文档库 最新最全的文档下载
当前位置:文档库 › 线性回归分析的数学模型

线性回归分析的数学模型

线性回归分析的数学模型
线性回归分析的数学模型

线性回归分析的数学模型

摘要

在实际问题中常常遇到简单的变量之间的关系,我们会遇到多个变量同处于一个过程之中,它们之间互相联系、互相制约.这些问题中最简单的是线性回归.线性回归分析是对客观事物数量关系的分析,是一种重要的统计分析方法,被广泛的应用于社会经济现象变量之间的影响因素和关联的研究.由于客观事物的联系错综复杂经济现象的变化往往用一个变量无法描述,故本篇论文在深入分析一元线性回归及数学模型的情况下,又详细地介绍了多元线性回归方程的参数估计和其显著性检验等.全面揭示了这种复杂的依存关系,准确测定现象之间的数量变动.以提高预测和控制的准确度.

本文中详细的阐述了线性回归的定义及其线性模型的简单分析并应用了最小二乘法原理.具体介绍了线性回归分析方程参数估计办法和其显著性检验.并充分利用回归方程进行点预测和区间预测.

但复杂的计算给分析方法推广带来了困难,需要相应的操作软件来计算回归分析求解操作过程中的数据.以提高预测和控制的准确度.从而为工农业生产及研究起到强有力的推动作用.

关键词:线性回归;最小二乘法;数学模型

目录

第一章前言 (1)

第二章线性模型 (2)

第一节一元线性模型 (2)

第二节多元线性模型 (4)

第三章参数估计 (5)

第一节一元线性回归方程中的未知参数的估计 (5)

第二节多元线性回归模型的参数估计 (8)

第四章显著性检验 (13)

第一节一元线性回归方程的显著性检验 (13)

第二节多元线性回归方程的显著性检验 (20)

第五章利用回归方程进行点预测和区间预测 (21)

第六章总结 (26)

致谢 (27)

参考文献…………………………………………………………………………

第一章前言

回归分析是对客观事物数量依存关系的分析.是数理统计中的一个常用的方法.是处理多个变量之间相互关系的一种数学方法.

在现实世界中,我们常与各种变量打交道,在解决实际问题过程中,我们常常会遇到多个变量同处于一个过程之中,它们之间互相联系、互相制约.常见的关系有两种:一类为“确定的关系”即变量间有确定性关系,其关系可用函数表达式表示.例如:路程s,时间t,与速度v之间有关系式:s=vt 在圆体给与半径r之间有关系式v= 另外还有一些变量.他们之间也有一定的关系,然而这种关系并不完全确定,不能用函数的形式来表达,在这种关系中至少有一个变量是随机的.例如:人的身高与体重有一定的关系,一般来讲身高高的人体重相对大一些.但是它们之间不能用一个确定的表达式表示出来.这次变量(或至少其中有一个

是随机变量)之间的关系.我们称之为相关关系.又如环境因素与农作物的产量也有相关关系,因为在相同环境条件下农作物的产量也有区别,这也就是说农作物的产量是一个随机变量.回归分析就是研究相关关系的一种数学方法,是寻找不完全确定的变量间的数学关系式并进行统计推断的一种方法.它能帮助我们从一个变量取得的值去估计另一个变量的值.在这种关系中最简单的是线性回归.

线性回归分析是对客观事物数量关系的分析,是一种重要的统计分析方法,被广泛的应用于社会经济现象变量之间的影响因素和关联的研究.由于客观事物的联系错综复杂经济现象的变化往往用一个变量无法描述,故本篇论文在深入分析一元线性回归及数学模型的情况下,又详细地介绍了多元线性回归方程的参数估计和其显著性检验等.全面揭示了这种复杂的依存关系,准确测定现象之间的数量变动.以提高预测和控制的准确度.

