文档库 最新最全的文档下载
当前位置:文档库 › 最优化方法与最优控制1

最优化方法与最优控制1

最优化方法与最优控制1
最优化方法与最优控制1

第一章 最优化方法的一般概念

人们在处理日常生活、生产过程、经营管理、社会发展等实际问题时,都希望获得最佳的处理结果。在有多种方案及各种具体措施可供选择时,处理结果与所选取方案和具体措施密切相关。获取最佳处理结果的问题称为最优化问题。针对最优化问题,如何选取满足要求的方案和具体措施,使所得结果最佳的方法称为最优化方法。

1-1 目标函数、约束条件和求解方法

目标函数就是用数学方法描述处理问题所能够达到结果的函数,该函数的自变量是表示可供选择的方案及具体措施的一些参数或函数,最佳结果表现为目标函数取极值。在处理实际问题时,通常会受到经济效率、物理条件、政策界限等许多方面的限制,这些限制的数学描述称为最优化问题的约束条件。求解方法是获得最佳结果的必要手段,该方法使目标函数取极值,所得结果称为最优解。针对各种类型的最优化问题,找出可靠、快捷的处理方法是最优化方法(理论)的研究范畴。

目标函数、约束条件和求解方法是最优化问题的三个基本要素。无约束条件的最优化问题称为理想最优化问题,所得结果称为理想最优解。下面用三个简单的例子,说明最优化问题的目标函数和约束条件。

例1-1 有一块薄的塑料板,宽为a ,对称地把两边折起,做成槽(如图1-1)。欲使槽的横截面积S 最大,

1x 、2x 和θ的最优值是多少?

该问题要找出最优参数1x 、2x 和θ,使槽的横截面积S 最大,所以,目标函数为

θθsin )cos (max 221x x x S ?+=; (1-1)

由于底边与两个斜边的总长度应等于塑料板宽度a ,即约束条件为

a x x =+212。 (1-2)

有许多最优化问题可以方便地将等式约束条件代入目标函数中,使原问题转换为无约束条件的最优化问题,便于求解。例1-1为无约束条件的最优化问题时,目标函数如下

θθsin )cos 2(max 222x x x a S ?+-=。 (1-3)

例1-2 仓库里存有20米长的钢管,现场施工需要100根6米长和80根8米长的钢管,问最少需要领取多少根20米长的钢管?

用一根20米长的钢管,截出8米管或6米长管的方法只有三种,设:1x —1根长管截 成2根8米管的根数;2x —1根长管截成1根8米管和2根6米管的根数;3x —1根长管 截成3根6米管的根数。该问题的目标函数为

321min x x x n ++=, (1-4)

现场施工需要80根8米长和100根6米长的钢管,即约束条件为

???≥+≥+,10032,80232

21x x x x 3,2,10=≥i x i (1-5)

a

图1-1 横截面积与参数关系图

例1-3 物体在液体中作直线运动时,它所受到的阻力与运动速度的平方成正比。现假设该物体要在规定的时间],0[f t 内,从起点0)0(=x 到达终点S t x f =)(, 且终点速度不 受限制。问该物体应采用什么运动方式)(t x ,它所消耗的能量最少?

消耗的能量等于克服阻力所作的功,为运动速度的平方乘以一个比例常数,由于该常数在求极值过程中不起作用,则目标函数为

?=f

t t d t x J 02)(min , (1-6) 约束(边界)条件为

0)0(=x ,S t x f =)(。 (1-7)

上述3个简单的最优化问题中,例1-1和例1-2的目标函数的自变量都是参数,而例1-3的目标函数的自变量是表示物体运动方式的时间函数。不同类型的最优化问题的合适求解方法是不相同的,有针对性的最优化方法将在后续章节分别讨论。

1-2 静态最优化问题与动态最优化问题

静态,是指无时间变量的系统或处于平衡工作状态的动态系统,系统的数学模型是代数方程,而不是微分方程或差分方程。静态最优化问题,就是选择系统的最优参数,使目标函数取极值。对于动态系统而言,就是选择最优的平衡(工作)点参数。例1-1和例1-2都是静态最优化问题的示例。

动态最优化问题的目标函数的自变量中含有动态系统的状态变量,状态变量一般是时间的函数。动态最优化问题习惯上又称为最优控制问题,即选择系统最优的运动轨线,使目标函数取极值。解动态最优化(求泛函的极值)问题通常采用变分法、最大(小)值原理和动态规划等方法。例1-3是动态最优化问题的示例。

