文档库 最新最全的文档下载
当前位置:文档库 › 试议二氧化氯与臭氧在水处理中的应用

试议二氧化氯与臭氧在水处理中的应用

试议二氧化氯与臭氧在水处理中的应用

二氧化氯化学品安全技术说明书(MSDs)

二氧化氯(CLO2)化学品安全技术说明书(MSDS) 第一部分:化学品名称 化学品中文名称:二氧化氯 化学品英文名称:chlorine dioxide 中文别名: 英文别名: 技术说明书编码: 分子式:ClO 2 分子量:65.5 第二部分:成分/组成信息 主要成分:纯品 CAS No.:10049-04-4 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:本品具有强烈刺激性。接触后主要引起眼和呼吸道刺激。吸入高浓度可发生肺水肿。能致死。对呼吸道产生严重损伤浓度的本品气体,可能对皮肤有刺激性。皮肤接触或摄入本品的高浓度溶液,可引起强烈刺激和腐蚀。长期接触可导致慢性支气管炎。 环境危害: 燃爆危险: 第四部分:急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。 第五部分:消防措施 危险特性:具有强氧化性。能与许多化学物质发生爆炸性反应。对热、震动、撞击和摩擦相当敏感,极易分解发生爆炸。 有害燃烧产物: 灭火方法:消防人员必须佩戴过滤式防毒面具(全面罩)或隔离式呼吸器、穿全身防火防毒服,在上风向灭火。迅速切断气源,用水喷淋保护切断气源的人员,然后根据着火原因选择适当灭火剂灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。灭火注意事项及措施:

第六部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防毒服。从上风处进入现常尽可能切断泄漏源。用工业覆盖层或吸附/吸收剂盖住泄漏点附近的下水道等地方,防止气体进入。喷雾状水稀释。漏气容器要妥善处理,修复、检验后再用。 第七部分:操作处置与储存 操作注意事项: 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。保持容器密封。应与易(可)燃物、还原剂等分开存放,切忌混储。储区应备有泄漏应急处理设备。 第八部分:接触控制/个体防护 最高容许浓度:中国MAC:未制定标准;前苏联MAC:未制定标准 监测方法:酸性紫R比色法 工程控制:严加密闭,提供充分的局部排风和全面通风。 呼吸系统防护:空气中浓度超标时,必须佩戴自吸过滤式防毒面具(全面罩)。紧急事态抢救或撤离时,应该佩戴空气呼吸器。 眼睛防护:呼吸系统防护中已作防护。 身体防护:穿连衣式胶布防毒衣。 手防护:戴橡胶手套。 其他防护:工作现场严禁吸烟。工作完毕,淋浴更衣。保持良好的卫生习惯。 第九部分:理化特性 外观与性状:黄红色气体,有刺激性气味。 PH: 熔点(℃):-59 沸点(℃):9.9(97.2kPa,爆炸) 相对密度(水=1):3.09(11℃) 相对蒸气密度(空气=1):2.3 饱和蒸气压(kPa):无资料 燃烧热(kJ/mol):无意义 临界温度(℃):无资料 临界压力(MPa):无资料 辛醇/水分配系数的对数值:无资料 闪点(℃):无意义 引燃温度(℃):无意义 爆炸上限%(V/V):无意义 爆炸下限%(V/V):无意义 溶解性:不溶于水。 主要用途:用作漂白剂、除臭剂、氧化剂等。 其它理化性质:

臭氧发生器在水处理几大领域的应用介绍

臭氧发生器在水处理几大领域的技术及应用 一、食品饮用水处理 臭氧化应用技术最广泛、最成功的领域是饮用水的处理。臭氧用于饮用水处理,除灭菌效果好,无二次污染外,还兼有脱色、除味,去除铁、锰、氧化分解有机物和助凝作用,有的报告指出,臭氧能够消杀水中一切对人体有害的物质。 饮用水的国际标准为细菌总个数、大肠菌群均为零,西方欧美等国都执行这一标准,所以自来水供水公司的臭氧水处理产品应用十分普遍。我国因处发展中,经济上相对落后,饮用水的国家卫生标准为细菌总个数为<100个,大肠菌群<3,而且大多采用漂白粉、加氯和近几年推广的二氧化氯及次氯酸钠发生设备消毒。因为氯消毒会产生氯的衍生物造成二次污染,其中三卤甲烷是直接致癌物质,在欧美的饮用水处理上已逐步淘汰。就目前的国内臭氧发生器价格来说,与二氧化氯、次氯酸钠价格差不多,甚至还低,只是人们的认识水平和设备更新缺乏资金,尚有一个过程。 一九九六年国家卫生部下文件,要求二次供水必须安装消毒设施,有些单位的自备井也必须在水质达标的情况下才允许使用,二次供水的消毒及处理产品,目前只有在二氧化氯、次氯酸钠和臭氧发生器设备中选用,臭氧水处理具有较强的竞争优势,应是一个成熟市场。近几年兴起的矿泉水、纯净水、瓶装水已是臭氧技术产品的必用市场,离开臭氧装备很难达标。 饮用水的处理在使用臭氧设备时,臭氧的投加量一般在1-3mg/L,接触时间10-15min 即可,可作为选型时根据用水量计算参考。《生活饮用水卫生标准》(GB 5749-2006)按照《食品企业通用卫生规范》(GB 14881—1994)的要求,食品生产用水(冰),必须符合《生活饮用水卫生标准》(GB 5749-2006)。 二、游泳池水处理 臭氧化技术用于游泳池水处理技术已十分成熟,欧美等国使用十分普遍,国际比赛游泳池几乎都是采用臭氧技术处理,我国的游泳用水标准要求细菌个数<1000个,大肠菌群<100个,浊度<5,目前主要采用加氯、漂白粉、硫酸铜等消杀手段,在水质达标的同时,又造成二次污染,造成使水质扎眼,刺激皮肤等恶果,特别是液氯使用中潜在威胁很大,一旦泄漏会造成大面积中毒污染,使用中使人提心吊胆。臭氧技术在水质达标的情况下,完全没有以上缺陷,臭氧化水还可消杀体菌以美容,更为经济的是使用中减少或取消了药物消耗,成本降低,水质保质期得以延长,是一笔不小的节约开支。 游泳池水的臭氧处理技术与饮用水处理基本相同,其普及应用有待于经济和认知水平的提高。需要掌握的是,使用臭氧后,室内游泳池基本不用药物辅助,露天游泳池在高温下可能会使部分藻类生长,这是因为臭氧虽然有灭藻功能,但藻类品种繁多,不可能全部杀灭,这种情况一般出现在太阳光强烈的持续高温天气,此时配用少许硫酸铜即可。