第二章线性模型

第一节一元线性模型

在工农业生产及科研中最常遇到的配直线问题,就是回归分析的统计推断方法来求经验公式(线性回归)的问题.如:

例1 今有某种大豆脂肪含量x(%)与蛋白质含量y(%)的测定结果如下表所示:试求它们之间的关系(检验公式).

x

16.5

17.5

18.5

19.5

20.5

21.5

22.5

y

43.5

42.6

42.6

40.6

40.3

38.7

37.2

首先将这组数据在直角坐标系上描成点,如下图:

一般的,按此方法描点所得的图成为散点图.

从图上可以看出:这些数据描出的点分布在一条直线附近.于是推出他们大致可以表示为线性关系

这里再y上加“ ^ ”是为了区别于他的实际值y,因为y与x一般不具有确定的函数关系,这样,在散点图的启发下,我们选定了回归方程是线性的.然后根据统计推断方法来估计出未知数和从而确定所求的经验公式.一般的,设随机变量y与x之间的相关关系可以用线性模型

, ~N(0, ) (1)

来表示.这里x是试验或观察中可以控制或精确观测的变量.即非随机变量,y是可观测的随机变量是不可观测的随机变量(它表示模型误差,是除去x对Y的先行影响之外的且不能测出的其它各个随机因素对Y的影响的总和)

通过实验观测可得到关于变量x和Y的一组数据(,),(,),……(,)因为对于任意一个(i=1,2,……n),在的观测值在取定前不能精确预言它一定能取什么值,故把看作是随机变量Y的观测值.而相互独立的随机变量,,…… 为Y的样本.我们知道,样本与样本观测值之间的区别是:前者是随机变量,后者为取定的数值,但为了叙述方便,今后把样本观察值也成为样本.在符号上均用,,…… 来表示.具体表示的意义也可由上下文分析清楚,设观测值与样本之间满足关系式:

= (i=1,2,……,n)(2)

其中~(i=1,2,……,n)且相互独立.

如果两个变量间的关系用上述线性模型描述,则它们之间存在线性相关关系由(1)有:E(Y)=

我们希望根据观测的数据,求出, 的估计量,这样就可以利用方

程(3)

去估计随机变量Y的数学期望E(Y).也就是说,将,代入方程(1)并略去误差,就得到了随机变量Y和变量x的线性关系式(3).方程(3)通常称为Y对x的线性回归方程或回归方程,其图形称为回归直线.[1]

对于(1)和(2)所确定的线性模型,所考虑的统计推断主要问题是:未知参数和的估计:检验x和Y之间的关系是否可确信是线性关系,即对假设(1)进行检验,对Y进行预测等.

第二节多元线性模型

一般来讲,影响结果Y的因素往往不止一个.设有,…… 共p个元素.这时要用图来确定它们的关系是困难的.常可根据经验做出假设.其中最简单的是假设它们之间有线性关系:

(4)

式中,…… 都是可精确测量或可控制的一般变量,Y是可观测的随机变量,,,……,都是未知参数,是服从分布的不可观测的随机误差.我们对(4)获得了n组相互独立的观测值(样本).

(;,,…… )(i=1,2,……,n)(5)于是由(4)式可知具有数据结构式:

i=1,2,……,n(6)其中各个(i=1,2,……,n)相互独立,且均服从.这就是p元线性回归模型.

对于(4)所确定的模型.统计推断的主要问题是:根据样本去估计未知参数,,……,、,从而建立Y与,…… 间的数量关系式和对比得到的数量关系式的可信度进行统计检验;检验各变量,…… 分别对指标是否有显著影响.[2]

第二章参数的估计

第一节一元线性回归方程参数的估计

有多种确定回归方程也就是确定未知参数, 的估计量,,的方法其中最常用的是“最小二乘法”.

我们将采用“最小二乘法原理”来求出,也就是求,使误差(i=1,2,……,n)的平方和

Q= = (7)

为最小的,值作为参数, 的估计量.

