知区间[]1,+k k x x 的端点处的函数值()k k x f y =, ()11++=k k x f y ,要求线性插值多项式()x L 1使它满足()k k y x L =1, ()111++=k k y x L . ()x L y 1=的几何意义:通过两点()k k y x ,和()11,++k k y x 的直线, 如图1所示,()x L 1的表达式由几何意义直接给出,即 ()()k k k k k k x x x x y y y x L ---+ =++111 (点斜式), 图1 ()11111++++--+--= k k k k k k k k y x x x x y x x x x x L (两点式). y=L 1x () y=f x () y k+1 y k x k+1 x k o y x

sinc插值和NUFFT小结

FFT 要求时域数据是均匀采样,频率是均匀分布于(-π,π)的。 一、Sinc 插值原理: 设有函数)(x f ,采样定理表明,在满足以下两个条件时,就可以从)(x f 的等间隔离散样本中无失真的重建原始信号: (1)信号是带限的,即信号的最高频率有界; (2)采样频率满足奈奎斯特采样率。实信号的采样率必须大于信号最高频率的两倍,复信号的采样率必须大于信号的带宽。 当满足以上条件时,在基带信号下,其重建方程为:)(sin )()(i x c i x f i d f -=∑(式 1),上式可以看成是)(i f d 和c(i)sin 的卷积,其卷积核为i i i ) sin()(sinc = (式2)是)(x f 在i x =时的采样值。 式(1)可以理解为所有输入样本的加权叠加,根据此式就可以计算任意点处)(x f 函数值。为精确计算某一点上的)(x f 需要覆盖无限多个点。实际上这是无法做到的,而且使用大量的数据点会使得插值非常耗时,但精度提高却很小。计算表明核值随着与x 的间隔增大而降低,这意味着可以在不过度损失精度的同时对卷积核进行截断。在现有的计算资源下个8点的加权sinc 函数比较适合数据处理。 当使用截断后的sinc 函数对存在陡峭边缘的函数进行插值时,会出现一种称为Gibbs 效应的振铃现象。为减少这种影响,应对插值进行加窗锐化,通常加入Kaiser 窗的处理效果比较理想。对与加窗后的插值核,需要进行归一化处理,使其增益单位化,否则采样点上的权值和不再等于1,并且不同插值点之间会出现较大误差。 1、功率谱估计的提出:主要是针对经典谱估计的分辨率低和方差性能不好的问题提出的。 二、非均匀离散傅里叶变换(NUDFT ) 1、{n t }不均匀采样而{n f }均匀采样,即f m m f ?=,则有n f t m j n d N n m e t f w F ?--=∑=π21 )()(, 称为第一类非均匀DFT (nonuniform DFT ,NUDFT )。 2、{n f }不均匀采样而{n t }均匀采样,即t n n t ?=,则有∑-=??-=1 2)()(N n nm j n d m m t e t f w F π,称为第二类NUDFT 。 3、{n f }和{n t }都是均匀采样,即t n n t ?=并且f m m f ?=,则有 ∑-=??-=1 02)()(N n nm j n d m f t e t f w F π,称为均匀DFT 。特别是,如果)/(1t f N ?=?,则有 ∑-=-=10 /2)()(N n N nm j n d m e t f w F π,这就是传统意义上的DFT 。

实验一拉格朗日插值法

实验一 拉格朗日插值法 基本信息 实验课程:计算方法 设课形式:非独立 课程学分:3 实验项目:拉格朗日插值法 项目类型:基础 项目学时:2 目的和要求 该实验在计算机上实现拉格朗日插值法并进行验证。要求对拉格朗日插值法的流程进行分析,设计算法,并使用一种编程语言实现,最后通过具体例子进行验证,得到正确结果。 实验条件 装有编程语言的计算机一台、项目相关材料。 实验内容和原理或涉及的知识点 公式: 基点x i 的n 次插值基函数( i=0,1,…,n): n i x x x x x x x x x x x x x x x x x x x x x x x x x l j i j n i j j n i i i i i i i n i i i ,,1,0) ())(())(() ())(())(()(011101110 =--∏ =----------= ≠=+-+- n 次拉格朗日插值多项式: ∑∏ =≠=--=+++=n i n i j j j i j i n n n x x x x y x l y x l y x l y x P 0 01100)()()()(

