文档库 最新最全的文档下载
当前位置:文档库 › 飞机升力计算方法

飞机升力计算方法

飞机升力计算方法
飞机升力计算方法

飞机升力计算方法

升力L=1/2*空气密度*速度的平方*机翼面积*升力系数

1.空气密度在标准状况下为1.297kg/m2;

2.升力系数

叶片翼型,失速,升力计算

叶片的空气动力学基础 鹏芃 在风力机基础知识一节中介绍过叶片的升力与阻力基本知识,本节将进一步介绍相关理论知识。在风力础知识一节中已作介绍的不再重复,仅介绍有关内容的提高部分。 常用叶片的翼型 下面是一幅常见翼型的几何参数图,该翼型的中弧线是一条向上弯曲的弧线,称这种翼型为不对称翼型弯度翼型。 当弯度等于0时,中弧线与弦线重合,称这种翼型为对称翼型,下图为一个对称翼型。

下图是一个性能较好的低阻翼型,是带弯度翼型,在水平轴风力机中应用较多。 带弯度翼型的升力与失速 下面为一个低阻翼型的气流动力图,翼型弦线与气流方向的夹角(攻角)为α,正常运行时气流附着翼面流过,靠近翼型上方的气流速度比下面的气流速度快,根据流体力学的伯努利原理,翼型受到一个上力Fl,当然翼型也会受到气流的阻力Fd。

这是正常的工作状态,有较大的升力且阻力很小。但翼型并不是在任何情况下都能产生大的升力。如果大到一定程度,气体将不再附着翼型表面流过,在翼型上方气流会发生分离,翼型前缘后方会产生涡致阻力急剧上升升力下降,这种情况称为失速。见下图 翼型什么时候开始失速,下面是这种翼型的升力系数与阻力系数随攻角的变化曲线参考图,图中绿色的力曲线、棕色的是阻力曲线。在曲线中可看出,攻角α在11度以下时升力随α增大而增大,当攻角α大

度时进入失速状态,升力骤然下降,阻力大幅上升,在α等于45度时升力与阻力基本相等。翼型开始失攻角α的值称为失速角。 大多数有弯度的薄翼型与该曲线所示特性相近。在曲线图中看出翼型在攻角为0时依然有升力,这是因使攻角为0,翼型上方气流速度仍比下方快,故有升力,当攻角为一负值时,升力才为0,此时的攻角称升攻角或绝对零攻角。 翼型在失速前阻力是很小的,在近似计算中可忽略不计。 当攻角为0时,有弯度的翼型的压力中心在翼型的中部,随着攻角的增加(不大于失速角)压力中心向动到1/4弦长位置。

机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式

机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算) 2009-04-16 08:02 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。 在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力 滑翔比与升阻比

升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。 如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。这个在SU-27和歼11-B 身上就能体现出来,歼11-B应该拥有更大的滑翔比。 螺旋桨拉力计算公式(静态拉力估算) 你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢下面我们就列一个估算公式解决这个问题 螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数()=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数()=拉力(克) 前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在。1000米以下基本可以取1。 例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得: 100×50×10×502×1×=公斤。 如果转速达到6000转/分,那么拉力等于: 100×50×10×1002×1×=125公斤 注:仅供参考

飞机升力与阻力详解(图文)

飞行基础知识①升力与阻力详解(图文) 升力是怎样产生的 任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。 然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢? 相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。 机翼是怎样产生升力的呢? 让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。这一基本原理在足球运动中也得到了体现。大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。 对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是机翼不动,而空气气流以一定的速度流过机翼。空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,

螺旋桨计算公式

直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

螺旋桨拉力计算

机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。 在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力 滑翔比与升阻比 升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。 如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。这个在SU-27和歼11-B 身上就能体现出来,歼11-B应该拥有更大的滑翔比。 螺旋桨拉力计算公式(静态拉力估算)

