文档库 最新最全的文档下载
当前位置:文档库 › 元素对焊接性能的影响

元素对焊接性能的影响

元素对焊接性能的影响
元素对焊接性能的影响

元素对焊接性能的影响

碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(SI):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。

3、锰(MN):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16MN钢比A3屈服点高40%。含锰11-14%的钢有极

高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。

6、铬(CR):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

7、镍(NI):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。

8、钼(MO):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。

结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。

9、钛(TI):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒

力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。

10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。

11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。

12、铌(NB):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。

13、钴(CO):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。

14、铜(CU):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。

15、铝(AL):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08AL钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。

16、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度。

17、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。

18、稀土(XT):稀土元素是指元素周期表中原子序数为57-71的15个镧系元素。这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土。钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能。在犁铧钢中加入稀土,可提高耐磨性

影响焊接质量的因素与解决方案

影响焊接质量的因素及解决方案 图1 油箱 近年来随着汽车、拖拉机、航空航天、建筑以及运输等工业的飞速发展,相应的工业设备在其产品结构、加工工艺及应用领域不断更新、发展,对产品的加工质量要求不断提高,电阻焊机已成为工业产品覆盖件及零部件加工的主要焊接设备。 电阻焊机在生产过程中可以对各种形状的覆盖件产品进行焊接加工,实现工件的缝焊、凸焊、对焊和点焊的加工过程。它的优点是速度快、深度大、变形小而且生产效率高,并可实现柔性化和智能化控制,可对低碳钢板、合金钢板、镀层钢板和不锈钢板等进行有效地焊接,凭借其高效、独特的加工方式在工业生产过程当中得到了广泛的应用。 电阻焊接过程较为复杂,包含了多种影响焊接质量的因素,如被焊材料、焊接电流、电极压力、焊接时间、设备冷却、电极材料、形状及尺寸、分流和工件表面状态等。如果操作人员在焊接生产过程中不能够掌握正确的焊接方法、技术参数和加工工艺,将给焊接质量控制带来较大的困难。

图2 缝焊机 影响焊接质量的因素 1.被焊材料对焊接质量的影响 被焊材料在实施焊接之前必须进行清洁处理,清理方法分机械清理和化学清理两种。常用的机械清理方法有喷砂、喷丸、抛光以及用纱布或钢丝刷等。被焊材料表面的油污和锈斑会使电极与工件之间的电阻增大、焊点不牢固及焊接过程中产生飞溅,使焊接质量下降。例如在缝合油箱(如图1)或暖气片之类要求密闭的工件时,更应将被焊材料的表面处理干净,因工件需要缝合焊接一周,如果有一处没有处理干净,就会在这一处出现缝合不牢,在工件试压过程中发生漏气现象。对于此类焊接要求较高的工件需用化学清理,用清洗设备配合高温清洗液将工件清洗干净才能够进行焊接生产。用于缝合油箱的缝焊机如图2所示。 2.焊接电流及时间对焊接质量的影响 整个焊接的加工过程由4个基本环节来控制:图3中控制箱面板上的1、2、3和4分别为加压、焊接、维持和休息4个程序,这4个环节循环工作,必要时可增加附加程序。焊接电流的参数调整对焊接质量的控制至关重要,采用递增的调幅电流可以减小挤出金属。被焊金属的性能和厚度是选择焊接电流的主要依据,电流大小和焊接时间、电极压力、维持时间、工件厚度及工件材质等密切相关。焊接时间由焊接电流和凸点刚度决定,焊接时间的调整以周波的整倍计算(一周为0.02s)。通电时间的长短直接影响电流输入热量的大小,由于电极是水冷却,电极上散失的热量往往是输入总热量的一半,要相互配合调整。在生产过程中,多台焊机的同时工作和电网电压的波动都会对焊接电流产生一定的影响,应考虑电网电压的补偿和采用恒电流方式