二氧化氯性能及其安全防护措施

二氧化氯性能及其安全防护措施 1、物质的理化常数 国际编号—— CAS号10049-04-4 中文名称二氧化氯 英文名称Cho1rine dioxide;Chlorine oxide 别名 分子式CLO2外观与性状黄红色气体,有刺激性气味, 能沿地面扩散,一般稀释为 10%以下的溶液使用、贮存 分子量67.45 沸点9.9℃/97.2kPa(爆炸) 熔点-59℃溶解性不溶于水 密度相对密度(水=1)3.09(11℃); 稳定性不稳定 相对密度(空气=1)2.3 危险标记主要用途用作漂白剂、除臭剂、氧化 剂等 2、对环境的影响 一、健康危害 侵入途径:吸入、食入。 健康危害:本品具有强烈刺激性。接触后主要引起眼和呼吸道刺激。吸入高浓度可发生肺水肿。能死亡。对呼吸道产生严重损伤浓度的本品气体,可能对皮肤有刺激性。皮肤接触或摄入本品的高浓度溶液,可能引起强烈刺激和腐蚀。长期接触可导致慢性支气管炎。二、毒理学资料及环境行为 危险特性:具有强氧化性。能与许多化学物质发生爆炸性反应。受热、震动、撞击、摩擦,相当敏感,极易分解发生爆炸。 燃烧(分解)产物:氯化氢。 3、现场应急监测方法 气体检测管法 4、实验室检测方法 甲基橙比色法《空气中有害物质的测定方法》(第二版)杭士平主编 5、环境标准

美国车间卫生标准0.3mg/m3 前苏联(1975)水体中有害有机物的最大允许浓度0.4mg/L 6、应急处理处置方法 一、泄漏应急处理 疏散泄漏污染区人员至上风处,并隔离直至气体散尽。应急处理人员戴正压自给式呼吸器,穿化学防护服。切断火源。铁使泄漏物与可燃物质(木材、纸、油等)接触,切断火源,喷洒雾状水稀释,抽排(室内)或强力通风(室外),漏气容器不能再用,且要经过技术处理以清除可能剩下的气体。 二、防护措施 呼吸系统防护:空气中浓度较高时,应该佩戴防毒面具。紧急事态抢救或撤离时,建议佩戴正压自给式呼吸器。 眼睛防护:带化学安全防护眼镜。 身体防护:穿防腐工作服。 手防护:可能接触毒物时,戴防化学品手套。 其它:工作现场禁止吸烟。工作后,淋浴更衣。保持良好的卫生习惯。 三、急救措施 皮肤接触:脱去污染的衣着,立即用大量流动清水彻底冲洗至少15分钟。就医。 眼睛接触:立即翻开上下眼睑,用流动清水或生理盐水冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸通畅。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。 食入:误服者漱口,饮牛奶或蛋清。就医。 灭火方法:切断气源。喷水冷却容器,可能的话将容器从火场移至空旷处。

臭氧冷却水处理

冷却塔循环冷却水专用臭氧处理系统 一、概述: 用臭氧处理循环冷却水在国外始于70年代末,当时,美国环保署发现使用氯消毒会产生多种致癌的氯化有机物,因而限制循环水使用氯消毒,这直接促进了臭氧在美国循环水处理中的的应用。臭氧作为水处理剂,具有操作简单,杀菌能力强,排污量少,既能节水节能,又不用调节水的pH值,不存在二次污染等优点,对循环水的缓蚀、阻垢、杀生等方面均有良好的效果。 我国卫生部门颁布的法规中对臭氧的杀菌作用作了明确的肯定:臭氧是一种广谱杀菌剂,它可杀灭细菌繁殖体和芽胞、病毒、真菌等,可破坏肉毒杆菌毒素。臭氧在水中的杀菌速度较氯快1000倍。而且臭氧使用后,会自己消失的无影无踪,变成氧气,不像其他化学消毒剂那样,还会有残留,这种化学消毒剂的残留,会对我们生活的环境造成很严重的污染。 1. 臭氧处理冷却塔循环水原理 (1)臭氧阻垢:循环冷却水系统中的水垢,是溶于水中的盐类物质由于不断蒸发浓缩而结晶析出形成水垢。一般认为,臭氧不具备分解水垢的能力,但DOE(美国能源部)和NASA(美国国家航空航天局)的研究表明,臭氧具有阻止水垢生成的能力,使用臭氧,水中的总溶解固体可达到1700mg/l,硬度可达到724mg/l(以CaCO3计)而

不结垢,这是常用阻垢剂所不能比拟的。其原因可能是微量硝酸的生成及臭氧具有使碳酸盐向重碳酸盐方向移动的能力。 (2)臭氧防腐蚀:通常认为臭氧是一种强氧化剂,因而具有腐蚀性,但研究及应用表明,臭氧具有防腐蚀性,臭氧抑制腐蚀的机理与铬酸盐缓蚀剂的机理大致相似,主要原因是由于臭氧分解后产生的活泼的原子氧与亚铁离子反应后,在阳极表面上形成一层含γ-Fe203的钝化膜,对金属具有良好的保护作用。NASA的研究表明,使用臭氧后,循环冷却系统中钢铁的腐蚀速度为标准要求的1/2~1/3。 (3)臭氧杀生:臭氧是最强的氧化型杀生剂,是公认的高效无污染杀生剂,在0.1ppm的浓度下,即可有效杀灭病毒及细菌,并能有效地控制循环水中微生物的生长,减轻生物污垢及其引起的垢下腐蚀。同时,能氧化垢层基质中的有机物成分,使垢层失去粘结剂变松脱落,从而起到除垢的作用。 二、工业冷却循环水现状 1、腐蚀——缩短设备寿命 众所周知,在使用化学药剂对工业循环水进行处理的过程中,药剂本身的强腐蚀性给工业机组带来不可避免的腐蚀,减少了设备的使用寿命。 《工业循环冷却水处理规范》(GB50050-2007)将碳钢设备的腐蚀速率设定为“应小于0.075mm/a”,将延长设备使用寿命1.67倍,降低设备折旧率,延长检修周期。