你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢?下面我们就列一个估算公式解决这个问题 螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克) 前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。1000米以下基本可以取1。 例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得: 100×50×10×502×1×0.00025=31.25公斤。 如果转速达到6000转/分,那么拉力等于: 100×50×10×1002×1×0.00025=125公斤 展弦比: 展弦比即机翼翼展和平均几何弦之比,常用以下公式表示: λ=l/b=l^2/S 这里l为机翼展长,b为几何弦长,S为机翼面积。因此它也可以表述成 翼展(机翼的长度)的平方除以机翼面积,如圆形机翼就是直径的平方除以圆面积,用以表现机翼相对的展张程度。 从空气动力学基础理论来说!展弦比越大,诱导阻力会越小,升阻比会提高。 但同时,较大的展弦比会降低飞机的机动能力,因为较大的展弦比会使诱导阻力减小,但同时使翼面切向阻力加大。飞机维持平飞时稳定性极好,但一旦需要机动,则翼载和阻力都很大。加速性和超音速性能都很差。 相反,随着后掠角的加大,展弦比会呈现一次函数线性衰减,此时诱导阻力增加,升阻比降低,但飞机在超音速飞行时的性能明显改善,机动性也提高。 所以,对于要求长航程,稳定飞行的飞机而言,需要大展弦比设计。而战斗机多采用小展弦比设计。例如:B-52轰炸机展弦比为6.5,U-2侦察机展弦比10.6,全球鹰无人机展弦比更是高达25;而小航程、高机动性飞机,如歼-8展弦比为2,Su-27展弦比为3.5,F-117展弦比为1.65。 低速飞机设计的关键一是加大升力面积二是减轻重量,通过降低翼载荷实现低速。加大翼展可获得大升力面积但从结构强度考虑将大大增加重量,而仅仅通过加大翼弦获得大升力面积

飞机攻角迎角升力系数阻力系数

飞机攻角 对于飞机来说,攻角是指飞机的升力方向矢量与飞机纵轴之间的夹角。[2] 升力矢量指示在西方战机HUD上很常见的。它也叫做飞行航径指示 (FPM),它指示出了飞机实际的运动方向,而不是相应的机头所指。如 果你将升力矢量对准地面,最后飞机将会飞到那一点去。这个指示对飞行 员来说是很重要的工具,可以在战斗机动和进场落地时使用。 现代高机动性的飞机像F15,可以执行高攻角(AOA)机动-当飞机 飞向一个方向时纵轴(水平线)却指向另外一个方向。 升力矢量也许不会和飞机的纵轴(水平线)重叠。升力矢量指示和 飞机纵轴之间的夹角叫攻角。当飞行员向后拉杆时,通常会增加飞机的攻角。如果在平飞时飞行员减少引擎推力,飞机会开始掉高度,为了保持平飞,飞行员会拉杆,因此也会增加攻角。 飞机的升力特征是和攻角以及表速连在一起的。当飞机攻角增加到危险数值时,升力也会增加。当攻角不变时增加表速也会增加升力。但是,当攻角和表速增加时机身的诱导阻力也会增加。 当攻角增加到危险数值时,机翼上的气流会被干扰从而损失升力。气流会从左右机翼开始分离引起侧滑,最终导致失速。当进入失速的时候,飞机围绕垂直轴旋转并且不停的损失高度。某些型号的飞机在螺旋时会拌有俯仰。当飞机进入失速状态时,飞行员应集中他所有的注意力来尝试重新控制飞机。有很多种可以让飞机从新恢复控制的方法。一般来说,减少推力,向螺旋的反方向踩舵,控制装置应该保持在这个 位置直到飞机不再螺旋并且可以控制,将飞机改平,小心不要再在进入螺旋 迎角 迎角(Angle of attack)对于,机翼的前进方向(相当于气流的方向)和(与机身轴线不同)的夹角叫迎角,也称为,它是确定机翼在气流中姿态的。 基准迎角的计算公式为W/Cl*Q*S 升力系数 一个无量纲量,指物体所受到的升力与气流动压和参考面积的乘积之比。 中文名升力系数外文名lift coefficient 解释动压和面积的乘积之比别名举力系数 属性是一个无量纲量 定义 系数C L的定义为

