文档库 最新最全的文档下载
当前位置:文档库 › 高考数学压轴专题最新备战高考《不等式选讲》知识点训练含答案

高考数学压轴专题最新备战高考《不等式选讲》知识点训练含答案

高考数学压轴专题最新备战高考《不等式选讲》知识点训练含答案
高考数学压轴专题最新备战高考《不等式选讲》知识点训练含答案

【最新】高中数学《不等式选讲》专题解析

一、14

1.设x ∈R ,则“3

1x <”是“11

22

x -

<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件

【答案】B 【解析】 【分析】

分别求解三次不等式和绝对值不等式确定x 的取值范围,然后考查充分性和必要性是否成立即可. 【详解】 由31x <可得1x <, 由

11

22

x -

<可得01x <<, 据此可知“31x <”是“

11

22

x -

<”的必要而不充分条件. 故选B . 【点睛】

本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.

2.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4 B .最小值是-4,最大值是0 C .最小值是-4,最大值是4 D .没有最大值也没有最小值

【答案】C 【解析】

因为y =|x -3|-|x +1|4,322,134,1x x x x -≥??

=--<

,所以最小值是-4,最大值是4,选C.

点睛:分段函数的最值

由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.

3.若集合{}

2

540A x x x =-+<,{}

1B x x a =-<,则“()2,3a ∈”是“B A ?”的

( )

A .充分非必要条件

B .必要非充分条件

C .充要条件

D .既非充分又不必要条件

【答案】A 【解析】 【分析】

解出集合A 、B ,由B A ?得出关于a 的不等式组,求出实数a 的取值范围,由此可判断出“()2,3a ∈”是“B A ?”的充分非必要条件. 【详解】

解不等式2540x x -+<,解得14x <<,{}

14A x x ∴=<<. 解不等式1x a -<,即11x a -<-<,解得11a x a -<<+,

{}11B x a x a ∴=-<<+.

B A ?Q ,则有11

14a a -≥??+≤?

,解得23a ≤≤.

因此,“()2,3a ∈”是“B A ?”的充分非必要条件. 故选:A 【点睛】

本题考查充分非必要条件的判断,一般将问题转化为集合的包含关系来判断,考查逻辑推理能力,属于中等题.

4.不等式2

124x x a a +--≥-的解集为R ,则实数a 的取值范围是( ) A .(][),13,-∞+∞U B .()(),13,-∞?+∞ C .[]1,3 D .()1,3

【答案】C 【解析】 【分析】

令()12f x x x =+--,通过对x 的取值范围的讨论,去掉绝对值符号,可求得

()min 3f x =,依题意,即可求得实数a 的取值范围.

【详解】

令()12f x x x =+--,

当1x <-时,()()123f x x x =----+=-;

当12x -≤≤时,()()[]12213,3f x x x x =+--+=-∈-; 当2x >时,()()123f x x x =+--=; ∴()min 3f x =-.

∵不等式2

124x x a a +--≥-的解集为R , ∴()2

min 43a a f x -≤=-,即实数a 的取值范围是[]1,3.

故选C. 【点睛】

本题考查绝对值不等式的解法,考查函数恒成立问题,解题方法是转化为求函数最值,然后解不等式.

5.若函数()(0)1

a

f x ax a x =

+>-在(1,)+∞上的最小值为15,函数()1=+++g x x a x ,则函数()g x 的最小值为( ).

A .2

B .6

C .4

D .1

【答案】C 【解析】 【分析】

当1x >,0a >时,由基本不等式可得()3≥f x a ,又()f x 最小值为15,可得出5a =,再由绝对值三角不等式()()()g =5151=4+++≥+-+x x x x x ,即可得出结果. 【详解】

当1x >,0a >时,()()111

=

+=+-+--a a f x ax a x a x x

≥a 3=a ,当且仅当2x =时等号成立,由题可得315a =,即5a =,所以()1=+++g x x a x ()()=5151=4+++≥+-+x x x x ,当且仅当

()()510++≤x x 即51x -≤≤-时等号成立,所以函数()g x 的最小值为4.

故选:C 【点睛】

本题主要考查基本不等式:)0,0a b a

b +?>,当且仅当a b =时等号成立,绝

对值的三角不等式: +≥-a b a b ,当且仅当0ab ≤时等号成立.