二氧化氯的制备与注意事项

二氧化氯的制备及注意事项 一、原理:氯酸钠+盐酸法(全盐酸法或开斯汀法)。 反应方程式: NaClO3+2HCl= ClO2+1/2 Cl2+NaCl + H2O 副反应为: 2NaClO3+6HCl= 3Cl2+2NaCl+3 H2O 通过理论计算可知: NaClO3+2HCl= ClO2+1/2 Cl2+NaCl + H2O 106.5/1.56 +74/1.1= 67.5/1+ 35.5/.53+ 58.5/.87+ 18/.27 产生1吨二氧化氯需用1.56吨氯酸钠、1.1吨氯化氢同时产生0.53吨氯气、0.87吨NaCl和0.27吨水。 换算成氯酸钠溶液(1吨氯酸钠固体配2吨水),比重为1260kg/m3(20℃)体积为3.67m3。氯化氢换算成盐酸(31%),比重为1160 kg/m3 (20℃)体积为3.45m3。 二、运行中的注意事项: 1、反应温度:因为现场发生二氧化氯为化学反应,反应为吸热反应,所以对反应釜温度要求较高。据有关资料显示,反应釜反应温度在50℃时原料转化率为50%。在71℃时,原料转换率86%。当80℃时反应速度过快以副反应为主,氯气量大于二氧化氯量。在现操作面板显示的温度为88℃—85℃为水浴温度不能真实代表反应釜温度,特别在秋、春季当未点炉时,夜间氯库温度在-4—-5℃,点炉后氯库

白天温度9℃,夜晚5℃。而反应釜与水浴加热间隔着厚厚的PVC塑料板和聚四氟涂层(传热性不好),这一时期的加热如不及时,出液管温度会明显下降(反应效率特别低)。建议对原料和进气加热,以弥补发生器加热量不足的问题,提高反应效率,降低副产物的产生量。 2、进气量的控制: 进气的作用主要四个方面: (一)使原料充分混合,提高原料转换效率。 (二)进气可降低二氧化氯的浓度,防止二氧化氯在发生器上部聚集发生爆炸。 (三)进气量的大小决定反应釜的液位,据厂家提供的资料,反应时间不应低于30min,但反应30min后,原料转换没有明显提高。在实际运行中应根据生产条件,适当延长反应时间以提高转换效率。 (四)二氧化氯具有遇曝气即从溶液中逸出的特性,可降低反应液中的二氧化氯含量,防止因反应液二氧化氯含量超30%发生的爆炸。 3、原料的进料量: 通过理论计算可知: 3.67 :3.45 (溶液体积比)。 但厂家规定1:1。酸过量,主要提高氯酸钠转换率,防止未反应的氯酸钠进入出厂水污染水质。在实际工作中要严格掌握原料进料比例,防止因进料比例不当,而导致的原料转换率低,并产生大量副产物污染水质和生产成本的不必要增加。 三、关于二氧化氯在水厂使用的建议

臭氧水处理技术及其应用

环保水处理工程就找“武汉格林环保" 臭氧水处理技术及其应用 高浓度污水,并存在大量难分解化学物质的条件下,仅依靠一个处理单元,或者通过单纯一种工艺,很难获得处理效果。而需要将稳定结构的长链分子切断,降解到容易生化处理的低分子,甚至直接分解,才能实现达标排放或者再生水回用。某公司在长期的水处理实践中,深刻感受到依靠高强度的氧化手段的必要性,并通过长期的技术引进、自主技术研发,已经完善了拥有独立知识产权的臭氧MB—AOP水处理技术。 臭氧MB—AOP是什么? 臭氧MB—AOP是是一种臭氧高级氧化法水处理技术。一种由氧、微纳米气泡、以及UV、过氧化氢、超声波、光触媒单项或并用构成的促进氧化水处理方法。 1、臭氧 臭氧是自古以来存在于地球大气中的一种气体。大气中的臭氧层遮挡着紫外线的照射,微量的臭氧杀菌消毒,净化着空气,是保护绿色地球的天使。

环保水处理工程就找“武汉格林环保" 臭氧是一种强氧化剂(氧化电位2.1V),氧化能力高于二氧化氯(氧化电位1.5V)、过氧化氢(氧化电位1.77V)等常用氧化剂。臭氧既可以直接与水中接触物质产生氧化反应,同时也可以与水反应,生成更具有氧化能量的OH-自由基等活性物质。2 (左边是微纳米气泡浮游于水中,在水中破裂。右为传统方法的混合气泡,上升很快,在水面破裂) H2O+O3=2.OH+O2 因此,臭氧具有极强的氧化降解水中有机物质、直接破坏细菌病毒细胞膜的杀菌消毒、氧化分解恶臭成分,去除异味作用。 2、微纳米气泡(MB=Microbubble) 微纳米气泡没有明确的定义。一般而言指的是气泡直径小于50μm 的水中超微细气泡。由于气泡直径与常见的气泡不同,而显示出以下特性: (1)上升速度。与通常气泡很快浮出水面不同,微纳米气泡上升速度慢,在水中滞留时间较长。

臭氧发生器在养殖水处理中的作用

水处理臭氧发生器真是功能强大、用途广泛,不仅在饮用水处理、泳池水处理、工业废水处理发挥着重要作用,水处理臭氧发生器还可以用于养殖水处理。 应用臭氧消毒游泳池水在国外十分普遍。经臭氧消毒后,游泳池池水清澈透明,彻底解决了氯消毒刺激眼睛、皮肤的问题。我国有部分经济发达地区也采用臭氧消毒游泳池水,效果较好。 给小区分质供水,必须使用臭氧消毒灭菌,只有这样才能保证饮用水时刻处于无菌富氧状态。 臭氧分解后能产生氧气,既可改善食用水生生物的生存质量,又能对其生存场所杀菌消毒。不过臭氧浓度应避免高于0.1mg/L,因为它有害于水生生物。 采用臭氧消毒灭菌不存在任何对人体有害的残留物(如用氯消毒有致癌的卤化有机物产生),对提高饮用水的消毒质量问题非常有效。 地表水中含有各种有机、无机以及各种细菌、病毒。地表水用臭氧进行深度处理后,基本上可以达到优质饮用水标准。有实验表明水中臭氧浓度在0.4ppm时,只需一分钟就可以将细菌和病毒全部杀死,它杀病毒比杀菌的速度更快。经过臭氧深度处理的饮用水的质量很高,可以防止微生物在管道内生长,保护了人体的健康。若是只用紫外消毒杀菌,只能透过一定厚度的水层,消毒杀菌不彻底,而用臭氧就能彻底解决问题。臭氧若是结合紫外对饮用水消毒杀菌,效果比单独用任何一种方法更好,还能节省能耗。