飞机升力实验报告

飞机升力演示实验报告 【实验目的】:通过实验了解飞机升力是如何产生的。 【实验仪器】:飞机升力演示仪。 【实验原理】:一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。当气流迎面流过机翼时,流线分布情况如图。原来是一股气流,由于机翼的插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,使上方的那股气流的通道变窄,流速加快。 流体流动时,同一水平流面上的压强P和流速V根据伯努利原理 可以得知满足下面关系:流速大的地方压强小。机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。 【实验装置】飞机升力演示仪

【实验步骤】打开电扇开关,让气流流过机翼,模拟飞机向前飞行。观察两种形状机翼的不同运动情况:流线型机翼向上升起,平直机翼纹丝不动。 实验时,模拟流动空气的出口与机翼调整好一定的方向和角度,否则现象不明显。 【实验结论】机翼的形状是上凸下平的

飞机前进时,机翼与周围的空气发生相对运动,相当于有气流迎面流过机翼。气流被机翼分成上下两部分,由于机翼横截面的形状上下不对称,在相同时间内,机翼上方气流通过的路程较长,因而速度较大,它对机翼的压强较小;下方气流通过的路程较短,因而速度较小,它对机翼的压强较大 飞机上下表面的压强差产生了飞机向上的升力。 【实验原理的应用】 了解了飞机升力的原理后,我们发现伯努利原理在我们现实生活中的应用还有很多。 (1)弧圈香蕉——能转弯。 (2)火车站台——安全线。

(3)汽车疾驶——叶随迁; (4)水翼船儿——跑得欢。 (5)龙卷风旋——水上天; (6)台风过后——屋顶翻。 (7)赛车风翼——增安全; (8)两船并行——不靠近。 (9)非洲鼠洞——空调鲜; (10)烟囱风起——顺排烟 案例1:“香蕉球” 为什么球在自西向东旋转时,西侧的空气流速快呢? 一方面空气迎着球向后流动,另一方面,由于空气与球之间的摩擦,球周围的空气又会被带着一起旋转,这时,球旋转的方向与球前进方向相同一侧相对于空气的速度比另一侧小。

飞机攻角 迎角 升力系数 阻力系数

飞机攻角 编辑 对于飞机来说,攻角是指飞机的升力方向矢量与飞机纵轴之间的夹角。[2] 升力矢量指示在西方战机HUD上很常见的。它也叫做飞行 航径指示(FPM),它指示出了飞机实际的运动方向,而不是相 应的机头所指。如果你将升力矢量对准地面,最后飞机将会飞到 那一点去。这个指示对飞行员来说是很重要的工具,可以在战斗 机动和进场落地时使用。 现代高机动性的飞机像F15,可以执行高攻角(AOA)机动 -当飞机飞向一个方向时纵轴(水平线)却指向另外一个方向。 升力矢量也许不会和飞机的纵轴(水平线)重叠。升力矢量指示和飞机纵轴之间的夹角叫攻角。当飞行员向后拉杆时,通常会增加飞机的攻角。如果在平飞时飞行员减少引擎推力,飞机会开始掉高度,为了保持平飞,飞行员会拉杆,因此也会增加攻角。 飞机的升力特征是和攻角以及表速连在一起的。当飞机攻角增加到危险数值时,升力也会增加。当攻角不变时增加表速也会增加升力。但是,当攻角和表速增加时机身的诱导阻力也会增加。 当攻角增加到危险数值时,机翼上的气流会被干扰从而损失升力。气流会从左右机翼开始分离引起侧滑,最终导致失速。当进入失速的时候,飞机围绕垂直轴旋转并且不停的损失高度。某些型号的飞机在螺旋时会拌有俯仰。当飞机进入失速状态时,飞行员应集中他所有的注意力来尝试重新控制飞机。有很多种可以让飞机从新恢复控制的方法。一般来说,减少推力,向螺旋的反方向踩舵,控制装置应该保持在这个位置直到飞机不再螺旋并且可以控制,将飞机改平,小心不要再在进入螺旋