6.设a >0,b >0,且ab -(a +b)≥1,则( )

A .a ++1)

B .a ++1

C .a -1)2

D .a +b >+1)

【答案】A 【解析】 【分析】

2a b +.所以ab≤14 (a +b)2,所以1

4

(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】

2a b +.所以ab≤1

4

(a +b)2. 所以

1

4

(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.

因为a >0,b >0,所以a +b≥2+

故答案为:A 【点睛】

本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.

7.在平面内,已知向量(1,0)a =v ,(0,1)b =v ,(1,1)c =v

,若非负实数,,x y z 满足

1x y z ++=,且23p xa yb zc =++v v v v

,则( )

A .p v

B .p v

的最大值为C .p v

D .p v

的最大值为【答案】A 【解析】 【分析】

求出p v 的坐标,表示p v ,即:p v

柯西不等式即可求得其最小值,问题得解. 【详解】

因为()1,0a =v ,()0,1b =v ,()1,1c =v

所以23p xa yb zc =++v v v v

=()3,23x z y z ++,

又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,

所以p

v =

=

5

=

=

=, 当且仅当()()31232,0x z y z z +?=+?=时,等号成立.

即:当且仅当41

,,055

x y z =

==时,等号成立.

所以p v

, 故选A. 【点睛】

本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.

8.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( ) A .33()()f x f a a -≤+ B .24()()f x f a a -≤+ C .()()5f x f a a -≤+ D .2

|()()2|(1)f x f a a -≤+

【答案】B 【解析】 【分析】

先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立 【详解】

令a=0,则1x ≤,即-1≤x≤1,()()()()()

0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立

()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤

()3x a ++=23x a a -++≤23x a a -++≤24a +

故选:B . 【点睛】

本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.

9.已知函数()f x 是定义在[1,2]a a -上的偶函数,且当0x >时,()f x 单调递增,则关于x 的不等式(1)()f x f a ->的解集为 ( ) A .45

[,)33

B .2112(,][,)3333

-

-? C .12

[,)33?45(,]33

D .随a 的值而变化

【答案】C 【解析】

试题分析:∵函数()f x 是定义在[1,2]a a -上的偶函数,∴1-a=2a ,∴a=

1

3

,故函数()f x

的定义的定义域为22[,]33-

,又当2

03

x <≤时,()f x 单调递增,∴11113

(1)()(1)(){23313

x f x f f x f x ->

->?->?-≤

,解得1233x ≤<或4533x <≤,所以

不等式(1)()f x f a ->的解集为12[,)33

?45(,]33

,故选C

考点:本题考查了抽象函数的运用

点评:此类问题往往利用偶函数的性质()()f x f x =避免了讨论,要注意灵活运用

10.设0x 为函数()sin f x x π=的零点,且满足001()112

x f x ++<,则这样的零点有( ) A .18个 B .19个

C .20个

D .21个

【答案】D 【解析】

从题设可得00()x k x k k Z ππ=?=∈,又

001()sin()sin()(1)222

k f x x k ππ

ππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,

12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则

0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。

点睛:解答本题的关键是如何理解“设0x 为函数()sin f x x π=的零点”这一题设信息,通过函数零点的概念建立三角方程,进而得到00()x k x k k Z ππ=?=∈,为求解下面的不

等式001112x f x ??++< ??

?提供了附加条件,最后运用分类整合的思想使得问题获解。

11.已知,,a b c R +∈ ,则()()()

2

2

2222a a

bc b b ac c c ab -+-+- 的正负情况是( )

A .大于零

B .大于等于零

C .小于零

D .小于等于零

【答案】B 【解析】 【分析】

设0a b c >厖,所以333a b c 厖,根据排序不等式即可得出答案.

【详解】

设0a b c >厖,所以333a b c 厖

根据排序不等式得333333a a b b c c a b b c c a ?+?+?++…

又ab ac bc 厖,222a b c 厖,所以333222a b b c c a a bc b ca c ab ++++….

所以444222a b c a bc b ca c ab ++++… 即()()()

2

2

22220a

a

bc b b ac c c ab -+-+-….

故选:B 【点睛】

本题主要考查了排序不等式的应用,属于中档题.