由(7)知Q是, 的二元函数.即Q=Q( , ).按二元函数求极值的方法可得联立方程组:

(8)

这个方程组称为正规方程组

即:

(9)

解此方程组.由(9)的第一式得

因此的估计量为:

(10)

其中

将(10)式代入(9)中的第二式可解得的估计量为

(11)

这样:利用(10)和(11)确定的, 使平方和Q达到最小,从而求出回归方程

这里,分别表示由(10)和(11)确定的, 的值并称为经验截距;为经验回归系数,简称为回归系数,而是的无偏估计量.

由(10)可得回归方程的另一种形式:

(12)

由此可知,回归直线通过点(,),即通过由馆测值的平均值组成的点,并且回归方程由回归系数完全确定.一般的,把由回归方程确定的x的对应值称为回归值.

根据观测数据,利用(10)和(11)来求回归直线时,常把(11)中的分子和分母分别记为和,且按下面的公式计算:

所以(10)和(11)两式可记作:

(13)

(14)又有公式: = = (15)

然而,对总体中的未知参数进行估计,其主要目的还是建立一元线性回归方程.虽然有一个正规方程组存在实际上并不研究它.以下是建立一元线性回归方程的具体步骤:

(1)计算,,,,;

(2)计算,,(在回归方程作显著性检验时用);

(3)计算和写出一元线性回归方程.[3]

序号

1

16.5

43.5

272.25

1892.25

717.75

2

17.5

42.6

306.25

745.50

3 18.5 42.6 342.25 1814.76 788.10

4 19.

5 40.

6 380.25 1648.36 791.70

5 20.5 40.3 420.25 1624.09 826.15

6 21.5 38.

7 462.25

832.05

7

22.5

37.2 506.25 1383.84 837.00

8

23.5

36.0 552.25 1296.00 846.00

9

24.5

34.0 600.25 1156.00 833.00 184.5 355.5 3842.25 14127.75

从而可求得=20.5,=39.5,=60,=-70.5,

-1.175,= - =63.588

所求回归方程为63.588-1.175x

例2 设两个变量x与Y由某种相关关系,测得它的一组数据如下表所示,试求其回归方程.

x

49.2

50.0

49.3

49.0

49.0

49.5

49.8

49.9

50.2

50.2

Y

16.7

17.0

16.8

16.6

16.7

16.8

16.8

17.0

17.0

17.1

解:根据计算得

=49.61,=16.85,=24613.51,=8359.94

=0.3293,= - =0.5129

所以回归方程为0.5129+0.3293x.

第二节多元线性回归模型的参数估计

设,…… ,Y有一组观测值(样本);(,…… ,)(i=1,2,……n).我们希望由估计,,……,所决定出的回归方程能使一切与之间的偏差达到最小.根据最小二乘法的原理即:要求

=

所以只要求偏离平方和

达到最小的

为书写方便以下把“ ”书写成“ ”

根据微积分中值原理和最小二乘法估计是下列方程组的解

(j=1,2,…,n)(16)

经整理即得关于的一个线性方程组

(17)

此方程组(17)称为正规方程组.借此方程组就可求得参数的回归值为了求解方便我们将(17)是写成矩阵的形式,令

1 …

X= 1 …,Y= ,B=

…………………

1 …

记(17)式的系数矩阵为A,常数项矩阵为B,则A恰为,B恰为

即:

1 1 … 1 1 …

= … 1 …

……………………

… 1 …

n …

= … =A

…………

1 1 (1)

= … = =B

………………

因此用矩阵的形式可表式为 = 在回归分析中通常存在这时最小二乘估计可表式为:

= (18)

当我们求出了的最小二乘估计后,就可以建立多元回归方程.[5]

例3 某地区所产原棉的纤维能力Y与纤维的公制支数,纤维的成熟度有关,现实测得28组数据(见下表)试建立Y关于,的二元线性回归方程.

i

i

1

5415

1.58

4.03

15

6208

1.70

3.81

2

5700

1.38

4.01

16

5798

1.59

4.00

3

5674

1.57

4.00

5551 1.61 4.19 4 5698 1.55 4.09 18 6059 1.57 3.81 5 6165 1.52 3.73 19 6060 1.53 3.96 6 5929 1.60 4.09