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

焊接材料对焊接质量的影响1

焊接材料对焊接质量的影响 焊接材料(焊条、焊丝、焊剂)的成分对焊缝金属的化学成分、组织与性能有重要的影响。为了使焊缝金属具有所要求的成分与性能,必须保证焊接材料中有益的合金元素含量和严格控制有害杂质的含量。 1 焊缝金属的合金化 (1)焊缝金属的合金化就是把所需的合金元素通过焊接材料过渡到焊缝金属(或堆焊金属)中去。焊接中合金化的目的是补偿焊接过程中由于蒸发、氧化等原因造成的合金元素的损失,消除焊接缺陷(裂纹、气孔等)和改善焊缝金属的组织和力学性能,或者是获得具有特殊性能的堆焊金属。 对金属焊接性影响较大的合金元素主要有C、Mn、Si、Cr、Ni、Mo、Ti、V、Nb、Cu、B等;低合金钢焊接中提高热影响区淬硬倾向的元素有C、Mn、Cr、Mo、V、W、Si等;降低淬硬倾向的元素有Ti、Nb、Ta等。还应特别注意一些微量元素的作用,如B、N、RE等。 焊接中常用的合金化方式有以下几种。 ①应用合金焊丝或带极把所需要的合金元素加入焊丝、带极或板极内,配合碱性药皮或低氧、无氧焊剂进行焊接或堆焊,把合金元素过渡到焊缝或堆焊层中去。这种合金化方式的优点是可靠,焊缝成分均匀、稳定,合金损失少;缺点是制造工艺复杂,成本高。对于脆性材料,如硬质合金不能轧制、拔丝,故不能采用这种方式。 ②应用合金药皮或非熔炼焊剂把所需要的合金元素以铁合金或纯金属的形式加入药皮或非 熔炼焊剂中,配合普通焊丝使用。这种合金化方式的优点是简单方便,制造容易,成本低;缺点是由于氧化损失较大,并有一部分合金元素残留在渣中,故合金利用率较低,合金成分不够稳定、均匀。 ③应用药芯焊丝或药芯焊条药芯焊丝的截面形状是各式各样的,最简单的是具有圆形断面的,外皮可用低碳钢其他合金钢卷制而成,里面填满需要的铁合金及铁粉等物质。用这种药芯焊丝可进行埋弧焊、气体保护焊和自保护焊,也可以在药芯焊丝表面涂上碱性药皮,制成药芯焊条。这种合金过渡方式的优点是药芯中合金成分的配比可以任意调整,因此可行到任意成分的堆焊金属,合金的损失较少;缺点是不易制造,成本较高。 ④应用合金粉末将需要的合金元素按比例配制成具有一定粒度的合金粉末,把它输送到焊接区,或直接涂敷在焊件表面或坡口内。合金粉末在热源作用下与母材熔合后就形成合金化的堆焊金属。这种合金过渡的优点是合金成分的比例调配方便,不必经过轧制、拔丝等工序,合金损失小;缺点是合金成分的均匀性较差,制粉工艺较复杂。 此外,还可通过从金属氧化物中还原金属元素的方式来合金化,如硅、锰还原反应。但这种方式合金化的程度是有限的,还会造成焊缝增氧。 在实际生产中可根据具体条件和要求选择合金化方式。焊接材料中的合金成分是决定焊缝成分的主要因素。改进和研制焊条、焊丝、焊剂时,必须根据焊接接头工作条件设计焊缝金属的最佳化学成分,以保证焊缝性能满足使用要求。 (2)熔合比及合金过渡系数

钢材中各元素对性能性的影响

钢材中各元素对性能性的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和 冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此 用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高 还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀; 此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢 含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就 算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度, 故广泛用于作弹簧钢。在调质结构钢中加入 1.0-1.2%的硅, 强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀 性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具 有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低 钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢 中含锰0.30-0.50%,在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度, 提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点 高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性 能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,

使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求 钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降 低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性 能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改 善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐 磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐 腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍 对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但 由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬 钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高 温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发 生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以 抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化 晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18 镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶

第一章--焊接质量控制

第一章焊接质量控制 教学目标: 一、了解焊前和焊接过程中的常规质量控制项目及其要求; 二、熟悉并掌握各种焊接方法中的焊缝外观质量检验项目及相关标准; 三、了解致密性试验方法的种类和适用条件。 一、任务导入: 随着现代焊接技术的迅猛发展、焊接生产水平的不断提高和国际焊接制品贸易的日益扩大,为了保证焊接产品的质量,有效地利用资源,保护用户的利益,焊接产品的质量管理逐步走上了规范化、标准化的道路。1987年3 月,国际标准化组织(ISO)正式发布了IS09000?9004关于质量管理和质量保证的标准系列。1994年和2000年,国际标准化组织两次修订IS09000族标准,使之更为简化、重点更加突出,更加科学、普适,并将质量保证体系提高到质量管理体系的水平。我国相应于2000年发布了等效采用该国际标准系列的GB/T19000:2000《质量管理体系》标准系列。 众所周知,焊接结构(件)在现代科学技术和生产中得到了广泛应用。随着 锅炉、压力容器、化工机械、海洋构造物、航空钪天器和原子能工程等向髙参数及大型化-方向发展,工作条件日益苛刻、复杂。显然,这些焊椟结构(件)必须是髙质量的,否则,运行中出现事故必将八成惨重的损失。诚然,迅速发展的现代焊接技术,已能在很大程度上保证其产品质量,但由于焊接接头为一性能不均匀体,应力分布又复杂,制造过程中亦作不到绝对的不产生焊接缺陷,更 不能排除产品在役运行中出现新的缺陷。因而为获得可靠的焊接结构(件)还必须走第二条途径,即采用和发展合理而先进的焊接检验技术。 现代质量管理认为,为使产品达到所要求的各项质量指标,应从生产的每一道工序抓起,通过控制和调整影响工序质量的因素来保证。而工序质量又要 通过工作质量,采取各种管理手段来实现。因此,在质量管理工作中,要以工 作质量来保证工序质量,用工序质量来保证产品质量。 可见为实现质量目标,就必须在管理体制上建立一套有效的、便于操作的质量管理体系。并且将这套体系应用于产品的整个制造过程中。

各种材料的焊接性能

金属材料的焊接性能 (1)焊接性能良好的钢材主要有: 低碳钢(含碳量<0.25);低合金钢(合金元素含量1~3、含碳量<0.20);不锈钢(合金元素含量>3、含碳量<0.18)。 (2)焊接性能一般的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.25~0.35);低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13~25、含碳量£0.18) (3)焊接性能较差的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.35~0.45);低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。 (4)焊接性能不好的钢材主要有: 中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量>0.40);不锈钢(合金元素含量13、含碳量0.30~0.40)。 焊条和焊丝选择的基本要点如下: 同类钢材焊接时选择焊条主要考虑以下几类因素: 考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能; 考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。 异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况: 一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。 焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。 ###15CrMoR的换热器的热处理工艺 ***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。 *** 15CrMoR焊接性能良好。手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。自动焊丝用H13CrMoA和焊剂250等。 ###压力容器用钢的基本要求 压力容器用钢的基本要求:较高的强度,良好的塑性、韧性、制造性能和与相容性。 改善钢材性能的途径:化学成分的设计,组织结构的改变,零件表面改性。 本节对压力容器用钢的基本要求作进一步分析。 一、化学成分 钢材化学成分对其性能和热处理有较大的影响。 1、碳:碳含量增加时,钢的强度增大,可焊性下降,焊接时易在热影响区出现裂纹。 因此压力容器用钢的含碳量一般不应大于0.25%。2、钒、钛、铌等:在钢中加入钒、钛、铌等元素,可提高钢的强度和韧性。

焊接冶金学—材料焊接性课后答案

第三章:合金结构焊接热影响区( HAZ最高硬度 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:( 1)固溶强化,主要强化元素:Mn,Si 。( 2)细晶 强化,主要强化元素: Nb,V。(3)沉淀强化,主要强化元素:Nb,V. ;正火钢的强化方式:( 1)固溶强化, 主要强化元素:强的合金元素( 2)细晶强化,主要强化元素:V,Nb,Ti,Mo ( 3)沉淀强化,主要强化元素: Nb,V,Ti,Mo. ;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200 C以上的热影响区可能产生粗晶脆 化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制 A长大及组织细化作用被 削弱,粗晶区易出现粗大晶粒及上贝氏体、 M-A 等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。 2. 分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。答:Q345钢属于热轧钢,其碳当量小 于0.4 %,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠 光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏 体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达 到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200 C以上的热影响区过热区可能产生粗晶脆 化,韧性明显降低,Q345钢经过600CX 1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂 SJ501,焊丝H08A/H08MnA电渣焊:焊剂HJ431、 HJ360焊丝H08MnMo A CO2气体保护焊:H08系列和YJ5系列。预热温度:100?150C。焊后热处理:电弧焊一般不进行或600?650 C回火。电渣焊 900?930 C正火,600?650 C回火 3. Q345与Q390焊接性有何差异? Q345焊接工艺是否适用于 Q390焊接,为什么?答:Q345与Q390都属 于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于 Q345,所以Q390 的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于 Q390的焊接, 因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。 4. 低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原 则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。 5. 分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如 (14MnMoNiB HQ70 HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。(P81)答:焊接时易发生脆化,焊接时由于热循环作用使热影 响区强度和韧性下降。焊接工艺特点:①要求马氏体转变时的冷却速度不能太快,使马氏体有一自回火” 作用,以防止冷裂纹的产生;② 要求在800~500C之间的冷却速度大于产生脆性混合组织的临界速度。此外,焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术 ; 典型的低碳调质钢在 Wc> 0.18 %时不应提高冷速,Wc< 0.18 %时可提高冷速(减小热输入)焊接热输入应控制在小于 481KJ/cm;当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800?500C的冷却速度低于出现脆性混合组织的临界冷却速度,使 热影响区韧性下降,所以需要避免不必要的提高预热温度,包括层间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 6. 低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同?为什么低碳钢在调质 状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理?答:低碳调质钢:在循环作用下, t8/5 继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成。中碳调质钢:由