升力系数 一个无量纲量,指物体所受到的升力与气流动压和参考面积的乘积之比。 中文名升力系数外文名lift coefficient 解释动压和面积的乘积之比别名举力系数 属性是一个无量纲量 定义 举力系数C L的定义为

飞机升力与阻力详解

升力是怎样产生的 任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。 然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢? 相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。 机翼是怎样产生升力的呢? 让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。这一基本原理在足球运动中也得到了体现。大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,

飞机机翼升力的计算公式

飞机机翼升力的计算公 式 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

飞机机翼升力的计算公式中C是升力系数,S是机翼的面积。v是飞机的速度。ρ是大气密度。那么各个数据的单位是什么? Y=1/2ρCSv2 等式两边的单位肯定相同的。 但是我要说,这个公式中各个量采用什么单位都是无所谓的,因为里面含有一个C(升力系数)的量,这个量的单位会随着别的量选用的单位而变化,来保证等式两边的单位是统一的。等式两边的单位肯定相同的。 例如,各个物理量都采用国际单位制,即等式左边升力Y单位选用N,等式右边ρ选用k g/m3,S选用m2,V选用m/s。那么C的单位就应该是n·s/kg(C绝对不是没有单位的,这点楼上两位说错了),这样才能保证左边运算结果的单位是N。这个单位很奇怪,而且这个单位并没有什么物理意义,只是为了平衡等式两边的单位。 上面只是举了一个例子,而公式采用哪一套单位制都可以。事实上,飞机领域都是西方国家占主导地位,他们采用的单位并不是国际单位制,而是英制单位,长度单位是英寸、英尺、英里等,面积单位可能就是平方英尺等,重量单位是磅,速度单位是英里/小时,等等。而采用这一套单位,升力系数C的单位又不同了,还是要平衡两边的单位。 而对于这个公式,我们没有必要追求他到底用什么单位,只要知道这个数量关系就可以了。而如果你要应用这个公式的话,也是有难度的,因为C这个系数并不像普通公式里的系数一样固定不变,它是随着机翼迎角、机翼形状等因素而变化的,其值也应该由实验测量得出,而不能计算得出。所以,除非做很严谨的科学研究,应用此公式的现实意义并不大。 Y=1/2ρCSv2

飞机起降过程物理过程分析

飞机起降过程物理过程分析 摘要:随着经济的发展,人们生活水平的提高,越来越多的人选择方便快捷的飞机作为主要出行方式。中国低空领域的开放,将会进一步促进整个行业的大发展。人们的生活也越来越离不开飞机。飞机涉及到非常多的知识和原理。文章将对飞机的原理和相关的运行规定进行整理分析,以及理想情况下飞机降落过程的受力分析来展示飞机降落的整个过程。 关键词:飞机;着陆;起飞;标准降落;受力分析 1 起飞着陆具体过程 在飞机的整个飞行中起飞着陆是最复杂、最危险的阶段,在这一阶段发生事故的概率最高。 当飞机得到起飞命令以后,飞行员加大飞机的油门开始滑跑,当滑跑速度达到一定数值(离地速度)时,飞行员向后拉驾驶杆使飞机的迎角增加,这样飞机的升力就随着滑跑速度和迎角的增加而增大。当升力增加到大于飞机的重力时,飞机便开始离开地面。以后,飞机继续加速爬升,当飞机爬升到离地面10~15米时,飞行员便开始收起落架以减小飞行阻力。当飞机爬升到安全高度以后,起飞阶段就结束了。