利用臭氧对自来水直接消毒则要简单得多,所需臭氧浓度也小得多。不过,臭氧极易分解,在它们的终端都还需要加少许余氯,以防止细菌在配水管网内的再度滋生。 臭氧化处理养殖水,对鱼、虾、蟹类的生长极为有利,经济效益也非常明显,在欧美已广为采用。养殖水因富含有机物,水质很容易出问题,细菌病毒鱼虾类的细菌传播也十分猖狂,近几年沿海诸多养虾池绝产和大量荒废正是因此形成。 臭氧在养殖水处理中,除了灭菌和抑制病毒菌对鱼虾的感染、传播外,还可以分解有机物,去除COD、BOD物质,又因其助凝作用,

臭氧技术在水处理中的应用

臭氧技术在水处理中的应用 李亮,李燕 中国矿业大学江苏省资源环境信息工程重点实验室,江苏徐州(221116) E-mail:liqiliang1234@https://www.wendangku.net/doc/a06093641.html, 摘要:臭氧作为一种强氧化剂,在水处理中得到了广泛的应用。综述了各种臭氧高级氧化技术的研究进展,包括臭氧氧化技术、臭氧/紫外辐射、臭氧/过氧化氢、臭氧/超声波、臭氧/活性炭、催化臭氧化、臭氧与混凝处理联合等技术,并提出了目前臭氧技术存在的问题,最后展望了该技术未来的发展趋势。 关键词:臭氧;高级氧化;臭氧联用技术 1. 引言 臭氧(O3)是强氧化剂、杀菌消毒剂、催化剂、脱色剂和除臭剂。臭氧技术是治理环境和水质污染的关键技术,是二十一世纪环境科学四大关键技术之一,普遍应用于空气、水、物体表面的消毒以及油烟净化等方面。该技术的核心环节是通过特定的电场实现无声放电而产生大量的臭氧气体,在此过程中,高能电子与气体分子碰撞时发生一系列基无物化反应并将气体激活,产生多种活性自由基,从而对多种有害物质、细菌病毒等发生催化、氧化和分解,而转为无毒的副产物,达到真正消毒、洁净的目的。 在水处理方面主要应用于水厂、水塔、水箱、蓄水池、游泳池及污水处理。臭氧应用特点:氧化能力强,反应速度快;对细菌,病毒、芽胞、软体微生物等有极强的杀灭作用;氧化农药毒素,降低水中BOD、COD;臭氧的原料取自空气中的氧,完成工作后又还原成氧,增加水中溶解氧,没有二次污染;可改善水的理化性质,有良好的脱色、除臭、除异味作用;用臭氧消毒杀菌不会产生有毒的三氯甲烷及致癌有机卤化物副产品,不存在任何对人畜有害的残留物。 2. 臭氧氧化技术 臭氧的氧化电位为2.07V,氧化能力仅次于氟[1]。臭氧能与水中各种形态存在的污染物质(溶解、悬浮、胶体物质及微生物等)起反应,将复杂的有机物转化成为简单有机物,使污染物的极性、生物降解性和毒性等发生改变。多余的O3可自行分解为O2。 卢宁川等[2]采用臭氧氧化的方法.对某厂苯酐车间的增塑剂废水的氧化降解过程进行了探讨。结果表明,将废水pH调至9、臭氧氧化时间为60min时,对增塑剂废水中COD的去除率较高,可达41.5%,适当提高pH可加快污染物的氧化速率,同时降低了臭氧投加计量比值。从而增加了臭氧的利用率。 王长友等[3]噪用臭氧氧化法降解金矿氰化废水,废水水样pH为8.0-9.0,当氧化反应时间达到12min,臭氧投加量为133.33mg/L时,氰化物去除率达到98.1%.残余氰化物质量浓度为0.43mg/L。 3. 臭氧联合技术 目前,单独使用臭氧氧化技术处理废水仍存在一些问题。一方面,臭氧与有机物的反应选择性较强,在低剂量和短时间内,臭氧不可能完全矿化污染物,且分解生成的中间产物会阻止臭氧的进一步氧化[4]。另外臭氧的发生成本高,利用率偏低,导致处理费用高。因此对提高臭氧的利用率和氧化能力这方面的研究,是目前国内外的热点。

水处理中二氧化氯与臭氧的应用比较(二)

水处理中二氧化氯与臭氧的应用比较(二) 2. 臭氧(O3) 2.1 臭氧的应用 1840年瑞士化学家Schōnbein证实了臭氧的存在。1886年法国人Meritenus发现臭氧具有杀菌作用。1893年荷兰首先将臭氧应用于水的消毒处理。1906年法国的Nice城将臭氧用于大规模净水厂的水处理,至今已有近百年历史。 臭氧氧化能力强,用于消毒杀菌杀伤力大,速度快;臭氧可氧化溶解性铁、锰,形成高价沉淀物,使之易于去除;可将氰化物、酚等有毒有害物质氧化为无害物质;可氧化致嗅和致色物质,从而减少嗅味,降低色度;可将生物难分解的大分子有机物氧化分解为中小分子量有机物,使之易于生物降解;使用臭氧预处理,还可以起到微絮凝作用,提高出水水质;应用臭氧,不会在处理过程中产生有害的三致物质。 目前,世界上有上千家水厂使用臭氧进行处理、消毒。在欧洲主要城市已把臭氧作为去除水中污染的一种主要手段用于饮用水的深度净化。20世纪70年代初以来,许多国家还对臭氧应用于城市污水、工业废水、循环冷却水处理进行了研究并有很多成功的例子。70年代中期开始,我国也开始了利用臭氧氧化工艺处理受污染饮用水水源的试验研究工作。现在国内已有数十家水厂应用于实际生产。 2.2 臭氧的物理性质 O3是一种具有特殊的刺激性气味的不稳定气体,常温下为浅蓝色,液态呈深蓝色。O3是常用氧化剂中氧化能力最强的,在水中的氧化还原电位为2.07V,而氯为1.36V,二氧化氯为1.50V.另外,O3具有较强腐蚀性。 O3在空气中会慢慢自行分解为O2,同时放出大量的热量,当其浓度超过25%时,很容易爆炸。但一般臭氧化空气中O3的浓度不超过10%,不会发生爆炸。 在标准压力和温度下,纯臭氧的溶解度比氧大10倍,比空气大25倍。0℃时,纯臭氧在水中的溶解度可达1.371g/L.O3在水中不稳定,在含杂质的水溶液中迅速分解为O2,并产生氧化能力极强的单原子氧(O)和羟基(OH)等具有极强灭菌作用的物质。其中羟