元素含量对奥氏体不锈钢性能的影响

元素含量对奥氏体不锈钢性能的影响奥氏体不锈钢含有较多的Cr、Ni、Mn、N等元素。与铁素体不锈钢和马氏体不锈钢相比,奥氏体不锈钢除了具有较高的耐腐蚀性外,还有许多优点。它具有很高的塑性,容易加工变形成各种型材,如薄板、管材等;加热时没有同素异构转变,即没有γ和α之间的相变,焊接性好;低温韧性好,一般情况下没有冷脆倾向;奥氏体不锈钢不具有磁性。由于奥氏体不锈钢的再结晶度比铁素体不锈钢的高,所以奥氏体不锈钢还可以用于550℃以上工作的热强钢。 奥氏体不锈钢是应用最广的不锈钢,约占不锈钢总产量的2/3。由于奥氏体不锈钢具有优异的不锈钢酸性、抗氧化性、高温和低温力学性能、生物相容性等,所以在石油、化工、电力、交通、航天、航空、航海、能源以及轻工、纺织、医学、食品等工业上广泛应用。 1.高钼(Mo>4%)奥氏体不锈钢 高钼奥氏体不锈钢的典型代表是:00Cr18Ni16Mo5和00Cr18Ni16Mo5N。因为含钼量高,所以在耐还原性酸和耐局部腐蚀方面性能有很大提高,可用于更加苛刻的腐蚀环境中。含氮00Cr18Ni16Mo5N钢,由于氮的加入,奥氏体更加稳定,由于铁素体的生成,σ(χ)等脆性相的析出受到一定抑制。 00Cr20Ni25Mo4.5Cu由于此钢含有更高的Cr、Ni、Mo等元素,加之Mo与Cu的复合作用,使00Cr20Ni25Mo4.5Cu既在含Cl离子的水介质中耐点蚀、缝隙腐蚀和应力腐蚀的能力有显著提高,图1~图4系在不同温度H2SO4、H3P O4和含F-50%H3P O4中

耐全面腐蚀和在氯化物水介质中耐应力腐蚀的实验结果。可以看出00Cr20Ni25Mo4.5Cu 比18-12-2型不锈钢的耐蚀范围有所扩大。 图1 00Cr20Ni25Mo4.5Cu 在H 2SO 4中的腐蚀 图2 00Cr20Ni25Mo4.5Cu 在H 3PO 4 中的腐蚀(≤0.1mm/a) 图3 00Cr20Ni25Mo4.5Cu 在50℃含HF 的50%P 2O 5溶液中的腐蚀