6059 1.55 3.93 7 7505 1.14 2.95 21 6370 1.45 3.72 8 5920 1.50 3.90 22 6102 1.49 3.84 9 7646 1.18 2.89

6245 1.50 3.88 10 6556 1.27 3.48 24 6644 1.45 3.38 11 6475 1.50 3.60 25 6191 1.58 3.76 12 5907 1.50 3.77

6352

1.50

3.79

13

5697

1.54

3.94

27

5999

1.59

3.79

14

6618

1.2

3.66

28

5815

1.7

4.09 解:先求出方程组的系数矩阵及常数向量,再求=172388 =6156.7143

=41.84 =1.4943

=106.09 =3.7889

=1068433202 =7089539.72

=63.0632 =0.5423

=256087.04 =-1509.8857

=649111.28 =-4054.5386

=159.4481 =0.9193

=404.5287

求,的正规方程组为

7089539.72 -1509.8857 =-4054.5386

-1509.8857 +0.5423 =0.9193

解得=-0.0005181 ,=0.2527 ,= =6.6011

所以Y的关于,的二元线性回归方程为=6.6011-0.0005181 +0.2527

第四章显著性检验

第一节一元线性回归方程的显著性检验

由上面的讨论知,对于任何的两个变量x和Y的一组观测数据()(i=1,2,……,n)按公式(10)和(11)都可以确定一个回归方程

然而事前并不知道Y和x之间是否存在线性关系,如果两个变量Y和x之间并不存在显著的线性相关关系,那么这样确定的回归方程显然是毫无实际意义的.因此,我们首先要判断Y和x是否线性相关,也就是要来检验线性假设是否可信,显然,如果Y和x之间无线性关系,则线性模型的一次项系数=0;否则0.所以检验两个变量之间是否存在线性相关关系,归根到底是要检验假设

根据现行假设对数据所提的要求可知,观察值,,…… 之间的差异,是有两个方面的原因引起的:(1)自变量x的值不相同;(2)其它因素的影响,检验是否成立的问题,也就是检验这两方面的影响哪一个是主要的问题.因此,就必须把他们引起的差异从Y的总的差异中分解出来.也就是说,为了选择适当的检验统计量,先导出离差平方和的分解因式.[6]

一、离差平方和的分解公式

观察值(i=1,2,……,n),与其平均值的离差平方和,称为总的离差平方和,记作

因为

=

其中:

=2

=2

=2

=2

所以

=

由于中的,为(10)和(11)所确定.即它们满足正规方程组(9)的解.因此定义项

=

于是得到了总离差平方和的分解公式:

其中

(19)

是回归直线上横坐标为的点的纵坐标,并且的平均值为,是这n个数的偏差平方和,它描述了的离散程度,还说明它是来源于的分散性,并且是通过x对于Y的线性影响而反映出来的,所以,称为回归平方和

而=

它正是前面讨论的的最小值,在假设(1)式的条件下它是由不可观察的随机变量引起的,也就是说,它是由其它未控制的因素及试验误差引起的,它的大小反映了其它因素以及试验误差对实验结果得影响.我们称为剩余平方和或残差平方和.[7]

二、、的性质及其分布

由以上分析可知,要解决判断Y和x之间是否存在线性相关关系的问题,需要通过比较回归平方和和剩余平方和来实现.为了更清楚地说明这一点,并寻求出检验统计量,考察估计量,的性质及其分布.