12.已知,,x y z ∈R ,2221x y z ++=,则22x y z ++的最大值为( ) A .9 B .3 C .1 D .27

【答案】B 【解析】 【分析】

由已知2

2

2

1x y z ++=,可利用柯西不等式

2222222()()()a b c e f g ae bf cg ++++≥++,构造柯西不等式,即可求解.

【详解】

由已知,可知,,x y z ∈R ,2

2

2

1x y z ++=,

利用柯西不等式2

2

2

2

2

2

2

()()()a b c e f g ae bf cg ++++≥++, 可构造得2

2

2

2

2

2

2

(122)()(22)x y x x y z ++++≥++, 即2

(22)9x y z ++≤,所以22x y z ++的最大值为3,故选B . 【点睛】

本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.

13.已知集合||1|2,}M x x x R =?-∈?,集合5|1,1P x x R x ?

?

=≥∈??+??

,则M P ?等于( )。

A .{|13}x x -<≤

B .{|14}x x -<≤

C .{}|4x x ≤

D .{|14}

x x -≤≤( ) 【答案】D 【解析】 【分析】

根据绝对值不等式及分式不等式,化简集合M,P ,根据并集运算求解即可. 【详解】

Q |1|2x -?,

∴ 13x -≤≤,即[1,3]M =-,

5

11

x ≥+Q

, 14x ∴-<≤,即(1,4]P =-,

[1,4]M P ∴=-U ,

故选:D 【点睛】

本题主要考查了集合的并集运算,分式不等式,绝对值不等式,属于中档题.

14.已知条件:12p x +>,条件2:56q x x ->,则p ?是q ?的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件 【答案】A 【解析】 【分析】 【详解】

因为:1213p x x x +>?><-或,p ?:31x -≤≤;

22:5656023q x x x x x ->?-+

15.对任意x ∈R ,不等式22|sin ||sin |x x a a +-≥恒成立,则实数a 的取值范围是( ) A .01a ≤≤ B .11a -≤≤ C .12a -≤≤ D .22a -≤≤

【答案】B 【解析】 【分析】

解法一:(换元法)设sin t x =,则原不等式可化为2

2||||t t a a +-≥.求函数

()||||||f t t t t a =++-的最小值,从而不等式2||a a ≥可得11a -≤≤.解法二:(特殊值法)

代入2a =, 1a =-,排除错误选项即可. 【详解】

解:解法一:(换元法)

设sin t x =,则原不等式可化为2

2||||t t a a +-≥.

令()||||||f t t t t a =++-,则min [()](0)||f t f a ==, 从而解不等式2

||a a ≥可得11a -≤≤.故选B . 解法二:(特殊值法)

当2a =时,因为2|sin ||sin 2|2sin 2|sin |2|sin |2x x x x x +-=-+≥+≥,

当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 2|4x x +-≥不恒成立, 所以2a =不合题意,可以排除C 、D .

当1a =-时,因为2|sin ||sin 1|1sin 2|sin |1|sin |1x x x x x ++=++≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 1|1x x ++≥恒成立, 所以1a =-符合题意,可以排除A. 故选:B 【点睛】

本题考查绝对值不等式的参数问题,属于中档题,利用函数求最值的方法或者特殊值排除法都可以解题.

16.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈?有

,x t A +∈且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的

函数()=3f x mx --,且()f x 为[

)0+∞,上的6度低调函数,那么实数m 的取值范围是( )

A .[]0,1

B .[)1+∞,

C .(],0-∞

D .][()

,01,-∞?+∞ 【答案】D

【解析】试题分析:由题意得, ()()6633f x f x mx m mx +≤?+-≥-对任意0x ≥都成立.当0m ≤时, 633633|m mx m mx -≤-?+-≥-恒成立;当0m >时,结合图象可知,要633mx m mx +-≥-对任意0x ≥都成立,只需0x =时

633mx m mx +-≥-成立即可,即6331m m -≥-?≥.选D.

考点:1、新定义函数;2、绝对值不等式.

17.不等式2

30x x -<的解集为( )

A .{

}03x x << B .{

}3003x x x -<<<<或

C .{}30x x -<<

D .{}33x x -<<

【答案】B 【解析】 【分析】

将不等式表示为2

30x x -<,得出03x <<,再解该不等式可得出解集. 【详解】

将原不等式表示为2

30x x -<,解得03x <<,解该不等式可得30x -<<或

03x <<.