SMT焊接质量影响因素及控制方法

SMT焊接质量影响因素及控制方法随着经济和科技的发展,电子应用技术趋于智能化、多媒体化和网络化,这使得人们对电子电路组装技术提出了更高的要求,即要能满足高密度化、高速化及标准化,于是电子装联装配技术全面转向SMT。特别是近年来,中国电子信息产品制造业加快了发展步伐,每年都以20%以上的速度高速增长,成为国民经济的新兴的支柱产业,整体规模连续三年居全球第2位。与此同时,中国的SMT技术及产业也同步迅猛发展,取得了不少成就,但是坦率来说还是存在很多问题,主要体现在规模小、技术含量水平不高、高水平技术人才和管理人才缺乏、制造服务能力不全面等方面。虽然在一些方面存在不足,但是市场的竞争却越来越激烈,出现了相互压价,相互贬低,甚至低于合理成本接单等不正当竞争行为。提供SMT服务的组装厂要在如此激烈的竞争环境中立于不败之地,就必须从降低生产成本和提高焊接质量两方面来入手。一方面,降低成本的最有效方式就是优化生产流程以提高生产效率,各焊接厂也都在不断的摸索和改进,逐步形成了比较成熟的生产模式和流程。另一方面,对从事SMT加工服务的企业来说,优质的焊接质量才是立足之本,才是与别人竞争的资本和筹码,因此焊接质量的保证显得尤为重要。以下将从SMT过程的各相关方面来分析影响焊接质量的主要因素和控制方法。 提到SMT的焊接质量,我们首先可能都会想到回流焊的工艺和控制,这是没错的,回流焊确实是SMT关键工序之一,表面组装的质量直接体现在回流焊的结果之中,但SMT焊接质量问题却不完全是回流焊工艺造成的。SMT焊接质量除了与回流工艺(温度曲线)有直接关系外,还与PCB设计、网板设计、元件可焊性、生产设备状态、焊膏质量、加工工序工艺控制以及操作人员素质和车间管理水平都有密切关系一、 PCB设计和网板设计SMT的焊接质量与PCB的可制造性设计有直接的、十分重要的关

第二章焊接材料的组成及作用

第二章 焊接材料的组成及作用 1、焊条的工艺性能包括哪些方面?焊条的工艺性能对焊条及焊接质量有什么意义? 1)焊条的工艺性能包括: ①焊接电弧的稳定性 ②焊缝成形 ③各种位置焊接的适应性 ④飞溅⑤脱渣性 ⑥焊条溶化速度 ⑦焊条药皮发红 ⑧焊接烟尘 2) 焊条的工艺性能: 是指在焊接操作中的性能,是衡量焊接质量的重要指标之一,可以降低电弧气氛的电离电位,因而能提高电弧的稳定性;焊缝表面成形不仅影响美观,更重要的是影响焊接接头的力学性能如果熔渣的凝固温度过高,就会产生压铁水的现象,严重影响焊缝成形,甚至产生气孔,良好的焊条能适应全位置焊接脱渣性差的不仅造成清渣的困难,降低焊接生产率,而且在多层焊施工时,还往往产生夹渣的缺陷。 2、综合分析碱性焊条药皮中2CaF 的作用及对焊缝性能的影响。 它的主要作用是脱氧,在焊条药皮中加入2CaF 发生的焊接冶金反应生成HF 气体,HF 是比较稳定的气体,高温时不易发生分解,也不溶于液体金属中,而是与焊接烟尘一起挥发了,所以减低熔池金属中的H 含量,提高了焊缝金属的冲击韧性和抗裂性能。 3、配置22CaF TiO SiO CaO ---渣系焊条,经初步试验发现药皮套筒过长,电弧不稳,此时应该如何调整该焊条的药皮配方? 药皮套筒过长,是因为药皮熔点过高,溶化速度过慢,则可以通过减少药皮中CaO ,而适当加入些3232N CO a CO K 或,电弧不稳是因为焊条药皮中含2CaF 生成HF 气体的缘故,可适当降低2CaF 含量。 4、试分析低氢型碱性焊条降低发尘量及毒性的主要途径。 低氢型碳钢焊条的焊接烟尘量高于钛钙型焊条,烟尘中危害最大的是KF ,NaF ,而钠钾主要存在于水玻璃中,故可用树脂来降低水玻璃的粘性作用。

材料焊接性考试重点试题及答案

3.5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。 答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 4.3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现

腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的溶合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化相继作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低含碳量,加入稳定化元素Ti、Nb;{2} 控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。 4.7何为“脆化现象”?铁素体不锈钢焊接时有哪些脆化现象,各发生在 什么温度区域?如何避免?答:“脆化现象”就是材料硬度高,但塑性 和韧性差。现象与避免措施:{1}高温脆性:在900~1000℃急冷至 室温,焊接接头HAZ的塑性和韧性下降。可重新加热到750~850℃, 便可恢复其塑性。{2}σ相脆化:在570~820℃之间加热,可析出σ相 。σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以 及预先冷变形有关。加入Mn、Nb使σ相所需Cr的含量降低,Ni能使形成σ相所需温度提高。{3}475℃脆化:在400~500℃长期加热后可出 现475℃脆化。适当降低含Cr量,有利于减轻脆化,若出现475℃脆