流程图: 输入及x y x i i i n ,,,,,=012 P i ??00 ,L ?1 L L x x x x j i j j n j i ?--=≠()() ,,,() 01 P P y L i ?+i i ?+1 开始T F 输出P 结束 i n = 验证例子 已知如下的函数表,试编写程序,用拉格朗日插值多项式求0.5,0.7,0.85三点处的函数值。 x 0.40.550.80.91y 0.410750.578150.88811 1.02652 1.1752 实验结果: 插值点的个数 m=3

数值计算方法—拉格朗日插值

数值计算方法作业 专业:测控1002 学号:10540226 姓名:崔海雪

拉格朗日插值的算法及应用 【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。运用了拉格朗日插值的公式,以及它在MATLAB 中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。 【关键词】 拉格朗日;插值;公式;Matlab 算法程序; 一、绪论 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange 插值有很多种,1阶,2阶,…n 阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。 二、正文 1、基本概念 已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,???,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,???,n, (1) 则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点-x 求f(-x )数值解,我们称- x 为一个插值节点,f(-x )≈p(-x )称为-x 点的插值,当-x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n 次多项式时称为n 阶Lagrange 插值。 2、Lagrange 插值公式 (1)线性插值)1(1L 设已知0x ,1x 及0y =f(0x ) ,1y =f(1x ),)(1x L 为不超过一次多项式且满足 )(01x L =0y ,)(11x L =1y ,几何上,)(1x L 为过(0x ,0y ) ,(1x ,1y )的直线,从而得到 )(1x L =0y +0101x x y y --(x-0x ). (2)

实验1拉格朗日插值与牛顿插值

数学与计算机学院上机实践报告 课程名称:计算方法A年级:上机实践成绩: 指导教师:姓名: 上机实践名称:拉格朗日插值和牛顿插值法学号:上机实践日期: 上机实践编号:1上机实践时间: 一、目的 1.通过本实验加深对拉格朗日插值和牛顿插值法构造过程的理解; 2.能对上述两种插值法提出正确的算法描述编程实现。 二、内容与设计思想 自选插值问题,编制一个程序,分别用拉格朗日插值法和牛顿插值法求解某点的函数近似值。(从课件或教材习题中选题) 已知y=f( 三、使用环境 操作系统:windows XP 软件环境:Microsoft Visual C++6.0 四、核心代码及调试过程 (一) 拉格朗日插值法: lude double product(double *p,double newx,int k,int n); main() { /*divisor,dividend double x[10]={0.10,0.15,0.25,0.40,0.50,0.57,0.70,0.85,0.93,1.00}; double newx[3]={0.45,0.6,0.80},divisor,dividend,quotient,result; double y[10]={0.904837,0.860708,0.778801,0.670320,0.606531,0.565525,0.496585,0.427415,0.394554; int i,th; for(th=0;th<3;th++) { result=0; for(i=0;i<10;i++)

{ dividend=product(x,newx[th],i,9); divisor=product(x,x[i],i,9); quotient=dividend/divisor; result+=quotient*y[i]; } printf("%lf处的近似值为%lf\n",newx[th],result); } } double product(double *p,double newx,int k,int n) { int cycle_times; double result=1; for(cycle_times=0;cycle_times<=n;cycle_times++) if(cycle_times!=k) result=result*(newx-p[cycle_times]); return result; } (二)牛顿插值法: #include #define total_points 10 void fill_in_the_blank(double *p,int x,int y); double newton(double (*p)[total_points+1],double newx); main() { double table[total_points][total_points+1], newx; int x,y; printf("Please notice (x,y) is from (x1,y1) to (x%d,y%d)!\n",total_points,total_points); for(x=0;xy) fill_in_the_blank(table,x,y); } printf("input a number you want to calculate:"); scanf("%lf",&newx); printf(" the result is:%lf\n",newton(table,newx)); } void fill_in_the_blank(double (*p)[total_points+1],int x,int y) { double diff_up,diff_down; diff_up=*(*(p+x)+y-1)-*(*(p+x-1)+y-1); diff_down=*(*(p+x))-*(*(p+x-y+1)); *(*(p+x)+y)=diff_up/diff_down; }