水处理应用臭氧的知识

臭氧几乎在瞬间以高速杀死水中的细菌、病毒和其他微生物。水中有机化合物等污染物的分解完全,没有二次污染。这是世界上臭氧应用最重要的领域。 水是传染病的主要媒介。据调查,农村地区50%的疾病是由饮用水污染引起的。臭氧是国家提倡的水消毒的首选,可以去除水中的重金属和其他成分。不会产生致癌的卤化氯,也不会产生二次污染。 杀菌力强,速度快。臭氧杀死普通大肠杆菌的速度是氯的数百倍,对原核生物中的病毒和细菌具有有效的杀灭作用。臭氧可以防止有机污染物的积累,改善水质,脱色和杀灭病原微生物。处理后的水可以有效防止传染病的传播。臭氧能有效减少水中污染物,减少氯副产物(一氯胺、二氯胺、三氯胺、三氯甲烷等)的形成。),并确保游泳者的健康。在处理过程中,游泳池水中残留的臭氧不会超过安全限值,空气可以消毒净化,使室内空气清新舒适。 臭氧是一种优良的强氧化剂,在水处理中可以氧化水中的各种杂质,从而达到净水的效果。同时,臭氧是一种非常有效的消毒剂,可以高效、快速地杀灭细菌和病毒,不会造成二次污染。 臭氧杀菌装置可以对生物卵、养殖水和设施进行杀菌,从而防止病原体的入侵。臭氧杀菌净水效果强,无毒无害。是水产养殖和种苗生产中最理想的杀菌净化剂。这对防治鱼、虾、海胆、河蟹、甲鱼等生物病害,改善水产养殖生态环境具有重要意义。 水是人类社会生存最重要的物质条件之一。作为一个水资源短缺的国家,水资源短缺已经成为制约我国城市可持续发展的重要因素。

臭氧发生器凭借自身在中水回用领域的技术和信息优势,在废水回用方面形成了一系列操作简单、满足多层次用户需求的经济实用的工艺和设备。 工业循环冷却水使用后。Ca2、Mg2、CI等离子体、水中溶解固体和悬浮固体相应增加。空气中的灰尘、杂物、可溶性气体、换热器材料泄漏等污染物都可能进入循环冷却水,造成循环冷却水系统中设备和管道的腐蚀和结垢,导致换热器传热效率降低,水截面积减小,甚至设备管道腐蚀穿孔。循环冷却水系统中的结垢、腐蚀和微生物繁殖是相互关联的。污垢和微生物粘液会导致水垢下的腐蚀,而腐蚀性产品会形成污垢。要解决循环冷却水系统中的这些问题,必须进行综合治理。臭氧可以作为唯一的处理剂来代替其他冷却水处理剂。它能抑制水垢、抑制腐蚀、杀菌,使冷却水系统在高浓度多次甚至零污染排放下运行,从而节水节能,保护水资源。同时,臭氧冷却水处理不会造成任何环境污染。 飞立电器科技有限公司是一家专业从事臭氧消毒设备研发、制造、销售为一体的现代化高科技企业,公司长期秉承“自主研发,掌握核心,以质取胜”的理念,以“质量第一,客户第一”为宗旨,以“现代化的管理,卓越的品质,合理的价格,优质的服务”为承诺,为广大客户提供质优价廉的产品。公司主要研发生产定制:大中小型空气源臭氧发生器、氧气源臭氧发生器、中央系统循环式臭氧消毒机、多功能臭氧消毒柜等;作为一家致力于打造高端品牌的现代化企业,飞立秉承以“宁为价格作解释,不为品质找借口”为宗旨,用具竟争力

消毒剂次氯酸钠二氧化氯和臭氧的比较

消毒剂次氯酸钠二氧化氯和臭氧的比较 目前,从水体消毒的种类来说,有氯气、次氯酸钠、漂白粉、三氯异氰尿酸、二氧化氯、双氧水、臭氧等药剂和方式,此外还有紫外线消毒等一些手段。 由于氯气运输、管储方面的不安全;在投加方面,气体同水体的溶解性较低,容易散失,水中留存余量难以达到标准;氯气瓶气压不断变化,存在投加计量不够准确的问题;加之,氯气等气体的极强扩散性对环境存在毒害作用,游离氯的高活性容易形成许多象四氯化碳一类的致癌物质,故而,取消液氯的主张越来越多,也日益受到人们的关注。 就拿氯气的安全性来说,就始终是一个让人时时警觉的问题。在我国,几乎每一年都有氯气罐泄漏的安全事故发生。氯气作为危险品受到各国安全机关的严格管制。前些年,发生在福建三明火车站氯气瓶运输中的跑氯事件造成几千人的紧急疏散,又如2004年重庆市一家储存有十多吨的液氯发生泄漏迫使三十多万人疏散;在北京有些游泳场由于操作人员不谨慎,三分钟跑氯就有37名孩子住进医院。我国的天津地区就明确规定公共娱乐场所禁用氯气进行消毒。 在国外许多发达国家,像美国、德国、日本等就相当限制氯气的使用,氯气主要用于污水处理。尤其是公用场所和中小型自来水厂一般不再使用液氯,而多以使用次氯酸钠液体进行消毒。当然,也有根据用水要求,如像小量饮用水就采用诸如紫外线、臭氧、双氧水等手段进行灭菌杀毒。 氯气、次氯酸钠、、氯酸钠氯酸钠和用臭氧发生器设备,一般都必须采取者压缩空气进行发二氧化氯和臭氧[1]都是工农业生产和日常生活中比较容易见到的几种强氧化剂,除臭氧以外,它们均为非天然存在的化学物质。一般都可以用作水体杀生剂。它们不仅具有灭杀细菌和病毒的功能,还能够漂白纸张、纤维以及用作化学合成等。广泛用于自来水消毒、游泳池水灭菌、污水处理、循环水除藻、造纸工业、化学合成业、以及医药卫生和防疫等各个领域。 但是,不同的药剂具有不同的性能和特点,就如同不同厂家的产品具有并不相同的质量一样。氯气、次氯酸钠、二氧化氯和臭氧在物理化学性能上,以及实际使用中都有很大的区别。就这几种消毒剂的应用来讲,以次氯酸钠为最为安全有效,易于储存,使用最为方便。 有关氯气的性能和使用我们都很熟悉了,它的杀生效果很好,容易获得,经济廉价,而且投加方便,占用地方很小,但安全性比较低,管理上容易疏忽。在这里,我们主要想具体探讨和比较一下次氯酸钠、二氧化氯和臭氧三种杀生剂的性能以及相关设备的使用特点。 次氯酸钠 次氯酸钠的分子式是NaClO,属于强碱弱酸盐,它清澈透明,是一种能完全溶解于水的液体。但由于次氯酸钠液不易久存,次氯酸钠多以电解低浓度食盐水现场制备。 次氯酸钠液体通过电解食盐水制备,这种设备称为次氯酸钠发生器。其次氯酸钠的生成过程可以通过化学方程式表达如下: 其总反应表达如下: NaCl + H2O → NaClO + H2↑ 电极反应: 阳极: 2Cl- - 2e → Cl2 阴极: 2H+ + 2e → H2