元素对焊接性能的影响

元素对焊接性能的影响 碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(SI):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有-%的硅。如果钢中含硅量超过硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入-%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(MN):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰-%。在碳素钢中加入%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,

如16MN钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于%,优质钢要求小于%。在钢中加入的硫,可以改善切削加工性,通常称易切削钢。 6、铬(CR):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(NI):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。

各元素对焊接的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入 0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。

焊接工艺规范参数对焊接产品质量影响因素的分析

焊接工艺规范参数对焊接产品质量影响因 素的分析 第22卷第9期 2006年9月 甘肃科技 GansuScienceandTechnology V o1.22 Se. No.9 2006 焊接工艺规范参数对焊接产品质量影响因素的分析 谢庆生,王迎君 (1.甘肃省锅炉压力容器检验研究中心,甘肃兰州730030;2.兰州石油化工机械厂,甘肃兰州730050) 摘要:本文重点阐述焊接工艺各规范参数对焊接质量的影响,主要从焊缝形状尺寸与焊接工艺规 范参数的关系,焊缝与熔池的关系延伸到焊接工艺各规范参数与焊接质量的关系进行了详细的分 析,揭示了焊接质量的关键在于焊接热输入的控制. 关键词:焊缝成形系数;焊接质量;焊接工艺规范参数;焊接热输入 中图分类号:TH49 锅炉压力容器是广泛应用于国民经济各部门和 人们生活设施中的,具有爆炸危险的特种设备.它 不但要承受压力,温度和强腐蚀性介质的作用,还要 经受易燃,易爆,剧毒,放射性充装物的考验,工作条 件非常苛刻.通常锅炉压力容器均为焊接结构,所 以焊接质量的好坏,直接关系到产品质量和工程质

量.本文通过分析焊接工艺各规范参数对焊接质量的影响,来探讨焊接工艺与焊接质量之间的关系. 1焊接工艺规范 焊接工艺是承压设备焊接的规定性工艺文件, 带有一定的强制性,其一般要求是: 1)正确性:焊接工艺的正确性是指焊接工艺本 身的各项要求,如坡口形式及尺寸,焊接方法选用, 焊材选择,焊接顺序,焊接工艺参数,预热温度,焊后消氢,焊后热处理,工艺装备,操作要点等,均应符合焊接的基本规则,符合工厂的生产实际. 2)完整性:焊接工艺的完整性有两层含义,一是 对某一产品而言,应包含受压元件之间的焊缝,与受压元件相焊的焊缝均应制定焊接工艺,否则就认为不完整.另一含义是对某一工艺卡而言,对某个节 点所需的焊接工艺参数,施焊要点,工艺装备等均应列出. 3)有效性:焊接工艺有效性,就是能够指导焊接 施工,在施焊过程中得到贯彻. 以上的焊接工艺的一般要求均建立在材料焊接 工艺性的基础之上.焊接工艺性指一种金属可以在很简单的工艺条件下焊接而获得完好的焊接接头, 能够满足使用要求.这里的使用要求主要指焊接接头的强度,韧性等要求,也就是焊接质量的要求. 影响材料焊接工艺性的主要参数有:焊接电流, 焊接电压及焊接速度等,它们对焊接过程的稳定性, 稀释率,焊道形状和熔敷效率,焊缝化学成分及组织的稳定性有直接影响. 如何提高产品的焊接质量?首先我们了解一下 焊缝形状尺寸及其与焊缝质量的关系.