飞机着陆过程是指飞机从安全高度以3度下降角下降,发动机慢车,飞机近似等速直线飞行。在离地6到12米时,开始将飞机拉平。飞机减速平飞,继续增加迎角接近护尾迎角,速度继续降低。当升力小于重力时,飞机飘落主轮接地后,保持两点滑跑,利用空气阻力减速到一定速度后,飞机前轮接地,三点滑跑并开始刹车直到停止。整个过程可概括为:下降、拉平、平飘、接地、滑跑。 2 升力产生的物理过程 空气在机翼迎风时的流向图。如图1所示。 空气在机翼上方要随机翼的形状走过更多的行程,于是机翼上方的流速小于机翼下方,根据气体性质,那么机翼上方的气体压强要小于机翼下方,于是形成了上下的气压差,飞机的升力本质上由此产生。 3 起飞性能参数 提高飞机起飞时的加速度,使它尽快地达到离地速度,以缩短起飞滑跑距离。飞机起飞是一个直线加速运动,它分两个阶段,即最大功率地面滑跑阶段,以及加速爬升阶段。飞机起跑速度继续增加到一定数值时,机翼的升力和重量大致相等,驾驶员拉杆向后,飞机抬起机头,前轮离地,这个速度称为抬前轮速度。这时飞机开始升空,起飞的第一阶段滑跑完成,转入第二阶段即飞机飞到规定的高度,起飞阶段结束。

螺旋桨计算公式

) 直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量这个问题就是直升机的飞行原理: (以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在~之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式

机翼所受升力与机翼形状的关系

机翼所受升力与机翼形状的关系 XXX中高一X班物理组吴XX 前言 随着科学技术的发展,飞机已成为现代社会较为常见的交通工具,它具有速度快,运输效率高等优点,是最快捷的现代化交通工具,在交通运输行业中有着重要地位。飞机飞行依靠的是空气动力,飞机的升力主要由机翼提供,在其他条件相同时,飞机所受升力与机翼形状有关,因此研究飞机机翼与其升力的关系,对飞机的发展有着重要意义。 研究经过 要探究机翼所受升力与机翼形状的关系,就要先较为深入和透彻地了解升力。升力一词在初中课本有所提及,所以对于组员来说并不算陌生,但初中课本只是笼统地科普了相关知识,对其进行了概括性的描述,这并不能满足本次研究的知识需要。所以在研究机翼形状与升力的关系之前,小组成员商议决定先了解升力的定义及其来源。随后组员进入校内图书馆进行相关书籍的查阅并在网上收集相关资料。从收集的资料中,我们得到了升力的定义:一般认为在空气中,当向上的力大于向下的力时,其合力方向向上,使物体上升,这个合力叫做升力。从定义上分析,我们可以知道升力的本质是合力,也就是说,影响其分力的大小及方向的因素都可能成为最终影响升力的因素。那么,影响升力的因素就较为复杂了,这促使我们决定继续探究升力的成因。 在第二次研究活动中,我们的主要目的就是了解升力的成因,从而分析影响升力大小及方向的因素有哪些。通过我们查阅的资料,我们发现判断升力的大小及方向要考虑实际流体的粘性、可压缩性等诸多条件,具体就是由物体在空气中运动形成了绕翼环流,从而产生上下压力差,这个压力差就是在此剖面的升力,升力和向后的诱导阻力合成为空气动力,流过各个剖面升力总合就是机翼的升力。这个说法推翻了初中物理科普用的等时间论:当气流经过机翼上表面和下表面时,由于上表面路程比下表面长,则气流要在相同时间内通过上下表面,根据运动学基本公式S=VT,上表面流速比下表面大,再根据伯努利定理(在一个不可压、理想的流体系统,比如气流、水流