臭氧在中水、纯水处理的投加方法

本文取自铨聚臭氧科技有限公司的设备测试 8月水处理投加试题 1、射流器用于储水罐臭氧投加安装方法:(不少于2种)(30分) 2、射流器旁流臭氧投加安装方法(15分) 3、混合泵臭氧投加安装方法:(不少于2种)(30分) 4、混合塔臭氧投加方法(15分) 5、臭氧曝气混合投加(10分) 以上问题要求: A、画图 B、文字描述投加方法 C、分析该种方法的优缺点 D、下午5点钟断网开考 E、用WORD完成以上考试,完成后方可下班。 F、80分以下罚扫厕所1次 1. 射流器混合法 运行方式---射流法是在射流器内的气腔在高速水流作用下形成负压,吸进臭氧气体,高速水流再把臭氧气体粉碎,形成微气泡而与水充分接触混合。采用射流法混合臭氧的效率一般为25-40%。 出水

注意事项: a安装止回阀并确保臭氧输送管最高处高于储水罐顶50CM以上,以防回水。 b射流器最好的应用方式是和反应罐连用,增压泵从反应罐下部一侧进水供给射流器,射流器的出水从反应罐的下侧的切面方向再进入反应灌,循环投加臭氧,且水流带有臭氧气泡在储水罐内螺旋式上升,增加了混合效率。 c送水管道应采用PVC、不锈钢等耐氧化的材质,增压泵应选用不锈钢材质。 优点:投资少,混合好,接触时间短,混合率为曝气法的数倍,是主流的混合方法。 缺点:混合率利用率处于中下。停止工作时,水箱压力过大会有回水机器情况。 出水 运行方式---射流法是在射流器内的气腔在高速水流作用下形成负压,吸进臭氧气体,高速水流再把臭氧气体粉碎,形成微气泡而与水充分接触混合。采用射流法混合臭氧的效率一般为25-40%。 优点:投资少,混合好,接触时间短,混合率为曝气法的数倍,是主流的混合方法。

利用臭氧发生器制取的臭氧在冷却水处理方面的应用

利用臭氧发生器制取的臭氧在冷却水处理方面的应用[摘要]本文主要阐述了臭氧发生器用于制取臭氧,在冷却水水处理方面的作 用,比较利用其他原料处理冷却水上的优点及缺点,以及应用臭氧发生器在冷却水处理方面应注意的问题。 【关键词】臭氧发生器;臭氧;冷却水处理 臭氧发生器是用于制取臭氧的设备装置。臭氧易于分解无法储存需现场制取现场使用(但是在特殊的情况下是可以进行短暂时间的储存),凡是能用到臭氧的场所均需使用臭氧发生器。臭氧发生器在自来水,污水,工业氧化,空间灭菌等领域广泛应用。其通电把氧变成臭氧。 臭氧发生器中广泛使用,但制造成本较高。按臭氧发生器结构划分,有间隙放电式(DBD)和开放式两种。间隙放电式的结构特点是臭氧在内外电极区间的间隙内产生臭氧,臭氧能够集中收集输出使用其浓度较高,如用于水处理。开放式发生器的电极是裸露在空气中的,所产生的臭氧直接扩散到空气中,因臭氧浓度较低通常只用于较小空间的空气灭菌或某些小型物品表面消毒。间隙放电式发生器可代替开放式发生器使用。但间隙放电式臭氧发生器成本远高于开放式。 那么下面我们主要讲解下用臭氧发生器制取来的臭氧用于冷却水处理方面的用途。 臭氧是世界公认的广谱高效杀菌消毒剂。采用空气或氧气为原料利用高频高压放电产生臭氧。臭氧比氧分子多了一活泼的氧原子臭氧,化学性质特别活泼,是一种强氧化剂,在一定浓度下可迅速杀灭空气中的细菌。没有任何有毒残留,不会形成二次污染,被誉为“最清洁的氧化剂和消毒剂”。 臭氧仅作杀菌剂,臭氧是一种氧化性很强但又不稳定的气体。在水溶液中,臭氧保持着很强的氧化性。在许多化学反应中,它很想氯。作为杀菌剂,臭氧的作用机理与其他氧化性杀菌剂有许多相同之处。臭氧可与蛋白质结合,破坏细胞呼吸所不可缺少的还原酶的活性。检验经臭氧氧化后细胞时发现,细菌的细胞因失去了维持生命的细胞质而被破坏。和氯不同的是,用臭氧作杀菌剂不会增加水中的氯离子浓度,当冷却水排放时不会污染环境或伤害水生物,而且臭氧在光合作用下还会分解生成氧。臭氧是通过将氧或干燥空气经过臭氧发生器中的放电管而生成的气体。添加臭氧时,首先应将它溶解在水中,然后把溶液有臭氧的水注入冷却水中。臭氧可以从不同的部位注入冷却水系统。例如可以加入到冷却塔的集中水池中,或加到冷却水循环泵出口的一侧。在较为简单的冷却水系统中,只需在一处加入臭氧就足够了;对于复杂的,有多个支路的体系,则建议在几个不同的部位加入臭氧,使臭氧在水中的分布较为均匀。 在制定臭氧操作过程时,需要考虑的重要参数是:该冷却水系统的工况、水量、补充水和循环水的水质,尤其是化学需氧量和PH值。采用臭氧连续加注发时,所需的臭氧量很小。在进行冷却水处理时,一般认为,除了添加臭氧作为杀菌剂以控制水中的微生物生长外,还需要同时加入阻垢剂和缓蚀剂,以分别控制冷却水系统中的结垢和腐蚀。使用臭氧作为杀菌剂后,可使冷却水系统中不再有生物沉积物生成。原先存在于冷却水系统中的生物沉积物和冷却塔中的藻类,也会随之消失,循环冷却水变得清澈透明,异菌养数也会比以前大大减少,换热器的换热效果则会明显改善。 在冷却水中,臭氧对碳钢和不锈钢没有任何不利的影响,但臭氧对铜和铜合

二氧化氯的特性(精)