(一)的分布

由(14)式可知

=

在相互独立且服从同一分布的假定下由(2)知,,…… 是P个相互独立的随机变量,且(i=1,2,……,n)所以他们的平均值的数学期望为:

因为是的线性函数,且有:

这说明是的无偏估计量且的方差为

所以

即:

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

excel一元及多元线性回归实例

野外实习资料的数理统计分析 一元线性回归分析 一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。 对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在 X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。 在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示: Y = a + bX 这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。其中a为常数,b为Y对于X的回归系数。 对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:

式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。 当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。 得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下: 式中各符号的意义同上。 在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

数学建模——回归分析

回归分析——20121060025 吕佳琪 企业编号生产性固定资产价值(万元)工业总产值(万元) 1318524 29101019 3200638 4409815 5415913 6502928 7314605 812101516 910221219 1012251624 合计65259801 (2)建立直线回归方程; (3)计算估价标准误差; (4)估计生产性固定资产(自变量)为1100万元时总产值(因变量)的可能值。解: (1)画出散点图,观察二变量的相关方向 x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; plot(x,y,'or') xlabel('生产性固定资产价值(万元)') ylabel('工业总产值(万元)') 由图形可得,二变量的相关方向应为直线 (2)

x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0、05); b,bint,stats b = 395、5670 0、8958 bint = 210、4845 580、6495 0、6500 1、1417 stats = 1、0e+004 * 0、0001 0、0071 0、0000 1、6035 上述相关系数r为1,显著性水平为0 Y=395、5670+0、8958*x (3) 计算方法:W=((Y1-y1)^2+……+(Y10-y10)^2)^(1/2)/10 利用SPSS进行回归分析:

一元线性回归模型案例分析

一元线性回归模型案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

eviews多元线性回归案例分析

中国税收增长的分析 一、研究的目的要求 改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。 影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。(2)公共财政的需求,税收收入是财政的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。(3)物价水平。我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。(4)税收政策因素。我国自1978年以来经历了两次大的税制改革,一次是1984—1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。税制改革对税收会产生影响,特别是1985年税收陡增215.42%。但是第二次税制改革对税收的增长速度的影响不是非常大。因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。 二、模型设定 为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收”(简称“税收收入”)作为被解释变量,以放映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数” 从《中国统计年鉴》收集到以下数据 财政收入(亿元) Y 国内生产总值(亿 元) X2 财政支出(亿 元) X3 商品零售价格指 数(%) X4 1978519.283624.11122.09100.7 1979537.824038.21281.79102 1980571.74517.81228.83106

数学建模之回归分析法

什么是回归分析 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 回归分析之一多元线性回归模型案例解析 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:(数据可以先用excel建立再通过spss打开) 点击“分析”——回归——线性——进入如下图所示的界面:

多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的降到1980年,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

, 设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年 年份 @ 人口自然增长率 (%。) 国民总收入 (亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15037 1366 1989 … 17001 18 1519 1990 18718 1644 1991 【 21826 1893 1992 26937 2311 1993 . 35260 2998 1994 48108 4044 1995 — 59811 5046 1996 70142 5846 1997 ~ 78061 6420 1998 83024 6796 1999 【 88479 7159 2000 98000 7858 2001 [ 108068 8622 2002 119096 9398 2003 : 135174 10542 2004 159587 12336 2005 、 184089 14040 2006 213132 16024

回归分析在数学建模中的应用

摘要 回归分析和方差分析是探究和处理相关关系的两个重要的分支,其中回归分析方法是预测方面最常用的数学方法,它是利用统计数据来确定变量之间的关系,并且依据这种关系来预测未来的发展趋势。本文主要介绍了一元线性回归分析方法和多元线性回归分析方法的一般思想方法和一般步骤,并且用它们来研究和分析我们在生活中常遇到的一些难以用函数形式确定的变量之间的关系。在解决的过程中,建立回归方程,再通过该回归方程进行预测。 关键词:多元线性回归分析;参数估计;F检验

回归分析在数学建模中的应用 Abstract Regression analysis and analysis of variance is the inquiry and processing of the correlation between two important branches, wherein the regression analysis method is the most commonly used mathematical prediction method, it is the use of statistical data to determine the relationship between the variables, and based on this relationship predict future trends. introduces a linear regression analysis and multiple linear regression analysis method general way of thinking and the general steps, and use them to research and analysis that we encounter in our life, are difficult to determine as a function relationship between the variables in the solving process, the regression equation is established by the regression equation to predict. Keywords:Multiple linear regression analysis; parameter estimation;inspection II

案例分析 一元线性回归模型

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,?最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定?