强大导数知识点各种题型归纳方法总结

导数的定义: 1.(1).函数y = f (x)在x =x °处的导数:f '(X 。)=y'|xm=怛口x ° %x) - f ( x °) 函数八f(x)的导数:f '(x) = y' = 1巩f (x 冈- f (x) 2?利用定义求导数的步骤 ①求函数的增量:.沖二f (X 。? Ax) - f(x 。):②求平均变化率:竺二f(x 。 :x )- f (X 0) L X L X ③取极限得导数:f '(x 。)二lim y 3 A x (下面内容必记) 导数的运算: (1) 基本初等函数的导数公式及常用导数运算公式 : m m i ① C ,O(C 为常数):②(x n )'= nx n ,;(丄)、(x 』)’一 nx 』」;(n x m )' =(x\' = m x_ x n ③(sinx)'=cosx ;④(cosx)' - -sin x ⑤(e x )'=e x ⑥(a x )'=a x |na(a 0,且a = 1); 1 1 ⑦(ln x)' ; ⑧(log a x)' (a 0,且 a =1) x xln a 法则1: [f(x) _g(x)]' = f '(x) _g'(x) ; (口诀:和与差的导数等于导数的和与差 ). 法则2: [f(x) g(x)]^ f '(x) g(x) f (x) g'(x)(口诀:前导后不导相乘,后导前不导相乘,中间是正号) 法则3: [f 阳」(X)嵌)二 2(X ) g '(X )(g(x)=0) g(x) [g(x)] (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) (2)复合函数y 二f (g(x))的导数求法: ①换元,令u =g(x),则y = f(u)②分别求导再相乘y'=〔g(x) 】'」f (u)】'③回代u =g(x) 题型一、导数定义的理解 题型二:导数运算 1、已知 f x = x 2 ? 2x - sin 二,贝U f 0 二 __________ 1. 求瞬时速度:物体在时刻t 0时的瞬时速度 V 就是物体运动规律 即有 V ° 。 2. V = s /(t)表示即时速度。a=v /(t)表示加速度。 四. 导数的几何意义: 函数f x 在X 0处导数的几何意义,曲线y = f x 在点P x 0, f x °处切线的斜率是k =「x 0 。于是相应的切 线方程是:y - y ° = f X 0 x -x ° 。 题型三.用导数求曲线的切线 注意两种情况: (1 )曲线y 二f x 在点PX o ,fX o 处切线:性质:k 切线=f X o 。相应的切线方程是: y -y 。二 f X 。x -x 。 (2)曲线y = f x 过点P X o ,y 。处切线:先设切点,切点为Q(a,b),则斜率k= f'(a),切点Q(a,b)在曲线 y =f x 上,切点Q(a,b)在切线y-y o =「a x-x 。上,切点Q(a,b)坐标代入方程得关于 a,b 的方程组,解方 程组来确定切点,最后求斜率k= f'(a),确定切线方 程。 例题在曲线y=x 3+3x 2+6x-10的切线中,求斜率最小的切线方程; 解析:(1)k =y'|x 2。=3x 02 ? 6x 0 ?6=3(x 0 1)2 3 当 x o =-1 时,k 有最小值 3, 导数的基础知识 ⑵. A 10 B 13 三?导数的物理意义 C - 1 6 D.19 S 二f t 在t “0时的导数「t ° ,

数值分析总结计划实验一拉格朗日插值算法报告总结计划.doc

拉格朗日插值算法的实现 实验报告 姓名:** 年级:**** 专业:计算机科学与技术科目:数值分析题目:拉格朗日插值算法的实现 实验时间 : 2014 年 5 月27 日实验成绩: 实验教师: 一、实验名称:拉格朗日插值算法的实现 二、实验目的: a.验证拉格朗日插值算法对于不同函数的插值 b. 验证随着插值结点的增多插值曲线的变化情况。 三、实验内容: 拉格朗日插值基函数的一般形式: 也即是: 所以可以得出拉格朗日插值公式的一般形式: 其中, n=1 时,称为线性插值,P1(x) = y 0*l 0(x) + y 1*l 1(x) n=2 时,称为二次插值或抛物插值,精度相对高些, P2(x)= y0 *l 0(x)+ y1*l 1(x)+ y2 *l 2(x) 四、程序关键语句描写 double Lagrange(int n,double X[],double Y[],double x) { double result=0; for (int i=0;i

result+=temp; }// 求出 Pn(x) return result; } 五、实验源代码: #include #include using namespace std; int main() { double Lagrange(int n,double X[],double Y[],double x); //插值函数double x;//要求插值的x的值 double result;//插值的结果 char a='n'; double X[20],Y[20]; do { cout<<" 请输入插值次数n 的值: "<>n; cout<<" 请输入插值点对应的值及函数值(xi,yi):"<>X[k]>>Y[k]; } cout<<" 请输入要求值 x 的值: "<>x; result=Lagrange(n,X,Y,x); cout<<" 由拉格朗日插值法得出结果: "<>a; }while(a=='yes'); return 0; } double Lagrange(int n,double X[],double Y[],double x) { double result=0; for (int i=0;i

