文档库 最新最全的文档下载
当前位置:文档库 › 智能交通信号控制系统

智能交通信号控制系统

智能交通信号控制系统
智能交通信号控制系统

智能交通信号控制系统

一、信号控制的基本概念

(一) 信号相位。信号机在一个周期有若干个控制状态,每一种控制状态对某些方向的车辆或行人配给通行权,对各进口道不同方向所显示的不同灯色的组合,称为一个信号相位。我国目前普遍采用的是两相位控制和多相位控制。

(二)信号周期。是指信号灯各种灯色显示一个循环所用的时间,单位微秒。信号周期又可分为最佳周期时间和最小周期时间。

(三)绿信比。是指在一个周期内,有效绿灯时间与周期之比。周期相同,各相位的绿信比可以不同。

(四)相位差。是指系统控制中联动信号的一个参数。它分为相对相位差和绝对相位差。相对相位差是指在各交叉口的周期时间均相同的联动信号系统中,相邻两交叉口同相位的绿灯起始时间之差,用秒表示。此相位差与周期时间之比,称为相对相位差比,用百分比表示。在联动信号系统中选定一个标准路口,规定该路口的相位差为零,其他路口相对于标准路口的相位差,称为绝对相位差。

(五)绿灯间隔时间。从失去通行权的上一个相位绿灯结束到得到通行权的下一个相位另一方向绿灯开始的时间,称为绿灯间隔时间。在我国,绿灯间隔时间为黄灯加红灯或全红灯时间。当自行车和行人流量较大时,由于自行车和行人速度较慢,为保证安全,需进行有效调整,可以适当增加绿灯间隔时间。

此外,信号控制的基本参数还有饱和流率、有效绿灯时间、信号损失时间、黄灯时间、交叉口的通行能力与饱和度等。

信号灯的分类:

(一)交通信号灯,按用途可分为车辆交通信号灯、行人交通信号灯、方向交通信号灯和车道交通信号灯等。

(二)交通信号灯,按操作方式可分为定周期控制信号灯和感应式控制信号灯。感应式控制信号灯又分为半感应控制和全感应控制两种。

(三)交通信号灯,按控制范围可分为单个交叉路口的交通控制、干道交通信号联动控制和区域交通信号控制系统,即“点控”、“线控”、“面控”三种。

另外,有点信号灯可以设计成信号灯色倒计时显示屏,或者黄灯闪烁屏以提高绿灯时间的利用率。还要一种太阳能信号灯,在交通量小、位置偏远的地方使用比较方便。

1.1 交通信号点控制

交通信号单点信号控制,又称“点控”,用于单个信号的路口,属于孤立交叉口的信号控制。根据交叉口的流量和流向,确定最佳配时方案,可保证最大通行能力或最小延误。

1.定时控制。定时信号控制也称周期控制,定时周期控制属于自动控制。配时参数的各种组合,构成不同的信号配时方案。

(1)单点定时周期控制。预先调整信号机的控制相位、周期长度和绿信比,根据设计好的程序轮流给各方向的车辆和行人分配通行权,控制不同方向的交通流。

(2)多段定时周期控制。若一天当中各时间段的交通量相差较大,则应采用多套配时方案。根据一天内不同时段交通量的变化,选择相应的配时方案,以适应交通流变化的需要。

定时控制方式适用于那些交通量不大、变化较稳定、相隔距离较远的交叉口。

2.感应式信号控制。根据车辆感应器提供的信息调整周期长度和绿灯时间。它可更好地适应交通量的变化,减少延误,提高交叉口的通行能力。特别适用于各方向交通量明显随时间变化较大且无规律的交叉路口。它的主要型式有以下两种:

(1)半感应式信号控制。在部分进口道上设置车辆感应器,通常设在次要路口。平时主干道维持长绿信号,只有当支路上有车辆到达交叉口时,才给以通行权。

这种控制适用于主干道上交通量特别大,而支路上流量较小的交叉口。

(2)全感应式信号控制。所有进口道上都安装车辆感应器。当主干道和支道的交通量都比较小时,主、支道入口的信号均维持最短绿灯时间,此时它相当于定时周期控制,当交通量较大时,可自动延长绿灯时间。全感应式信号控制适

用于相交道路的交通流量都比较大、且都不稳定的情况。

3.按钮式信号控制。按钮式信号控制,属于人工控制,它适用于支线路口或非交叉口的人行横道处,平时主干道路是绿灯信号,支线路口来车或有行人横穿道路时,可按一下路旁与信号机相连的开关(有的设计为遥控开关),则绿灯变为红灯。这种控制方式,适用于支线路口车辆或行人较少的道路。