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

数学建模-回归分析-多元回归分析

1、 多元线性回归在回归分析中,如果有两个或两个以上的自变量,就称为 多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。(multivariable linear regression model ) 多元线性回归模型的一般形式为: 其中k 为解释变量的数目,j β (j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为: j β也被称为偏回归系数(partial regression coefficient)。 2、 多元线性回归计算模型 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法或最大似然估计法求解参数。 设( 11 x , 12 x ,…, 1p x , 1 y ),…,( 1 n x , 2 n x ,…, np x , n y )是一个样本, 用最大似然估计法估计参数: 达 到最小。

把(4)式化简可得: 引入矩阵: 方程组(5)可以化简得: 可得最大似然估计值:

3、Matlab 多元线性回归的实现 多元线性回归在Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中 (2)[b,bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检 验回归模型 ①bint 表示回归系数的区间估计. ②r 表示残差 ③rint 表示置信区间 ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r2、F 值、与F 对应的 概率p 说明:相关系数r2越接近1,说明回归方程越显著;F>F1-alpha(p,n-p-1) 时拒绝H0,F 越大,说明回归方程越显著;与F 对应的概率p<α 时拒绝H0,回归模型成立。 ⑤alpha 表示显著性水平(缺省时为0.05) (3)rcoplot(r,rint) 画出残差及其置信区间

数学建模回归分析多元回归分析

1、 多元线性回归 在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。(multivariable linear regression model ) 多元线性回归模型的一般形式为: 其中k 为解释变量的数目,j β (j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为: j β也被称为偏回归系数(partial regression coefficient)。 2、 多元线性回归计算模型 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法或最大似然估计法求解参数。 设( 11 x , 12 x ,…, 1p x , 1 y ),…,( 1 n x , 2 n x ,…, np x , n y )是一个样本, 用最大似然估计法估计参数: 达 到最小。

把(4)式化简可得: 引入矩阵: 方程组(5)可以化简得: 可得最大似然估计值:

3、Matlab 多元线性回归的实现 多元线性回归在Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中 (2)[b,bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检 验回归模型 ①bint 表示回归系数的区间估计. ②r 表示残差 ③rint 表示置信区间 ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r2、F 值、与F 对应的 概率p 说明:相关系数r2越接近1,说明回归方程越显著;F>F1-alpha(p,n-p-1) 时拒绝H0,F 越大,说明回归方程越显著;与F 对应的概率p<α 时拒绝H0,回归模型成立。 ⑤alpha 表示显著性水平(缺省时为0.05) (3)rcoplot(r,rint) 画出残差及其置信区间

数学建模多元回归模型

实习报告书 学生姓名: 学号: 学院名称: 专业名称: 实习时间: 2014年 06 月 05 日 第六次实验报告要求 实验目的: 掌握多元线性回归模型的原理,多元线性回归模型的建立、估计、检验及解释变量的增减的方法,以及运用相应的Matlab软件的函数计算。 实验内容: 已知某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据,见表1。请选择恰当的解释变量和恰当的模型,建立粮食年销售量的回归模型,并对其进行估计和检验。

表1 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据 年份粮食年销售 量Y/万吨 常住人口 X2/万人 人均收 入X3/ 元 肉销售 量X4/万 吨 蛋销售 量X5/ 万吨 鱼虾销 售量 X6/万吨 197498.45560.20153.20 6.53 1.23 1.89 1975100.70603.11190.009.12 1.30 2.03 1976102.80668.05240.308.10 1.80 2.71 1977133.95715.47301.1210.10 2.09 3.00 1978140.13724.27361.0010.93 2.39 3.29 1979143.11736.13420.0011.85 3.90 5.24 1980146.15748.91491.7612.28 5.13 6.83 1981144.60760.32501.0013.50 5.418.36 1982148.94774.92529.2015.29 6.0910.07