计算方法上机实验报告——拉格朗日插值问题

计算方法上机实验报告——拉格朗日插值问题 一、方法原理 n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x 2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) 上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。可求得lk 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型 参数意义 intn 节点的个数 doublex[n](double*x) 存放n个节点的值 doubley[n](double*y) 存放n个节点相对应的函数值 doublep 指定插值点的值 doublefun() 函数返回一个双精度实型函数值,即插值点p处的近似函数值 #include #include usingnamespacestd; #defineN100 doublefun(double*x,double*y,intn,doublep); voidmain() {inti,n; cout<<"输入节点的个数n:"; cin>>n;

归纳段落大意之绝招

如何归纳段落大意 一. 摘句归纳法。 1.在文章中,有一些句子高度概括了全段的主要容,比如首句、尾句或中心句等,我们可以直接将其摘出,作为段意。 如《威尼斯的小艇》的第二段有总起句“船夫的驾驶技术特别好。”可以作这段的段意。2. 摘过渡句过渡句有承接上文、引起下文的作用。承上句是上段的段意,启下句为下一段的段意。 如《伟大的友谊》中,“在生活上恩格斯热忱地帮助马克思;更重要的是在共产主义事业上,他们互相关怀,互相帮助,亲密合作。”这一过渡句,第一分句是上段段意,第二分句可做下段段意。 二. 缩句归纳法。 有些段落句子不多但很长,通过修改,增删一些文字,就会成为该段的段意,此法称之为加减法。 三. 合并归纳法。 有些自然段可划分为几层意思,而且层与层之间是并列关系,我们在概括段意时,就可以先概括每层的意思,然后把层意进行合并归纳整理,作为一整段的意思。 如《太阳》(说明文)第一段中三节分别写了太阳远、大、热三个特点,所以段意可串连为:太阳离我们很远,它很大、很热。 四. 取舍归纳法。 有些段落层次意义较多时,可以先理清层次,然后采用取果舍因或取主舍次的方法来概括段意。归纳段意,一定要抓住每段的主要意思,选准角度,语言要明确、完整、简洁。为了做到这点,可指导学生用“去旁枝,抓主干”的方法进行归纳。 五. 概括归纳法 有些文章容结构比较复杂,不适宜运用以上方法,这就必须认真地把文章读透,然后看这一段写了几个意思,然后整理、精简为一个完整的句子,作为段意。即文中没有明显句子可以用来概括段意时,可以这样来整理:“谁?干什么?”或“谁?怎么样?” 如《给颜黎明的信》第一段分三层来写:(1)不要只看一个人的信;(2)不要只看文学书;(3)可以看世界旅行记和有益的电影。这三层都是围绕怎样读书写的,所以段意可归纳为:鲁迅谈怎样读书。 概括段意时,一定要在把握全段或全文中心的基础上进行,做到围绕中心,注意连贯。概括段意后,同学们应回过头来看看:几段的段意是否与全篇相称,概括的角度选得是否一致,概括的重点是否恰当。

Matlab中插值函数汇总和使用说明.

告: Matlab中插值函数汇总和使用说明收藏 命令1 interp1 功能一维数据插值(表格查找。该命令对数据点之间计算内插值。它找出一元函数f(x在中间点的数值。其中函数f(x由所给数据决定。x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1yi = interp1(x,Y,xi 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi*size(Y,2的输出矩阵。 (2yi = interp1(Y,xi 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3yi = interp1(x,Y,xi,method 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式,直接完成计算;

’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函 数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数p chip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4yi = interp1(x,Y,xi,method,'extrap' 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5yi = interp1(x,Y,xi,method,extrapval 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1.>>x = 0:10; y = x.*sin(x; 2.>>xx = 0:.25:10; yy = interp1(x,y,xx; 3.>>plot(x,y,'kd',xx,yy 复制代码 例2 1.>> year = 1900:10:2010;