因此,不等式2

30x x -<的解集为{

}3003x x x -<<<<或,故选:B.

【点睛】

本题考查二次不等式的解法与绝对值不等式的解法,考查运算求解能力,属于中等题.

18.若,,a b c ∈R ,则下列结论中: (1)2

211a a a a

+

≥+; (2)a b a c b c -≤-+-; (3)若a b >,则

11a b

a b

>++;

(4)若1a b +=,则22

21

a b a b ++

+的最小值为 其中正确结论的个数为( )

A .1

B .2

C .3

D .4

【答案】B 【解析】 【分析】

利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案. 【详解】 对(1),2

221111()()20a a a a a a a a +

≥+?+-+-≥,∴1

2a a +≥或

11a a

+≤-, ∵1

2a a +≥或12a a

+≤-,∴原不等式成立,故(1)正确;

对(2),∵()()a b a c b c a c b c -=---≤-+-,故(2)正确; 对(3),令1

,52a b =-=-,则51,114a b a b =-=++,显然11a b a b

>++不成立,故(3)错误;

对(4),∵1a b +=,∴22222

2(1)23

1111a b b b b a b b b b

+-+++=+=+-+-,当1b >时,2

3

01b b +<-,

∴2221

a b a b ++

+的最小值为4)错误. 故选:B. 【点睛】

本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.

19.函数y =的最大值是( )

A B C .3

D .5

【答案】B 【解析】 【分析】

利用柯西不等式求解. 【详解】

因为y =≤=

2

=,即265x =时,取等号.

故选:B 【点睛】

本题主要考查柯西不等式的应用,还考查了转化化归的思想和运算求解的能力,属于基础题.

20.空间中两条不相交的直线与另外两条异面直线都相交,则这两条直线的位置关系是( ) A .平行或垂直 B .平行

C .异面

D .垂直

【答案】C 【解析】 【分析】

利用反证法证明得解. 【详解】

不妨设空间中不相交的两条直线为a b ,,另外两条异面直线为c d ,, 由于a b ,不相交,故a b ,平行或异面, 设a c ,确定的平面为α.不妨设a b ∥,

①当b α?时,则a b ,与直线d 的交点都在α内,故d α?,而这与c d ,为异面直线矛盾;

②当b α?时,由a b ∥可知b P α,又c α?,故b c ,没有公共点,与b c ,相交矛盾. 由①②知假设a b ∥错误,故a b ,为异面直线. 故选C. 【点睛】

本题主要考查异面直线的判定和反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

高考数学不等式知识点总结及解题思路方法

高考数学不等式知识点总结及解题思路方法 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│ §06. 不等式知识要点 1.不等式的基本概念 (1)不等(等)号的定义:. - = < ? a< ? b ? > > - = - b ; 0b ; a a a b b a b a (2)不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3)同向不等式与异向不等式. (4)同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a >(对称性) ? a< b b (2)c ? > >,(传递性) a> c a b b (3)c + ? > >(加法单调性) c a+ a b b (4)d + > >,(同向不等式相加) a+ > ? d b c a c b

(5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>?<(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等 . ,3a b c a b c R +++∈≥(4)若、、则a=b=c 时取等号) 0,2b a ab a b >+≥(5)若则(当仅当a=b 时取等号) 2222(6)0||; ||a x a x a x a x a x a x a a x a >>?>?<->

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

2020高考数学专题训练16

六) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 1.满足条件?≠?M ≠?{0,1,2}的集合共有( ) A .3个 B .6个 C .7个 D .8个 2.等差数列}{n a 中,若39741=++a a a ,27963=++a a a ,则前9项的和9S 等于( ) A .66 B .99 C .144 D .297 3.函数)1(log 2-=x y 的反函数图像是( ) A B C D 4.已知函数)cos()sin()(??+++=x x x f 为奇函数,则?的一个取值为( ) A .0 B .4 π - C .2π D .π 5.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种 子不能放入第1号瓶内,那么不同的放法共有( ) A .4 82 10A C 种 B .5 91 9A C 种 C .5 91 8A C 种 D .5 81 8A C 种 6.函数512322 3 +--=x x x y 在[0,3]上的最大值、最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16 7.已知9)222(-x 展开式的第7项为4 21 ,则实数x 的值是( ) A .31- B .-3 C .4 1 D .4 8.过球面上三点A 、B 、C 的截面和球心的距离是球半径的一半,且AB =6,BC =8, AC =10,则球的表面积是( ) A .π100 B .π300 C . π3100 D .π3 400 9.给出下面四个命题:①“直线a 、b 为异面直线”的充分非必要条件是:直线a 、b 不相交;②“直线l 垂直于平面α内所有直线”的充要条件是:l ⊥平面α;③“直线a ⊥b ”的充分非必要条件是“a 垂直于b 在平面α内的射影”;④“直线α∥平面β”的必要非充分条件是“直线a 至少平行于平面β内的一条直线”.其中正确命题的个数是( )