1-3 线性规划和非线性规划问题

非线性规划和线性规划是静态最优化问题的两个分支,非线性规划问题的范围很宽,针对不同类型的最优化问题都有各自适用的求解方法。静态最优化问题实质上是目标函数求极值的问题。主要求解方法分别在第二章和第三章介绍。

线性规划问题:该类问题的目标函数和约束条件都是变量的线性函数。例1-2就是一个线性规划问题的例子。线性规划问题是最简单的最优化问题,同时也是很重要、具有普遍实用意义的最优化问题。该类问题的求解方法相对简单,对于特殊类型的线性规划问题有更简便的求解方法。

非线性规划问题:该类问题的目标函数和约束条件中,含有变量的非线性函数。例1-1就是一个非线性规划问题的例子。非线性规划问题也是生产过程、经营管理、社会发展等实践中常常遇到的实际问题。求解有约束的非线性规划问题,通常要将问题转化为无约束的非线性规划问题求解。求解方法通常有两类:解析法和直接法。

1-4 最优化方法在控制领域中的应用

最优化方法应用范围很广,在不同领域应用时,有不同的相应名称。下面给出一些控制领域中的应用实例。

例1-4 参数估计 系统建模和自适应控制都是现代控制理论的重要分支,这两个分支都使用参数估计,即在已知系统结构条件下,经过对系统输入输出的观测,估计出系统参

数的最优值,使数据拟合的残差平方和最小。单输入单输出系统(式1-8)的参数估计问题数学描述如下:

)()()(k k k y εθφ+=, (1-8) []T 111r m n c c b b a a --=θ, (1-9) [])()1()()1()()1()(r k k m k u k u n k y k y k ------=εεφ ,(1-10) 其中 )(k u 、)(k y 和)(k ε分别是系统输入、系统输出和拟合残差;θ是待估计的系统参数向量;)(k φ是观测数据向量。

式(1-8)是该问题的约束条件,目标函数为

∑==N k k J 1

2)(21)?(min εθ。 (1-11) 目标函数的自变量,即所要优化的变量是系统参数的估计值θ?。

该问题使用的最优化方法称为增广最小二乘法(Extended Least Squares ),具体计算方法参见系统辩识的有关内容。

例1-5 最小方差控制 在随机控制理论中,使被控系统的输出方差最小的控制策略称为最小方差控制。目标函数是:使系统输出方差最小;约束条件是系统的数学模型;目标函数的自变量是调节器的参数。例如,线性时不变系统为

)()1()()()1()(101m d k u b d k b d k u b n k y a k y a k y m n --++--+-=-++-+

)()1()(1r k e c k e c k e r -++-++ , (1-12)

式中 1≥d 是系统滞后的采样周期数, )(k e 表示白噪声,

)()1()()(1r k e c k e c k e k w r -++-+= ,

)(k w 是系统中的随机过程干扰。为便于叙述,采用时间移动算子q ,则式(1-12)改写为

)()()()()()(111k e q C k u q B q k y q A d ----+=。 (1-13)

控制误差为 )(?)(?)()(d k y d k y

d k y d k +-=+-+=+ε。 (1-14) 最小方差控制目标函数为 ∑==N k k J 1

2)(21)?(min

εθ。 (1-15) 最小方差控制规律为 )()

()()()(111k y q G q B q F k u ----=; (1-16) 系统预报误差(控制误差)理论值和实际误差分别为

)()()(1d k e q G d k y +=+-。 (1-17)

式(1-14)中的多项式)(1-q F 和)(1-q G 是下列多项式方程的解

)()()()(1111-----=+q C q F q q G q A d ,

式中 )(1-q G 是1-d 次的首一多项式,)(1-q F 的次数满足多项式方程需要。由多项式方

程,可以得到多项式)(1-q F 和)(1-q G 的系数唯一解,即得到最小方差控制器的参数。

更多的应用例子将在后续章节里讨论。

习题一

1.1 某工厂生产1a 、2a 和3a 三种紧俏产品。每生产1万件1a 、2a 、3a 产品消耗原 料1b 、2b 、3b 如表1-1所示。已知该厂现有原料1b 、2b 和3b 分别为100吨、200吨和500 吨。每万件1a 、2a 和3a 产品分别可获利润4万元、3万元和2万元。现有定货合同为1a 、 2a 和3a 产品分别为10万件、5万件和2万件。如何安排生产才能获得最大利润?试给出 该问题的目标函数和约束条件(不必求解)。