二氧化氯是一種優良的消毒劑和強氧化劑,又是一種含氯製劑,繼第一代消毒劑液氯(含cl2、次氯酸鹽和漂白粉)、第二代消毒劑優氯劑(二氯異氰尿酸鈉)、第三代消毒劑氯精(三氯異氰尿酸)後,二氧化氯被推崇為第四代消毒劑,是世界衛生組織(who)和世界糧農組織(fao)向全世界推薦的a1級廣普、安全和高效消毒劑。 二氧化氯常溫下為黃綠色或橘紅色氣體,帶有一種辛辣氣味,易溶于水,在20℃和30mmhg壓力下,二氧化氯在水中的溶解度為2.9克/升。溶解中形成黃綠色的溶液。在空氣中的體積濃度超過10%時便有爆炸性,但在水溶液中則無危險性。比重為3.09克/升(11℃),熔點-59.5℃,沸點9.9℃(壓力為731mmhg時的沸點)。在水中能被光分解,與氨不起反應。對人體有刺激,當大氣中二氧化氯含量為14mg/l時,就可使人覺察;45mg/l時,明顯地刺激呼吸道。二氧化氯的揮發性較大,稍一曝氣即從溶液中逸出。溫度升高、曝光或與有機質相接觸,會發生爆炸。因此,在實際應用中,二氧化氯須避光保存,一般情況下,現使用,現製備。 二氧化氯是一種有多方面用途又有選擇性的氧化劑,它與各種有機和無機化合物反應,這些反應中許多都能用於包括水溶液和氣態蒸汽在內的水處理和工業廢物處理上。二氧化氯屬強氧化劑,其有效氯是氯的2.6倍,可以與包括鐵、錳、硫化物、氰化物和含氮化物等無機物以及酚類,有機硫化物,多環芳烴、胺類、不飽和化物,醇醛和碳水化合物以及氨基酸和農藥等有機物化合物反應。

二氧化氯問世以來,已經先後被用於紙張和纖維漂白、飲用水消毒、食品加工、肉類水果蔬菜和水產品滅菌與保鮮、工業冷卻水和廢水處理、食品包裝紙消毒和漂白、注水採油和油井解堵、臨床醫療中的消毒滅菌、衛生防疫消毒、油脂脫色及麵粉和大米加工中的漂白和殺菌、水產養殖中的水體養殖消毒和防病治病以及水廠殺藻和控制生物污染和管道淤塞等諸多方面。 一、二氧化氯在引用水消毒中的應用 美國環境保護局進行過幾項使用二氧化氯消毒水和廢水的研究,實驗證明二氧化氯是一種比氯更有效的殺病毒劑和殺細菌劑,而且在廣泛的ph範圍內有效,成為大家喜歡使用的消毒劑。認真控制二氧化氯消毒可減少形成有機氯代物的潛力。 二、使用二氧化氯控制三氯甲烷 二氧化氯在水處理中的應用,是多年來已被接受的一項事實,它曾經是減少水源疾病的重要因素一。但是三鹵甲烷的發現及其危及健康的作用卻提出了一個氯化和安全問題,認為在保護飲用水免遭疾病傳染時也能產生致癌性的有機副產物。這種關注導致了對“國家臨時初級飲用水章程”的修改,以便控制飲用水中三鹵甲烷的濃度。 八十年代處,美國印第安那州埃文斯維爾供排水公司和美國環境保護局(usepa)發起了使用二氧化氯的評價研究,結果表明二氧化氯對減少三鹵甲烷是非常有效的,二氧化氯的效果促成了美國很多供排水公司把預消毒劑從氯氣改變為二氧化氯。 三、二氧化氯和氯:預氧化劑用於飲用水廠殺滅藻類 與水淨化和水質問題相關的藻類已引起人們的強烈關注。這些問題概括如下: 1、藻類和胞外產物干擾物理/化學水淨化工藝; 2、藻類通過淨化系統造成令人難以接受的水質產生; 藻類不僅產生影響神經系統的肝毒素有害于消費者的健康,而且產生藻類產物還能作為三鹵甲烷的前驅物質和微生物及其異樣生物的養料來源。

臭氧在水处理中的应用

臭氧在水处理中的应用 臭氧(O3)技术于1905年应用于水处理,随着相关技术的进步,臭氧化法成本的降低,被普遍认为是很有发展前景的水处理方法。臭氧具有极强的氧化性,其氧化作用机理目前尚无肯定的研究结论,通常认为主要来自臭氧离解的·OH自由基,它是发生在水中的已知氧化剂中最活泼的氧化剂,它很容易通过基型反应将各种类型的有机物氧化。·OH自由基还可与其他物质如苯衍生物等形成二次氧化基,它还能将碳酸盐或重碳酸盐离子氧化成可起三次氧化剂作用的碳酸根或重碳酸根,臭氧分子可离解成过氧化物高子的过羟基]。 1 臭氧化法的主要工艺 O3水处理工艺类型很多,主要有以下几种类型:①O3+生物活性炭法,②O3+混凝法,③O3+活性炭吸附法,④O3+活性污泥法,⑤O3+膜处理法,⑥O3+超声波法。 O3+生物活性炭法主要过程是:先往水中投加臭氧,其强氧化性使复杂有机物分子断链成小分子,从而易于生物降解,同时提高了水中溶解氧浓度。然后再进人生物活性炭装置,易降解有机物被活性炭富集,经好氧微生物氧化分解为CO2和H2O等。该工艺的特点是臭氧预处理提高了废水的可生化性,有机物的富集和富氧提高了生化反应速度;活性炭上的有机物生物降解又可恢复活性炭吸附性能。O3+混凝法基于O3对亲水性物质强烈的破坏力,当亲水性物质转变成疏水性时,混凝沉淀效果将大大改善。O3+活性炭吸附法是指:由于活性炭微孔孔隙小,限制了对大分子物质的吸附,O3可破坏物质分子结构,形成小分子,增大活性炭吸附容量。O3+活性污泥法的作用如同生物活性炭法,目的在于提高废水的可生化性。在O3+膜处理法中,O3常用在超滤(UF)的后处理上。在O3+超声波处理法中,超声功率的增大可增加反应速度,O3通人量增大可加深生物反应程度,提高复杂有机物去除率。 臭氧单元处理主要是催化氧化法,如碱催化氧化、光催化氧化和多相催化氧化等,具体处理方法有:①O3/H2O2,②O3/UV(紫外光),③O3/固体催化剂(金属及其氧化物,活性炭等)。从反应机理看:①属于碱催化臭氧化,②属于光催化臭氧化,③属于多相催化臭氧化。 碱催化臭氧化反应的途径是:通过OH-催化,生成·OH自由基,再氧化分解有机物,·OH基产生过程如下: O3+OH-→·O2+HO2,O3+·O2→O3+O2,·O3+H+→HO3·→·OH+O2 光催化氧化是以紫外线为能源,以臭氧为氧化剂,利用臭氧在紫外线照射下生成的活泼次生氧化剂来氧化有机物,Gary,P·Peyton等认为臭氧光解先产生H2O2,H2O2在紫外光的照射下又产生·OH基,进入·OH自由基循环: O2-+O3→·O3-+O2,O3-+H+→HO3→·OH+O2 利用光催化臭氧化法处理难降解有机物废水时,部分难降解有机物在紫外光照射下,提高了能级,处于激发状态,与·OH基发生羟基化反应,生成易于生物降解的新物质。 多相催化臭氧化是近几年发展起来的新技术,其金属催化的目的是促进O3的分解,以产生活泼的·OH 自由基强化其氧化作用,常用的催化剂有CuO、Fe2O3、NiO、TiO2、Mn等。 2 臭氧化法在水处理中的应用 常见的臭氧化法在水处理中的应用有:微污染源水深度处理,印染染料废水、含酚废水、农药生产废水、造纸废水、表面活性剂废水、石油化工废水等的处理。 .1 微污染源水深度处理中的应用 经净水厂处理的微污染源水,水中有机物经氯化后会形成氯仿(CHCl3)等含氧有机物,常规水处理工艺不能去除有机磷农药和含氮有机物,采用生物活性炭(BAC)工艺就可达到深度处理的目的 源水中所含腐殖质会引起色度,常规方法难以去除。采用纤维TiO2作催化剂的O3+UV催化氧化可有特殊效果,反应接触时间30Min,去除率>92%。所需O3浓度与腐殖质结构有关。