1983158.55785.30552.7218.107.9712.57 1984169.68795.50771.1619.6110.1815.12 1985162.14804.80811.8017.2211.7918.25 1986170.09814.94988.4318.6011.5420.59 1987178.69828.731094.6 523.5311.6823.37 实验要求: 撰写实验报告,参考第10章中牙膏销售量,软件开发人员的薪金两个案例,写出建模过程,包括以下步骤 1.分析影响因变量Y的主要影响因素及经济意义; 影响因变量Y的主要影响因素有常住人口数量,城市中人口越多,需要的粮食数量就越多,粮食的年销售量就会相应增加。粮食销量还和人均收入有关,人均收入增加了,居民所能购买的粮食数量也会相应增加。另外,肉类销量、蛋销售量、鱼虾销售量也会对粮食的销售量有影响,这些销量增加了,也表示居民的饮食结构也在发生变化,生活水平在提高,所以相应的,生活水平提升了,居民也有能力购买更多的粮食。

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

回归模型的残差分析

回归模型的残差分析 山东 胡大波 判断回归模型的拟合效果是回归分析的重要内容,在回归分析中,通常用残差分析来判断回归模型的拟合效果。下面具体分析残差分析的途径及具体例子。 一、 残差分析的两种方法 1、差分析的基本方法是由回归方程作出残差图,通过观测残差图,以分析和发现观测数据中可能出现的错误以及所选用的回归模型是否恰当;在残差图中,残差点比较均匀地落在水平区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型的拟合精度越高,回归方程的预报精度越高。 2、可以进一步通过相关指数∑∑==--- =n i i n i i i y y y y R 1 2 1 2 ^ 2 )()(1来衡量回归模型的拟合效果,一般 规律是2 R 越大,残差平方和就越小,从而回归模型的拟合效果越好。 二、 典例分析: 例1、某运动员训练次数与运动成绩之间的数据关系如下: 试预测该运动员训练47次以及55次的成绩。 解答:(1)作出该运动员训练次数x 与成绩y 之间的散点图,如图1所示,由散点图可 知,它们之间具有线性相关关系。 (2)列表计算: 由上表可求得875.40,25.39==y x , 126568 1 2 =∑=i i x ,137318 1 2=∑=i i y ,

131808 1 =∑=i i i y x ,所以∑∑==---= 8 1 2 8 1 )() )((i i i i i x x y y x x β.0415.188 1 2 28 1≈--= ∑∑==i i i i i x x y x y x 00302.0-≈-=x y βα,所以回归直线方程为.00302.00415.1^ -=x y (3)计算相关系数 将上述数据代入∑∑∑===---= 8 1 8 1 2 22 2 8 1 ) 8)(8(8i i i i i i i y y x x y x y x r 得992704.0=r ,查表可知 707.005.0=r ,而05.0r r >,故y 与x 之间存在显着的相关关系。 (4)残差分析: 作残差图如图2,由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适。 计算残差的方差得884113.02 =σ ,说明预报的精度较高。 (5)计算相关指数2 R 计算相关指数2 R =0.9855.说明该运动员的成绩的差异有98.55%是由训练次数引起的。 (6)做出预报 由上述分析可知,我们可用回归方程 .00302.00415.1^ -=x y 作为该运动员成绩的预报值。 将x =47和x =55分别代入该方程可得y =49和y =57, 故预测运动员训练47次和55次的成绩分别为49和57. 点评:一般地,建立回归模型的基本步骤为: (1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; (2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等); (3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y =bx +a ); (4)按一定规则估计回归方程中的参数(如最小二乘法); (5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性等等),若存在异常,则检查数据是否有误,或模型是否合适等。 例2、某城区为研究城镇居民月家庭人均生活费支出和月人均收入的相关关系,随机抽取

数学建模统计模型

数学建模

论文题目: 一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男). 请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.