1.2 某工厂生产A 、B 和C 三种产品,都需要经过机加工和组装车间。产品加工、组装所需工时和车间每周生产能力如表1-2所示。A 、B 和C 三种产品利润分别为150、100和80元/只。问如何安排生产才能获得最大利润?试给出该问题的目标函数和约束条件(不必求解)。

表1-1 题1.1产品消耗原料表

1.3 已知一线性时不变系统的运动方程、初始状态、允许采用的控制量及终端状态为 )()(t u t y

= ;1)0(=y ,1)0(=y ;1)(1≤≤-t u ;0)()(==f f t y t y ; 要求选取最优控制策略,使得系统在最短时间内达到终端。试给出该问题的目标函数和约束条件(不必求解)。

1.4已知一线性时不变系统的运动方程、初始状态及终端状态为

)()(21t x t x

= ,u t x =)(2 ;1)0()0(21==x x ,0)5()5(21==x x ; 要求选取最优控制策略,使得系统在指定的时间段]5,0[内达到终端,且消耗的控制能量最少。试给出该问题的目标函数和约束条件(不必求解)。

1.5已知一线性时不变系统的运动方程、初始状态及控制作用为

)()()(2)(t u t y t y t y

=++ ζ;0)0()0(==y y ;)(1)(t t u =; 要求优化系统参数ζ,使系统状态偏差平方和最小。试给出该问题的目标函数和约束条件(不必求解)。

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

浅谈最优控制

浅谈最优控制 发表时间:2008-12-10T10:25:09.263Z 来源:《黑龙江科技信息》供稿作者:李晶1 陈思2 [导读] 主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。 摘要:主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。通过以上知识的讲解使初学者能够快速掌握最优控制的问题。关键词:最优化;最优控制;极值 最优控制是最优化方法的一个应用,如果想了解最优控制必须知道什么是最优化方法。所谓最优化方法为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。(1)最优设计:世界各国工程技术界,尤其是飞机、造船、机械、建筑等部门都已广泛应用最优化方法于设计中,从各种设计参数的优选到最佳结构形状的选取等,结合有限元方法已使许多设计优化问题得到解决。一个新的发展动向是最优设计和计算机辅助设计相结合。电子线路的最优设计是另一个应用最优化方法的重要领域,它存在着巨大的开发潜力,尤其是对于学电工学的学生来说。配方配比的优选方面在化工、橡胶、塑料等工业部门都得到成功的应用,并向计算机辅助搜索最佳配方、配比方向发展。(2)最优计划:现代国民经济或部门经济的计划,直至企业的发展规划和年度生产计划,尤其是农业规划、种植计划、能源规划和其他资源、环境和生态规划的制订,都已开始应用最优化方法。一个重要的发展趋势是帮助领导部门进行各种优化决策,使工作结构简单,工作效率最高化,节省了很多时间。(3)最优管理:一般在日常生产计划的制订、调度和运行中都可应用最优化方法。随着管理信息系统和决策支持系统的建立和使用,使最优管理得到迅速的发展。(4)最优控制:主要用于对各种控制系统的优化。下面着重来解释一下最优控制。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。1948年维纳发表了题为《控制论——关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所著的《工程控制论》(EngineeringCybernetics)直接促进了最优控制理论的发展和形成。 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,即系统的数学模型,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。 1 古典变分法 研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。 2 极大值原理 极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。 3 动态规划 动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。随着社会科技的不断进步,最优控制理的应用领域十分广泛,如时间最短、能耗最小、线性二次型指标最优、跟踪问题、调节问题和伺服机构问题等。但它在理论上还有不完善的地方,其中两个重要的问题就是优化算法中的鲁棒性问题和最优化算法的简化和实用性问题。大体上说,在最优化理论研究和应用方面应加强的课题主要有:(1)适合于解决工程上普遍问题的稳定性最优化方法的研究;(2)智能最优化方法、最优模糊控制器设计的研究;(3)简单实用的优化集成芯片及最优化控制器的开发和推广利用;(4)复杂系统、模糊动态模型的辩识与优化方法的研究;(5)最优化算法的改进。相信随着对这些问题的研究和探索的不断深入,最优控制技术将越来越成熟和实用,它也将给人们带来不可限量的影响。 参考文献 [1]胡寿松.最优控制理论与系统[M].(第二版)北京:科学出版社,2005. [2]阳明盛.最优化原理、方法及求解软件[M].北京:科学出版社,2006. [3]葛宝明.先进控制理论及其应用[M].北京:机械工业出版社,2007. [4]章卫国.先进控制理论与方法导论[M].西安:西北工业大学出版社,2000.