机翼升力与伯努利方程

机翼升力与伯努利方程 摘 要:本文首先介绍连续性方程和伯努利方程的基本原理,然后对于飞机靠机翼能够产生升力的原因进行理论分析,并使用一些物理方法和公式进行简化和计算,最后使用歼-10的相关数据进行验证。另外还介绍了机翼升力的逆应用。 关键词:机翼升力 伯努利方程 连续性方程 人类自古以来就梦想着能像鸟一样在天空中飞翔。作为二十世纪最重大的发明之一,飞机使得人类的这个梦想得以实现。而飞天成功与流体力学的发展有着分不开的联系。 流体力学,是研究流体的力学运动规律及其应用的学科。其中的伯努利方程从经典力学的能量守恒出发,表述了流体定常运动下的流速、压力、管道高程之间的关系,为如今的固定翼飞机飞行提供了理论基础。 一、伯努利方程 在介绍伯努利方程之前,不得不先说明一下连续性方程。 理想流体作稳定流动时,流体通过同一流管中任何截面的体积流量皆相等。这就是理想流体的连续性原理。它表示流体在流动时,应遵守质量守恒定律,其数学表示为 t Sv cos = (1) 其中,v 为流速,S 为流管的截面面积。由此方程我们可以得到这样一个结论:对于同一流管,截面积越小,流速越大;截面积越大,流速越小。 通过连续性原理和功能守恒原理推导出的伯努利方程揭示了液体流动过程中的能量变化规律。它表示理想流体作定常流动时,应遵守能量守恒定律,其数学表示为 t gh v p cos 2 1 2=++ ρρ (2) 其中,p 为此处流体的压强,ρ为此处流体的密度,v 为此处流体的流速, h 为此处距基准面的高度,g 为重力加速度。由此方程可以得到一个结论:同一 流管等高处两点,流速大的地方压强小,流速小的地方压强大。

飞机升力与阻力详解

. 飞行基础知识①升力与阻力详解(图文) 升力是怎样产生的 任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。 然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢? 相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。 机翼是怎样产生升力的呢? 让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。这一基本原理在足球运动中也得到了体现。大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。 对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是机翼不动,而空气气流以一定的速度流过机翼。空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼

模型飞机各项计算公式

1、雷诺数Re=pvb/μ(空气密度p-kg/m^3;标准状态下为1.226,与气流相对速度v-m/s,翼型弦长b-m,黏度μ=0.0000178):雷诺数的大小决定该翼型所做机翼的性能,如边界层是湍流边界层还是层流边界层,普通翼型的极限雷诺数(边界层从层流变为湍流)大约是50000,雷诺数还决定了机翼的与来流迎角(攻角)范围,在不失速的情况下,同一翼型,同一表面粗糙程度,同展弦比,同平面形状的机翼,雷诺数越大,则不失速攻角的范围越大,《《重点!通过观察风洞实验所得曲线,在雷诺数大于50000的情况下,两翼型雷诺数相差几万但升力系数曲线基本重合,也就是说,模友在选择翼型时在雷诺数大于50000时,计算出最大雷诺数(v 取最大值),然后直接用最大雷诺数的那个翼型数据计算即可,不同的是雷诺数大的助力系数要小一些,由此结论还能得出雷诺数大于50000时,翼型升力性能与速度的改变和翼型弦长的大小关系微小,在航模上可忽略。》》 2、升力计算:Y=1/2V^2pSCl(升力Y-单位N,气流相对速度V-m/s,空气密度P-kg/^3;,S翼面积-m^2,Cl-翼型的升力系数)改公式计算的是翼型理想升力,即在展弦比为无穷大时,不受翼尖涡流影响时的升力,升力系数代翼型数据,设计航模时应该对其进行修改,后面会讲到。 3、阻力计算:D=1/2V^2PSCd(阻力D-单位N,Cd-阻力系数,其它与升力计算相同)实际情况下机翼的阻力为翼型理想阻力+涡流诱导阻力,该公式计算的是翼型理想阻力,阻力系数代翼型数据。 4、涡流诱导阻力:D=1/2V^2PSCdi,(D为诱导阻力,Cdi为诱导阻力系数——Cdi=Cl^2/3.142A,展弦比A后面再详细介绍,Cdi计算公式中升力系数用翼型数据),非圆形或梯形机翼须乘以修正系数(1.05-1.1)圆形或梯形部分越多修正系数越小。 5、展弦比:A=L^2/S(L翼展,S翼面积,计算比值时L与S用同一单位,L厘米则S 用cm^2)展弦比大则不失速迎角范围小,小则反之,因为小展弦比时翼尖涡流大产生抑制边界层与机翼分力的作用力大。 6、翼尖涡流产生原因:由于上下表面有压强差,且机翼不是无限长,所以机翼下的气体会绕过翼尖流向上表面。安装翼梢小翼可有效减少涡流带来的影响,减少诱导阻力,提升相同迎角下的升力。 7、零升力迎角与绝对迎角:对称翼型的零升力迎角就是翼弦与来流间夹角为0°,所以绝对迎角同上,而非对称翼型在翼弦与来流迎角为0°时仍有升力产生,所以其绝对迎角为:迎角-0升力迎角(这类翼型的0升力迎角一般为负数),0升力迎角可从翼型数据表中查得,用画图法也渴求得大致0升力迎角,在翼型中弧线上找翼型最厚处所对应的点,与后缘那点连线,这条线叫0升力弦,当它与来流夹角为0时,不对称翼型不产生升力,绝对迎角在修正升力系数时有重要作用。 8、诱导迎角:由于翼尖涡流的存在,会使机翼的实际迎角变小,变小的角度叫诱导迎角,计算公式为18.2Cl/A(单位同上)Cl升力系数取翼型的升力系数。 9、下洗角:翼尖涡流造成下洗,计算公式为36.5Cl/A(升力系数代翼型的升力系数) 10、下洗速及对尾翼的影响:尾翼在主翼后面,若再主翼下洗流范围内,由于下洗流速为与空气相对流速的90%左右,且具有下洗角,则尾翼为负迎角,与空气相对速度为90%左右,

机翼升力成因分析

机翼升力分析 摘要:为探究机翼在空气中产生升力的基本原因,首先利用空气动力学理论知识对升力进行分析。然后,建立机翼在空气中的模型,采用计算流体动力学专业软件模拟机翼在空气中的飞行情况。通过比较不同模型的升阻力情况,否定了中学教学中的“同时到达”理论。机翼产生升力的原因是基于多种流体原理,包括连续性原理、伯努利原理、附壁效应等。 关键词:机翼计算流体动力学空气动力学伯努利原理 Analysis on airfoil lift Abstract:In order to explore the basic case of lift force which generated by aircraft wing move in the air, air dynamics theory knowledge was used to make some analysis. Then, wing model is made. A professional computational fluid-dynamics-software is used to simulate the flight situation. By the compassions between different models, the theory of “arrive at the same time”is proven wrong. The case of lift force was based on various fluid theories, such as continuity theory, Bernoulli's principle, COANDA effect and so on. Key words: wing CFD air-flow mechanics Bernoulli's principle 0前言 人类一直对飞行充满好奇和兴趣,飞行背后的基本原理就是经典的牛顿三定律,飞行器主要在重力、升力、阻力、推进力、浮力等的共同作用下实现飞行[1],而其中的升力是飞机飞行的最重要的作用力。在中学的物理教学中,讲授流体压强与流速的关系时常用翼型来演示伯努利定律的应用。但是教材常把机翼上下表面气流速度的差异,归结为机翼上表面的弧线长度比下表面的长,而上下气流要同时在机翼尾端汇合,因此上表面的气流速度要快,这就是所谓的“同时达到理论”[2]。这种说法存在很大的错误,它无法解释飞机为何能倒飞,纸飞机与风筝的飞行更是与翼型没有任何关系[3]。风洞的实验结果与计算机的模拟结果都发现:机翼上表面的气流速度要远大于下表面,并不是同时到达。飞机的升力是由机翼的多种因素造成的,其中飞机机翼横截面的形状是产生升力的原因之一。 计算流体力学大范围应用于工业设计,机翼的升力依据的空气动力学原理可以很好的利用计算流体力学实现模拟[4]。计算流体力学成为流体力学、空气动力学领域中发展最快的方向之一。采用计算机可以很直观的获取所需数据,从机理上了解机翼上升的原理,从而为机翼的设计提供一些参考。 本文首先利用基本的流体动力学理论分析了机翼产生升力的原因,论证了普遍认为的“同时到达”理论的错误性。然后采用专业软件,利用计算流体动力学对机翼在空气中的运动进行了模拟,再次细致的分析了机翼子在空气中的受力情况,具有一定的科普意义。 1力学理论分析 1.1连续性原理 理想不可压缩流体作稳定流动时,流体通过同一流管中任何截面的体积流量皆相等。这就是理想流体的连续性原理。它表示流体在流动时,应遵守质量守恒定律。 vS 恒量(1) 方程中,v为流体的流速,S为流管的截面面积。由此公式可得:对于同一流管,截面积越小,流速越大;截面积越大,流速越小[5]。 1.2伯努利原理 在不可压缩和无粘流体中,沿同一流线满足伯努利方程。