插值算法之拉格朗日插值

记一下拉格朗日插值公式的推导和一些要点【这里说的都是二维插值,多维上的以此类推】 1、插值问题:在做实验的过程中,往往得到一堆离散的数据,现在想用数学公式模拟这堆离散数据。怎么办,数学家们提出了插值问题。插值问题的提法是这样的给定一堆数据点(x0, y0), (x1, y1), (x2, y2)...(xn, yn),要求一个函数y = f(x) ,要求该函数经过上面所有的数据点。 2、多项式插值及其唯一性:在所有的函数中,多项式函数是最简单的函数,所以只要是人就会想到用多项式函数来作为插值函数,好,以上给定了n+1个点,现在要求一个n次多项式y = an * x^n + ... a1 * x + a0, 使它们经过这n+1个点;通过范德蒙行列式和克莱姆法则,可以判定如果这n+1个点的x值各不相同,那么这个多项式是唯一的。结果唯一,但是用直接法很不好求。现在用别的办法来求之。这就是:拉格朗日多项式 3、拉格朗日多项式的构造,以四个点为例子进行说明 由于函数经过4个点(x0, y0),(x1, y1),(x2, y2),(x3, y3),所以可以设函数为: f(x) = b0(x) * y0 + b1(x) * y1 + b2(x) * y2 + b3(x) * y3 注意:b0(x),...,b3(x)都是x的3次多项式,称之为拉格朗日插值基函数。 由于要求当x为x0时候,f(x) = y0, 所以最简单的做法就是让b0(x0) = 1, b1(x0) = b2(x0) = b3(x0) = 0; 同理可知,在x1,x2,x3点上,插值基函数的值构造如下:

b0(x) b1(x) b2(x) b3(x) x=x0 1 0 0 0 x=x1 0 1 0 0 x=x2 0 0 1 0 x=x3 0 0 0 1 问题1、根据这些值来确定b0(x)的表达式, 由于b0(x1) = b0(x2) = b0(x3) = 0,所以x1, x2, x3是b0(x)的零点,由于b0(x)是三次多项式,所以设 b0(x) = c0 * (x-x1) * (x-x2) * (x-x3) 由于b0(x0) = 1,所以1 = c0 * (x0-x1) * (x0-x2) * (x0-x3) 得到c0 = 1/[(x0-x1)(x0-x2)(x0-x3)] 所以:b0(x) = (x-x1)*(x-x2)*(x-x3)/[(x0-x1)*(x0-x2)*(x0-x3)] 同理可求b1(x)、b2(x),略 问题2、根据上面的表格说明插值基函数的一个性质:无论x取和值,它们的和都为1.【这

插值算法总结

一:距离加权反比法插值算法 1:原理: 设空间待插点为P(Xp,Yp,Zp),P点邻域内有已知散乱点Q i(x i,y i,z i),i=1,2,3….n;利用距离加权反比法对P点的属性值Zp进行插值。其插值原 理是待插点的属性值是待插点邻域内已知散乱点属性值的加权平均, 权的大小 与待插点与邻域内散乱点之间的距离有关, 是距离的k(0<=k<=2)(k一般取2) 次方的倒数。 其中:d i为待插点与其邻域内第i个点之间的距离。 2:克里金算法 设研究区域为A, 区域化变量即欲研究的物理属性变量为{Z(x)∈A},x 表示空间位置(一维、二维或三维坐标), 在采样点x i(i=1,2,…n)处的属性值(或称为区域化变量的一次实现)为Z(x i)(i=1,2,…n),则根据普通克里金插值原理, 未采样点x0处的属性值Z(x0)估计值是n个已知采样点属性值的加权和, 即; λi为待求权系数。 假设区域化变量Z(x)在整个研究区域内满足二阶平稳假设: (1):Z(x)的数学期望存在且等于常数:E[Z(x)]=m(常数) (2):Z(x)的协方差Cov(x i,x j)存在,且只与两点之间的相对位置有关。或满足本征假设 (3)E[Z(x i)-Z(x j)]=0. (4)增量的方差存在且平稳:Var[Z(x i)-Z(x j)]= E[Z(x i)-Z(x j)]2 经过无偏性要求:经推到可得: 。 在无偏条件下使得估计方差达到最小,即

其中:u 是拉格朗日算子。 可以得到求解权系数λi (i=1,2…n )的方程组: 求出诸权系数λi (i=1,2…n )后,就可求出位采样点x 0处的属性值Z *( x 0). 上述求解λi (i=1,2…n )的方程中的Cov (x i ,x j )若用变异函数表示时, 其形式为: 变异函数的定义为: 由克里金插值所得的方差为: 或