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

最优化原理大作业

基于粒子群算法的神经网络在电液伺服系统中的应用 摘要:由于人工神经网络在解决具有非线性、不确定性等系统的控制问题上具有极大的潜力,因而在控制领域正引起人们的极大关注,并且已在一些响应较慢的过程控制中获得成功应用。由于电液伺服系统属 于非线性系统,因此本文利用神经网络控制电液伺服系统,并利用粒子群优化算法训练该神经网络的 权值。通过对神经网络的优化实现对电液伺服系统的控制。 关键词:神经网络电液伺服系统粒子群算法优化 近年来,由于神经网络具有大规模并行性、冗余性、容错性、本质的非线性及自组织自学习自适应能力,所以已成功地应用于众多领域。但在具有复杂非线性特性的机电设备的实时控制方面,虽然也有一些神经网络技术的应用研究,但距实用仍有一段距离。电液伺服系统就属于这类设备[1]。 神经网路在用于实时控制时,主要是利用了网络所具有的其输人——输出间的非线性映射能力。它实际上是通过学习来逼近控制对象的动、静态特性。也就是构造实际系统的神经网络模型[2]。本文利用神经网络控制一电液伺服系统,并利用粒子群优化算法训练该神经网络的权值,将结果与BP神经网络控制该系统的结果进行比较。从而得在电液伺服系统中引入神经网络是可行的。 1、粒子群算法 粒子群优化算法(Particle Swarm optimization, PSO)是一种进化计算技术, 由Eberhart博士和kennedy博士发明, 源于对鸟群捕食的行为研究, 粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解[3]。算法最初受到飞鸟和鱼类集群活动的规律性启发,利用群体智能建立了一个简化模型,用组织社会行为代替了进化算法的自然选择机制,通过种群间个体协作来实现对问题最优解的搜索[4]。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[]=v[]+c1*rand()*(pbest[]-present[]) + c2*rand()*(gbest[]-present[]) present[]=persent[]+v[] 式中ω为惯性权重,ω取大值可使算法具有较强的全局搜索能力,ω取小值则算法倾向于局部搜索。一般的做法是将ω初始取0.9并使其随迭代次数的增加而线性递减至0.4,这样就可以先侧重于全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解;c1、c2为两个学习因子,一般取为2;randl和rand2为两个均匀分布在(0,l)之间的随机数;i=1,2,?,m;k=1,2,?,d。另外,粒子在每一维的速度Vi都被一个最大速度Vmax所限制。如果当前粒子的加速度导致它在某一维的速度 超过该维上的最大速度Vmax,则该维的速度被限制为最大速度[5]。 粒子群算法流程如下: (一)初始化粒子群。设群体规模为m,在允许的范围内随机设置粒子的初始位置和速 度。 (二)评价每个粒子的适应值。 (三)调整每一个粒子的位置和速度。 (四)如果达到最大迭代次数genmax或误差达到最初设定数值终止迭代,否则返回(2)。 2、神经网络 神经网络一般由输入层、隐含层、输出层组成。对于输入信号,先向前传播到隐节点,经过节点作用函数后,再把隐节点的输出信息传播到输出节点,最后输出结果。节点的作用函数通常选取S 型函数f(x)=1/(1+e-x)。神经网络算法的学习过程分为正

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

最优化方法大作业答案

武工院你们懂的 1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x

列成表格: 00001216 100114 60105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 0000 1 2 121023 10 40116201002 1 21 211-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 002 1232 30210231 040116201002121211-- ----- 再从底行中选元素-3,和第二列正元素2,迭代一次得 4002 3 03410120280114042001112--- 再迭代一次得

10 23021 062 21023 1010 213 000421 2 10 13- - 选取最优解: 01=x 42=x 23=x 3. 试用DFP 变尺度法求解下列无约束优化问题。 min f (X )=4(x 1-5)2+(x 2-6)2 取初始点X=(8,9)T ,梯度精度ε=0.01。 解:取I H =0,初始点()T X 9,8= 2221)6()5(4)(-+-=x x x f ??????--=?122408)(21x x x f ???? ??=?624)() 0(x f T x f d )6,24()()0()0(--=-?= )0(0)0()1(d x x α+= T )69,248(00αα--= ])669()5248(4min[)(min 2020)0(0)0(--+--?=+αααd x f )6()63(2)24()2458(8) (00)0(0)0(=-?-+-?--=+ααααd d x df 13077.013017 0≈= α ???? ??=???? ??--?+???? ??=21538.886153.462413077.098)1(x