螺旋桨计算公式

直升机螺旋桨升力计算公式 欧阳学文 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样,空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨)旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。平衡时,就悬停在空

中。直升机的升力大小,不但决定于旋翼的转速,而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大;随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中,桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前.后仰,左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行,不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有:a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高,但直径往往受到吃水和输出转速等的限制;b.桨叶数N;c.转速n——每分钟螺旋桨的转数;d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距;e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比;f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般

飞机机翼升力的计算公式

飞机机翼升力的计算公式中C是升力系数,S是机翼的面积。v是飞机的速度。ρ是大气密度。那么各个数据的单位是什么? Y=1/2ρCSv2 等式两边的单位肯定相同的。 但是我要说,这个公式中各个量采用什么单位都是无所谓的,因为里面含有一个C(升力系数)的量,这个量的单位会随着别的量选用的单位而变化,来保证等式两边的单位是统一的。等式两边的单位肯定相同的。 例如,各个物理量都采用国际单位制,即等式左边升力Y单位选用N,等式右边ρ选用kg/m3,S选用m2,V选用m/s。那么C的单位就应该是n·s/kg(C绝对不是没有单位的,这点楼上两位说错了),这样才能保证左边运算结果的单位是N。这个单位很奇怪,而且这个单位并没有什么物理意义,只是为了平衡等式两边的单位。 上面只是举了一个例子,而公式采用哪一套单位制都可以。事实上,飞机领域都是西方国家占主导地位,他们采用的单位并不是国际单位制,而是英制单位,长度单位是英寸、英尺、英里等,面积单位可能就是平方英尺等,重量单位是磅,速度单位是英里/小时,等等。而采用这一套单位,升力系数C 的单位又不同了,还是要平衡两边的单位。 而对于这个公式,我们没有必要追求他到底用什么单位,只要知道这个数量关系就可以了。而如果你要应用这个公式的话,也是有难度的,因为C这个系数并不像普通公式里的系数一样固定不变,它是随着机翼迎角、机翼形状等因素而变化的,其值也应该由实验测量得出,而不能计算得出。所以,除非做很严谨的科学研究,应用此公式的现实意义并不大。 Y=1/2ρCSv2 C 没有单位. S m2 V m/s ρ kg/m3(标准状况为:1.297kg/m3)

相关文档