一、摘要 在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻

时间之间的数据进行深层次地处理并加以讨论概率值P (是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。 首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。对模型Ⅰ用m i n i t a b 软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b 软件进行回归分析后,结果合理。最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型: Y=1x 3x 1x 3x 2 1 x 对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模 型:Y=1x1x 3x 2 1 x关键词止痛剂药剂量性别病痛减轻时 间

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析 多元线性回归分析方法操作与分析 实验目的: 引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。 实验变量: 以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。 实验方法:多元线性回归分析法 软件:spss19.0 操作过程: 第一步:导入Excel数据文件 1.open data document——open data——open;

2. Opening excel data source——OK. 第二步: 1.在最上面菜单里面选中Analyze——Regression——Linear,Dependent (因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise. 进入如下界面: 2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、

Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue. 3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.

数学建模实验 ——曲线拟合与回归分析

曲线拟合与回归分析 1、有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下: (1)说明两变量之间的相关方向; (2)建立直线回归方程; (3)计算估计标准误差; (4)估计生产性固定资产(自变量)为1100万元时的总资产 (因变量)的可能值。 解: (1)工业总产值是随着生产性固定资产价值的增长而增长的,存 在正向相关性。 用spss回归 (2)spss回归可知:若用y表示工业总产值(万元),用x表示生产性固定资产,二者可用如下的表达式近似表示: .0+ y =x 896 . 395 567 (3)spss回归知标准误差为80.216(万元)。 (4)当固定资产为1100时,总产值为: (0.896*1100+395.567-80.216~0.896*1100+395.567+80.216) 即(1301.0~146.4)这个范围内的某个值。 MATLAB程序如下所示: function [b,bint,r,rint,stats] = regression1 x = [318 910 200 409 415 502 314 1210 1022 1225]; y = [524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0.05); display(b); display(stats); x1 = [300:10:1250]; y1 = b(1) + b(2)*x1; figure;plot(x,y,'ro',x1,y1,'g-');

初中数学数学论文线性回归分析的数学模型

线性回归分析的数学模型 在实际问题中常常遇到简单的变量之间的关系,我们会遇到多个变量同处于一个过程之中,它们之间互相联系、互相制约.这些问题中最简单的是线性回归.线性回归分析是对客观事物数量关系的分析,是一种重要的统计分析方法,被广泛的应用于社会经济现象变量之间的影响因素和关联的研究.由于客观事物的联系错综复杂经济现象的变化往往用一个变量无法描述,故本篇论文在深入分析一元线性回归及数学模型的情况下,又详细地介绍了多元线性回归方程的参数估计和其显著性检验等.全面揭示了这种复杂的依存关系,准确测定现象之间的数量变动.以提高预测和控制的准确度. 本文中详细的阐述了线性回归的定义及其线性模型的简单分析并应用了最小二乘法原理.具体介绍了线性回归分析方程参数估计办法和其显著性检验.并充分利用回归方程进行点预测和区间预测. 但复杂的计算给分析方法推广带来了困难,需要相应的操作软件来计算回归分析求解操作过程中的数据.以提高预测和控制的准确度.从而为工农业生产及研究起到强有力的推动作用. 关键词:线性回归;最小二乘法;数学模型 目录 第一章前言 (1) 第二章线性模型 (2) 第一节一元线性模型 (2) 第二节多元线性模型 (4) 第三章参数估计 (5) 第一节一元线性回归方程中的未知参数的估计 (5) 第二节多元线性回归模型的参数估计 (8) 第四章显著性检验 (13) 第一节一元线性回归方程的显著性检验 (13) 第二节多元线性回归方程的显著性检验 (20) 第五章利用回归方程进行点预测和区间预测 (21) 第六章总结 (26) 致谢 (27) 参考文献………………………………………………………………………… 第一章前言

相关文档
相关文档 最新文档