最优化方法与最优控制复习文件

最优化方法与最优控制复习文件 1. 非线性优化的基本概念,最优解的一阶和二阶条件,最速下降方法,拟牛顿法情况,BFGS 修正。 2. 变分问题的最优必要性条件推导,各种情况下的必要性条件,Hamilton 函数、拉格让日 函数。PPT 中讲到的最优控制实例,包括求解过程需要掌握。 3. 极大值原理搞清楚,以及PPT 中的计算实例。 4. 动态规划,原理和简单的求解技术。 5. LQR 问题也要看一下。 除此之外,还有几个作业题目大家做一下,如下所示: 1. 非线性优化中,从直观考虑最速下降法是一种最快速的迭代优化方法,实际过程中为什 么不理想?为什么采用二阶方法?二阶方法中的二阶导数矩阵怎么得到的?有什么要求? (15分) 2. 对于函数形式为 的优化问题,若采用最速下降法求解,请给出最优搜索方向p k 的表达式。变量初值为X0=[1,1,1]T ,请写出第一步迭代过程,以及得到的X1的关于搜索步长α0表达式,在这种情况下,使得))0()0((F 0p x α+最小的搜索步长α0应该等于多少?(15分) 3. 题目要求如下,采用动态规划方法寻求从A 点到B 点的最小时间路径(A 到B 仅能向前 走),(20分) 4. 对于以下简单的标量非线性系统,请通过求解相关HJB 方程得到其最优反馈控制策略。 提示,HJB 微分方程允许如此形式的解。

5.写出如下优化控制问题的Hamiltonian 函数、优化求解的必须性条件,并通过必要性条 件的求解计算出该优化控制和状态轨线。最小化目标函数 6.根据你对优化控制求解方法的了解,目前对于优化控制问题(或者成为动态优化问题, DAOPs问题)有哪些求解方法, 7.

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

优化理论和最优控制

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:2013-2014第二学期 课程名称:优化理论和最优控制 学生姓名: 学号: 提交时间:2014年4月26日

《优化理论和最优控制》结课总结 摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。 关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率 Abstract: The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects.During the 50 years, the rapid development of the scientific technology puts more stricter requires forward to mang controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases.To the control problem,it requests people to research ,analyse,and devise from the point of view of the Optimal Control Theory. There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value. Keywords: The Optimal Control Theroy, The Modern Control Theroy, The

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

大连理工优化方法大作业MATLAB编程

function [x,dk,k]=fjqx(x,s) flag=0; a=0; b=0; k=0; d=1; while(flag==0) [p,q]=getpq(x,d,s); if (p<0) b=d; d=(d+a)/2; end if(p>=0)&&(q>=0) dk=d; x=x+d*s; flag=1; end k=k+1;

if(p>=0)&&(q<0) a=d; d=min{2*d,(d+b)/2}; end end %定义求函数值的函数fun,当输入为x0=(x1,x2)时,输出为f function f=fun(x) f=(x(2)-x(1)^2)^2+(1-x(1))^2; function gf=gfun(x) gf=[-4*x(1)*(x(2)-x(1)^2)+2*(x(1)-1),2*(x(2)-x(1)^2)]; function [p,q]=getpq(x,d,s) p=fun(x)-fun(x+d*s)+0.20*d*gfun(x)*s'; q=gfun(x+d*s)*s'-0.60*gfun(x)*s'; 结果: x=[0,1]; s=[-1,1]; [x,dk,k]=fjqx(x,s) x =-0.0000 1.0000 dk =1.1102e-016 k =54

function f= fun( X ) %所求问题目标函数 f=X(1)^2-2*X(1)*X(2)+2*X(2)^2+X(3)^2+ X(4)^2- X(2)*X(3)+2*X(1)+3*X(2)-X(3); end function g= gfun( X ) %所求问题目标函数梯度 g=[2*X(1)-2*X(2)+2,-2*X(1)+4*X(2)-X(3)+3,2*X(3)-X(2)-1,2*X(4)]; end function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值 %输入:x0是初始点,fun和gfun分别是目标函数和梯度 %输出:x、val分别是最优点和最优值,k是迭代次数 maxk=5000;%最大迭代次数 rho=0.5;sigma=0.4;