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高考数学专题训练试题7

第一部分 专题二 第1讲 等差数列、等比数列 (限时60分钟,满分100分) 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·北京高考)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5, 则m =( ) A .9 B .10 C .11 D .12 解析:由题知a m =|q |m -1=a 1a 2a 3a 4a 5=|q |10,所以m =11. 答案:C 2.(精选考题·广元质检)已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则连乘积a 1a 2a 3…aa 精选考题的值为( ) A .-6 B .3 C .2 D .1 解析:∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=-3,a 3=-12,a 4=13,a 5= 2,∴数列{a n }的周期为4,且a 1a 2a 3a 4=1, ∴a 1a 2a 3a 4…aa 精选考题=aa 精选考题=a 1a 2=2×(-3)=-6. 答案:A 3.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .54 B .45

C .36 D .27 解析:根据2a 8=6+a 11得2a 1+14d =6+a 1+10d ,因此a 1+4d =6,即a 5=6.因此S 9=9(a 1+a 9) 2 =9a 5=54. 答案:A 4.已知各项不为0的等差数列{a n },满足2a 3-a 2 7+2a 11=0,数 列{b n }是等比数列,且b 7=a 7,则b 6b 8=( ) A .2 B .4 C .8 D .16 解析:因为a 3+a 11=2a 7,所以4a 7-a 27=0,解得a 7=4,所以 b 6b 8=b 27=a 2 7=16. 答案:D 5.(精选考题·福建高考)设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 解析:设等差数列{a n }的公差为d , ∵a 4+a 6=-6,∴a 5=-3, ∴d =a 5-a 1 5-1=2, ∴a 6=-1<0,a 7=1>0, 故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6. 答案:A 6.(精选考题·陕西高考)对于数列{a n },“a n +1>|a n |(n =1,2…)”

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

2019高考数学不等式真题汇总

(2019?上海7)若x ,y R +∈,且 123y x +=,则y x 的最大值为 . 【解答】 解:132y x = +… ∴298 y x =?; 故答案为:98 (2019?上海5)已知x ,y 满足002x y x y ????+? ……?,则23z x y =-的最小值为 . 【解答】解:作出不等式组002x y x y ????+? ……?表示的平面区域,由23z x y =-即23x z y -=,表示直线在y 轴上的截距的相反数的13 倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-,故答案为:6-. (2019?浙江3)若实数x ,y 满足约束条件340,340,0,x y x y x y -+??--??+? …?…则32z x y =+的最大值是( ) A .1- B .1 C .10 D .12 【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+??--??+? …?…作出可行域如图,联立340340x y x y -+=??--=?,解得(2,2)A ,化目标函数32z x y =+为3122y x z =-+,由图可知,当直线3122 y x z =-+过(2,2)A 时,直线在y 轴上的截距最大,z 有最大值:10. 故选:C .

(2019?天津文10)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03 x x +-<; 由一元二次不等式的解法“小于取中间,大于取两边” 可得:213 x -<<; 即:2{|1}3x x -<<;或2(1,)3 -; 故答案为:2(1,)3 -; (2019?天津文理13)设0x >,0y >,25x y += 的最小值为 . 【解答】解:0x >,0 y >,25x y +=, 则===; 由基本不等式有: = 当且仅当=时,即:3xy =,25x y +=时,即:31x y =??=?或232x y =???=??时;等号成立, 故答案为:

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

高考数学一轮复习不等式知识点讲解

2019年高考数学一轮复习不等式知识点讲 解 不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。下面是不等式知识点讲解,请考生掌握。 1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。 2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学 生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可

记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。 3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

相关文档
相关文档 最新文档