二氧化氯性能

二氧化氯性能 二氧氯化物 1815年美国人汉费莱·戴维(Humphrey Davy)首次发现了二氧化氯。1843年米隆用盐酸将氯酸钾酸化获得了一种黄绿色气体,并将这一气体吸收在碱性溶液里获得了亚氯酸盐和氯酸盐,鉴别出这种气体是二氧化氯和氯气的混合物。 1.二氧化氯的物理性质 二氧化氯(chlorine dioxide)[10049 -04—4],(2102,相对分子质量67.452,是氯的2.4倍重。在常温下是黄绿色至橘黄色气体,有类似氯气般窒息性臭味。当温度在100℃以下时为液态,呈红褐色。温度低于-59℃时为固态结晶,呈橙黄色。若有结晶水,成为水合结晶[ClO 2·(8H 2O±H 2O)],呈黄色二氧化氯的其他物理性质见表1。 二氧化氯的分子由一个氯原子和两个氧原子组成,分子结构式为0-Cl —O ,呈“V”字结构,角度大约117.5。,Cl —O 键距147nm ,分子外层含有19个电子。有双键特征,偶极矩5.64×10-30cm 。氯原子以两个配位键和两个氧原子结合,其外电子层共结合19个电子,外层键域还存在一个未成对的自由电子,氯原子化合价为+4,但却有奇数价性质,是典型的奇电子化合物。由于该分子的电子结构呈不饱和状态,其氧化性能表现在对富电子或供电子的原子或原子团(如氨基酸内含硫基的酶和硫化物、氮化物等)进行攻击,强行掠夺电子,使之成为失去活性或改变物质的性质,从而达到消毒杀菌的目的。 表1二氧化氯物理性质

C10 2遇光分解,分解后的产物很复杂,但是干燥状态的C10 2 气体分解后的 产物比较单纯,一般最终生成氯和氧。 2.二氧化氯在水中的特性 C10 2 易溶于水,在水中的溶解度是氯的5倍。将其溶解于水时,二氧化氯的 水溶液为6~8mg/L。但是其水溶液不稳定,会逐渐分解为C1 2 逸出。 当pH值在4~7范围时,二氧化氯在水中的氧化电位为0.95V,在碱性溶液中可被过氧化氢还原。 2C10 2+H 2 O 2 2NaOH—— 2NaCl0 2 +0 2 +2H 2 O (1) 或 2C10 2+H 2 O 2 2NaCO 3 —— 2NaCl0 2 +0 2 +2H 2 O (2) 反应式(1-1)的标准自由焓为-167.1kJ/mol小于零,表明在常温下可自发进行。 C10 2 水溶液歧化反应很慢,在碱液中则生成氯酸盐和亚氯酸盐。 2C10 2+20H一一2C10 3 -+2C10 2 -+H 2 0 (3)

氯消毒二氧化氯消毒臭氧消毒紫外线消毒等水体消毒经典方法及优缺点分析

氯消毒二氧化氯消毒臭氧消毒紫外线消毒等水体消毒 经典方法及优缺点分析 水的消毒就是用化学和物理方法杀灭水中的病原体,以防止疾病传染,维护人群健康。物理消毒法有加热法、γ辐射法和紫外线照射法等; 化学消毒法有投加重金属离子(如银和铜)、投加碱或酸、投加表面活性化学剂、投加氧化剂(氯及其化合物、溴、碘、臭氧)等的消毒法。 在这些方法中以氧化剂消毒应用最广,其中以氯及其化合物消毒尤为通用,其次是臭氧消毒。 紫外线照射法和投加溴、碘及其化合物的方法用于小规模水厂或特殊设施(如游泳池)用水的消毒。 常用化学消毒剂,目前大规模投入使用的主要是以下三种:a.臭氧b.二氧化氯c.液氯 这四种消毒剂比较如下: 从生物杀菌能力看,其高低位序为:臭氧>二氧化氯>液氯>氯胺;

从稳定性和消毒的持续性来看,其高低位序为:氯胺>二氧化氯>液氯>臭氧>; 从三卤甲烷形成潜力和总有机卤形成潜力来看,其高低位序为:液氯>氯胺>二氧化氯≈臭氧。 综合起来考虑,则认为二氧化氯是一优良消毒剂和强氧化剂,是世界卫生组织(WHO)和世界粮农组织(FAO)向全世界推荐的A1级广谱、安全和高效消毒剂。 过程 水处理过程中的氯化消毒是最通用的最重要的消毒步骤,但是在此以前的其他处理步骤也能有效地去除病原体。 “例如,废水的二级处理出水用混凝沉淀法能去除病菌和病毒 99.845%,而混凝沉淀-过滤法的去除率达99.985%。石灰混凝沉淀已被证明在高pH值条件下能有效地去除病毒并使其失去活性。氯化消毒能保证更彻底地杀灭病原体,水中的余氯还具有持续消毒作用。 氯消毒 氯与水反应时,一般产生“歧化反应”,生成次氯酸(HOCL)和盐酸(HCL)。

相关文档
相关文档 最新文档