最优化方法与最优控制5

根据对偶问题的定义知道,原问题与对偶问题是互为对偶的。在给出原问题的对偶问题过程中应注意的几点关系: (1) 原问题各约束条件中的限制符号,必须统一是“≤”或统一为“≥”,不必考虑向量b 的元素是否是正值; (2) 如原问题有等式约束,则将该条件用等价的两个不等式约束条件替换,即“k f =)x (”可改写成两个不等式条件“k f ≤)x (,k f -≤-)x (”; (3) 对偶前后都要求变量是非负的; (4) 对偶关系是,“极大”对“极小”;“≤”对“≥”;向量c 与向量b 对调位置;矩阵A 转置。 例3-14 给出以下线性规划问题的对偶问题 212max x x z += 12321≤+x x ; 521=+x x ; 16421≤+x x ; 21≥x ;02≥x 。 解:原问题的规范形式及对偶形式写在表3-17中。 表3-17 线性规划对偶问题 原问题 对偶问题 min 543212551612w w w w w s --++= max 212x x z += 1354321≥--++w w w w w 12321≤+x x ; 244321≥-++w w w w 16421≤+x x ; 0≥i w ,51≤≤i 。 521≤+x x ; 对偶问题的线性规划标准形式 521-≤--x x ; max 543212551612w w w w w s ++---= 21-≤-x ; 13654321=---++w w w w w w 01≥x ,02≥x 。 2474321=--++w w w w w 0≥i w ,71≤≤i 。 下面介绍线性规划对偶问题的一些性质。 定理3-4 在式(3-23)定义的对偶问题中,若x 和w 分别是原问题和对偶问题的任意可 行解,则一定有 w b x c T T ≤。 (3-24) 证 因为是可行解,必然满足各自的全部约束条件,即 b A ≤x ,0x ≥; c w T ≥A ,0w ≥。 由此导出, b w x w T T ≤A ; c x w x T T T ≥A 。 标量的转置就是标量本身,即

《最优化与最优控制》教学大纲 - 北京科技大学自动化学院

《最优化与最优控制》教学大纲 课程编号:4050141 开课院系:自动化学院控制科学与工程系课程类别:专业选修 适用专业:自动化 课内总学时:32 学分:2 实验学时:0 设计学时:0 上机学时:0 先修课程:数学分析、线性代数、常微分方程、自动控制原理 执笔:邵立珍 审阅:董洁 一、课程教学目的 最优化与最优控制在工程技术,经济,管理等领域有广泛的应用。通过本课程的学习,使学生学会最优化的基本理论和算法,学会最优控制基本概念和理论。 二、课程教学基本要求 1.课程重点: 要求学生掌握典型的最优化算法,了解最优化的基本理论,掌握最优控制基本概念,掌握极大值原理,动态规划法了解典型最优控制问题。 2.课程难点: 极大值原理,动态规划法。 3.能力培养要求: 能够解决一些典型的最优控制问题,首先能够将实际问题,描述为最优控制问题,然后根据问题的条件,选择合适的求解工具并得到正确的答案。 三、课程教学内容与学时 课堂教学(32学时) 1.最优化概论(2学时) 最优化问题的数学模型 最优化方法及其结构 线性搜索 2.无约束最优化方法(4学时) 局部极小的条件 牛顿法 拟牛顿法 共轭梯度法 方向集法 3.约束优化的理论与方法(8学时) 约束问题和Lagrange乘子法 一阶最优条件 二阶最优条件 罚函数与障碍函数 乘子法 4.二次规划(6学时) 等式约束法 Lagrange方法 有效集法 5.最优控制概论(2学时) 经典控制与现代控制理论简介 最优控制问题的产生 最优控制问题的一般提法 最优控制问题分类 6.变分法与最优控制(4学时) 变分法 用变分法解最优控制 7.极大值原理(4学时) 末端自由的极大值原理 末端受约束的极大值原理 时变系统,复合型性能指标问题 8.动态规划法(2学时) 多步决策与动态规划 离散系统动态规划法 连续系统动态规划法 实验(上机、设计)教学(0学时) 四、教材与参考书 教材 1. 王晓陵,陆军编,《最优化方法与最优控制》,哈尔滨工程大学出版社,2008年,第1版 参考书 1. 吴受章编,《最优控制理论与应用》,机械工业出版社,2008年,第1版 2.李国勇编,《最优控制理论与应用》,国防工业出版社,2008年,第1版 3. 赫孝良等编,《最优化与最优控制》,西安交通大学出版社,1992年,第1版

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

相关文档
相关文档 最新文档