拉格朗日插值法1

拉格朗日抛物线插值法 1、定义若多项式l j (j=0,1,2...n )在n+1个节点x 0

end end S=t*y(k)+s; end; yi=s; 3、例题 1)计算115 解: L 2(x)=0201021))(())((y x x x x x x x x ----+ 1201020) )(())((y x x x x x x x x ---- + 2201010) )(())((y x x x x x x x x ---- = 10)44(21)144)(121(?-?---x x + 11) 23(21)144)(100(?-?--x x + 1223 44)144)(100(??--x x L 2(115)= 10)44(21)29(6?-?--?-x + 11) 23(21)29(15?-?-? + 1223 44)6(15??-? ≈10.7228 在Matlab 窗口输入

年终工作总结归纳方法

年终工作总结归纳方法 1.基本情况 这是对本身情况和工作情况的简单介绍。本身情况包括单位名称、工作性质、基本建制、人员数量、主要工作任务等;工作情况包括国一年中的主要工作,完成了哪些项目方案,办理了哪些事物等。 2.成绩和做法 工作获得了哪些主要成绩,采取了哪些方法、措施,收到了什么效果等,这些是工作的主要内容,需要较多事实和数据。 3.经验和教训 通过对实践过程进行认真的分析,找出经验教训,发现规律性的东西,使感性认识上升到理性认识。 4.今后打算 下一步将怎样发扬成绩、纠正错误,准备获得什么样的新成就,没必要像计划那样详细,但一般不能少了这些内容。 这些基本内容需要整理出来,然后把他们归纳,这样我们就有足够东西来写,不会不知道写什么了。 准备好了内容,我们就成功了一半了,下面的工作就是把它完整而且漂亮的写出来。 一、题目 题目并没有太多新意,一般都是:“某人**年工作总结归纳”或“某部门某人**年工作总结归纳”。虽没有发挥的余地,但一定要写

全面。 二、开头 俗话说“好的开始是成功的一半”,写好一篇总结归纳的开头是必须的。开头一般简明扼要地概述基本情况,交代背景,点明主旨或说明成绩,为主体内容的展开做须要的铺垫。 三、正文 这是你要写的这篇年终工作总结归纳的核心部分,其内容可以包括工作内容和领会,成绩和问习题,经验和教训等。全面的去总结归纳过去一年工作中的成绩和问习题,或者经验和教训。总之,内容要饱满,思路要清晰,工作要罗列,成绩要凸显。把你之前准备的内容全都写进去吧! 四、结尾 结尾的方式可以是在总结归纳经验教训的基础上,提出今后努力方向,或认识自己的不足,提出改良意见,也可以表明决心、展望前景等等。 这样一篇年终工作总结归纳就轻松完成了,很简单吧。不过还有几点在写年终工作总结归纳时候的注意事项介绍给大家: ⑴总结归纳工作要真实,这一年做了什么工作就写什么,干的好,上级会知道,但是假如虚报,下级或者同级会知道,群众的眼睛是雪亮的。所以切记误报工作。 ⑵不要避重就轻。中国人都好面子,喜欢好大喜功,对成绩大肆宣传,对过错就闭口不提。

拉格朗日插值法C语言的实现

实验 一 .拉格朗日插值法C 语言的实现 1.实验目的: 进一步熟悉拉格朗日插值法。 掌握编程语言字符处理程序的设计和调试技术。 2.实验要求: 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标 。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值 。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X 坐标; (3)分别输入已知点的Y 坐标; (4)通过调用函数lagrange 函数,来求某点所对应的函数值。 拉格朗日插值多项式如下: 0L ()()0,1,n n j k k j j k x y l x y j n ====∑…… 其中00()()0,1,,()k k x x l x k n x x -= =-k-1k+1n k k-1k k+1k n ……(x-x )(x-x ) …(x-x )…………(x -x )(x -x ) …(x -x ) 程序流程图:

↓ 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项式*/ a=(float *)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:"); scanf("%d",&n); if(n>=20) { printf("Error!The value of n must in (0,20)."); getch();return 1; } if(n<=0) { printf("Error! The value of n must in (0,20)."); getch(); return 1; } for(i=0;i<=n-1;i++) {

相关文档