焊料性质对焊接的影响

焊料性质对焊接的影响 1.前言 目前各种形式的合金焊料,其最权威的国际规范为J-STD-006。此文献之最新版本为1996.6的Amendment 1,由于资料很新,故早已取代了先前甚为知名的美国联邦规范QQ-S-571。IPC还有一份重要的焊接手册IPC-HDBK-001其中之4. 1,曾定义“熔点”在430℃以下为“软焊”(Soldering),也就是锡焊。另熔点在430℃以上称为“硬焊”(Brazing),系含银之高温高强度焊接。早期欧美业界,亦称熔点600℉(315℃)以下者为软质焊锡,800℉(427℃)以上者为硬质焊锡。原文Solder定义为锡铅含金之焊料,故中译从金旁为“焊锡”,而利用高热能进行熔焊之Soldering(注意此一特定之单字,并非只加ing而已),则另从火旁用字眼的“焊接”,两者涵义并不完全相同。 2.共熔(晶)焊锡 焊锡焊料(Solder)主要成分为锡与铅,其它少量成分尚有银、铋、铟等,各有不同的熔点(M.P.),但其主要二元合金中以Sn63/Pb37之183℃为最低,由于其液化熔点(Liquidus Point)与固化熔点(Solidus Point)的往返过程中,均无过渡期间的浆态(pasty)出现,也就是已将较高的“液化熔点”与较低的“固化熔点”两者合而为一,故称为“共熔合金”。且因其粗大结晶内同时出现锡铅两种元素,于是又称为“共晶合金”。此种无杂质合金外表很光亮之“共熔组成”(Eute ctic Composition)或“共熔焊锡”(Eutectic Solder),其固化后之组织非常均匀,几无粒子出现。其合金比例之不同将影响到熔点变化,该变化之“平衡相图(Ph ase Diagram)”,图请参考第12期TPCA会刊。 另一种组成接近共熔点的Sn60/Pb40合金,则在电子业界中用途更广,主要原因是Sn较贵,在焊锡性(Solderability)与焊点强度(Joint Strength)几无差异下,减少了3﹪的支出,自然有利于成本的降低。与前者真正共熔合金比较时,此60/40者必须经历少许浆态,故其固化时间稍长,外观也较不亮,但其焊点强度并无不同。不过后者若于其固化过程中受到外力震动时,将出现外表颗粒粗麻之“扰焊”现象(Disturbed)之焊点,甚至还可能发生“缩锡”(Dewetting)之不良情形。

燃气管道施工过程中焊接质量的影响因素初探 郝晓硕

燃气管道施工过程中焊接质量的影响因素初探郝晓硕 摘要:随着我国城市化建设的开展,燃气管道施工在安全性上具有较高的要求,因此,本文对燃气管道施工过程中焊接质量的影响因素进行了分析,提出了提高 焊接质量的具体策略,希望为关注此话题的人提供有效的参考。 关键词:燃气管道;施工过程;焊接质量 燃气管道焊接处质量的把控与管理,需要完善的进行燃气管道焊接、焊接处 的质量检测等,如施工人员不能充分地把握焊接质量的影响因素,将导致燃气管 道在使用中出现燃气泄露现象,影响人们的生命安全。 一、燃气管道施工过程中焊接质量的影响因素 (一)焊接技术的滞后 现阶段,大多数燃气管道施工过程中,仍然采用相对较为落后的焊接技术, 施工团队不重视焊接技术的更新,更是忽略了新型焊接技术在燃气管道施工中的 应用,使得现阶段大多数的燃气管道焊接技术仍然处于滞后状态,施工人员无法 提高焊接的水平与标准。 (二)焊接工艺不协调 燃气管道施工中焊接工艺设计只是整个管道施工的一部分,但如若焊接工艺 的设置与其他施工工艺的开展呈现不协调的状态,将影响燃气焊接施工的质量, 造成管道焊接处的不完善,最终影响燃气管道的使用,严重时会导致燃气管道泄露。 (三)施工管理不完善 燃气管道施工过程中,需要对施工过程进行充分的管理,当施工管理人员对 焊接施工的管理不够完善时,在焊接过程、焊接处检测过程中如若出现差错,将 影响管道焊接处的质量,为管道的使用带来不良影响,为燃气管道应用带来安全 隐患。 二、提升燃气管道施工过程中焊接质量的具体策略 (一)提高焊接人员的技术水平 焊接技术是一项对操作要求较为严格的技术应用,尤其是燃气管道焊接即将 应用与燃气的运输,如若燃气管道焊接不完善,将影响燃气管道的使用效率,有 必要提高焊接技术人员的专业素质与技术水平。一方面,在施工人员的选择上, 要求焊接人员具备专业的焊接知识与焊接经验,并具备一定的焊接资质,具有相 关的焊接证件,要求焊接施工人员具备专业的施工水准。另一方面,加强对燃气 施工中焊接人员的技术培训,要求焊接行业的专家对焊接技术人员的相关操作进 行现场指导,提高焊接技术人员的技术水平,促进燃气管道焊接施工的质量得到 充分的技术保障。 (二)加强焊接施工管理 燃气管道施工的管理人员应当加强对焊接施工的管理,为焊接工作的开展提 供质量保障。首先,加强对焊接材料的监管,把握燃气管道焊接的材料是否符合 质量标准,焊接的机械设备是否完善,检查焊接材料的型号、数量、质量等是否 准备妥善,并检测焊接设备应用的有效性,确保焊接施工的完善性。其次,加强 对焊接工作开展前准备工作的检查与监督,焊接施工之前需要对焊接口处进行清理,并对焊接的角度、速度等位置进行划分,严格把控焊接施工的精准性。最后,在实际的焊接施工过程中,把握焊接技术的应用质量,对焊接残渣及时进行清理,确保焊接的质量符合施工要求。

可焊性的影响因素

化学镀镍金层可焊性的影响因素 (长春工业大学化工学院 130012)史筱超崔艳娜贺岩峰 (复旦大学化学系200433)郁祖湛 摘要我们将国内外报道化学镀镍金的部分最新研究成果,同我们实验室的实践相结合,对造成化学镀镍金可焊性差的多种因素作一简要介绍。本文总结了影响化学镀镍金可焊性的复杂因素如:前处理的影响、化学镀镍过程的影响、浸金的影响、浸金后水洗的影响、焊料的影响。 关键词化学镀镍浸金可焊性 Factors Influencing the Solderability of Electro Less Nickel and Immersion Gold LayerShi Xiaochao Cui Yanna He Yanfeng Yu ZuzhanAbstract Based on the domestic and foreign reports,we combine part ofthe newest research achievements withour laboratory practice.Factors influencing the solder ability ofelectro less nickel and immersion gold layer were brieflyintroduced.This paper servers as a summary review of the complex factors such as the prepare,the process of electroless nickel,im ersion gold,the rinse after im ersion gold,the solde~Key words electro less nickel immersion gold solderabilit 引言 化学镀镍浸金过程有时简称化学镀镍金(Electroless Nickel and Immersion Gold;EN/IG)。自1 996年 以来,在国内外得到迅速推广,这得益于EN/IG工艺本身所具有的种种优点。化学镀镍金板镍金层的分散性 好,有良好的焊接及可多次焊接性能、能兼容各种助焊剂,同时又是一种极好的铜面保护层。因此,它与热 风整平、有机可焊性保焊膜等PCB表面处理工艺相比,化学镀镍金镀层可满足更多种组装要求,并且其板面平 整、SMD焊盘平坦,适合于细密线路。化学镀镍金印制板可广泛用于移动电话、计算机、笔记本电脑、电子词 典等诸多电子产品。此工艺属于无铅可焊性镀层。据TMRC调查指出,EN/IG在1996年只占PCB表面处理的2%, 而到2000年时已增长到14%[1】。随着这些行业持久、迅猛的发展,EN/IG工艺将会得到更多的应用和发展 机会。但是,EN/IG工艺应用于印制板时经常受到黑盘、个别焊点不牢、发生脆裂、可焊性差的困扰。并且 有时只有当器件焊接到电路板上之后,才能发现这种现象,这给工业生产造成了损失。这种状况已引起了科 研人员的广泛关注,并进行了多方面试验研究。本文将就报导的部分最新研究成果结合我们实验室的实践, 对造成EN/IG可焊性差的多种因素作一简要介绍。 1 前处理对可焊性的影响 1.1 微蚀过程的影响 根据George Mila化学镍层的表面形态有直接的影响,从而间接影响到可焊性。微蚀液的浓度、温度和停留时 间,都应严格控制。避免产品微蚀后因在空气中停留时间过长而氧化,对钯的活化造成不良后果。 1.2 活化过程的影响 尽管钌已经成为一种有效的活化剂,但常用的还是钯活化剂。钯活化剂可活化铜印制电路板,以确保沉积上 一层完整的、均匀的钯催化剂层,然后在其表面直接镀化学镀镍层。如有些区域未被活化,则沉积不上钯催 化剂,也就镀不上镍层,影响最终可焊性。 2 化学镀镍过程的影响 化学镀镍沉积在金属表面,形成均匀的镀层。镀镍层具有结晶细致(有时是非晶态结构)、表面平整、厚度分 布均匀等特点。化学镀镍金工艺中,焊接性能是通过镍层来体现的,金层主要为了保护镍层防止氧化。因此,

相关文档