1.2 交通信号线控制

交通信号线控制,也称“绿波控制”,是把干道上若干连续交叉路口的交通信号连接起来,同时对各交叉路口设计一种相互协调的配时方案,各交叉路口的信号灯联合运行,使车辆通过第一个交叉路口后,按一定的车速行驶,到达后面各交叉路口时均可遇到绿灯,大大减少车辆的停车次数与延误。线控制往往是面控制系统中的一个组成部分,是面控系统的一种简化形式。采用这种控制一般要具备下列条件:

1.纳入控制系统的交叉口,应采用相同的信号周期;

2.必须具有相同的时间基准,保证相位差的稳定;

3.交叉口之间应有较大的关联性。通常相邻交叉路口之间的距离不超过800m;

4.信号协调控制器分为主控制器的协调控制和无电缆协调控制两类。

1.3 面控系统

交通信号面控制也称“区域控制”或“网络协调控制”,是把某一区域内的全部交通信号纳入一个指挥中心管理下的一套整体控制系统,是单点信号、干道信号和网络信号系统的综合控制系统。其优点是:可获得全区域整体控制效益;可因地制宜地选用合适的控制方法;可有效、经济地使用设备。

交通信号面控制系统,从控制策略上可分为定时式脱机操作控制系统和感应式联机操作控制系统;按控制方式可分为方案选择方式和方案形成方式;按控制结构可分为集中式计算机控制结构和分层式计算机控制结构。

1.定时式脱机操作控制系统。国际上应用较广的是TRAN-SYT,即“交通网络研究方法”。这种系统的基本原理,是利用交通流历史及现状统计数据,

进行脱机优化处理,得出多时段的最优信号配时方案,编人计算机控制程序,对整个区域交通实施多时段定时控制。它由交通模型和优化程序两部分组成。

2.感应式联机操作控制系统。感应式联机操作控制系统是一种能够适应交通流量变化的“自适应控制系统”,也叫“动态响应控制系统”。在控制区交通网中设置车辆感应器,实时采集交通数据并实施联机最优控制。自适应控制结构复杂、投资高,对设备可靠性要求高,但能较好地适应交通流的随机变化。目前,国内使用的自适应控制系统主要有:

(1)SCATS系统。SCATS

它是一种用感应控制对配时参数可作局部调整的方案选择系统,即预先设计一套与交通流量等级对应的最佳配时参数组合,存贮于中央控制计算机中。中央控制计算机通过设在各个路口的车辆感应器反馈的车流通过量数据,自动选择合适的配时参数,并根据所选定的配时参数组合实行对路网交通信号的实时控制。SCATS的控制结构用的是分层式三级控制:中央监控中心—地区控制中心一信号控制机。

(2)SCOOT系统。SCOOT(Split - Cycle - Offset OptirnazationTechnique)

系统,即“绿信比一信号周期一绿时差优化技术”

制系统,是一种实时交通状况模拟系统。与方案选择方式的区别在于:不需要先贮存任何既定的配时方案,也不需要预先确定一套配时参数与交通流量的对应组合关系。方案生成式系统是通过安装于各交叉路口每条进口道上游的车辆感应器,采集车辆到达信息,通过联机处理,形成控制方案,连续地实时调整绿信比、周期时长和绿时差三个参数,使之与变化的交通流相适应。因此,它可以保证整个路网在任何时段都在最佳配时方案下运行。

(3)我国研制开发的机动车与自行车混合交通信号控制系统。“七五”期间,由公安部交通管理研究所与同济大学等单位联合研制开发了自适应交通信号控制系统,这套系统突出了对机动车与自行车混合交通进行控制的特点,采用区域控制级和路口控制级两级控制结构。系统设置了实时自适应控制和固定配时控制功能,还可根据实际需求,由指挥中心发出命令,进行绿波控制、单点控制、指定相位控制等特殊控制。

二.西客站片区交通组成与交通流量

2.1 交通组成特征

未来,济南西客站片区主要的交通方式包括:高速铁路、长途客运、轨道交通、快速公交、常规公交、出租车、旅游巴士、社会车辆、自行车和步行。

近期,西客站片区公共交通线网长度为20.7公里,公交线网密度为0.80公里/平方公里,非直线系数均大于1.4,线路重复系数为1.58。鉴于居民公交出行不方便,当前公共交通分担率(含出租车)仅为15%左右,居民的出行80%-90%依靠个人交通方式(小汽车、步行以及自行车等)。

2012年,济南市被批准建设“公交都市”,西客站片区已经落成济南市最大的公交客运枢纽,并规划两条轨道交通线路穿过该片区。随着公共交通吸引力的增加,公交出行分担率将提高至40%以上。

2.2 交通流量特征

(1) 交通发生点

近期西客站片区的交通发生点主要分布在已经投入使用的回迁小区,交通出行目的主要是居民的工作出行、上学出行、娱乐出行等。

随着土地利用开发强度的加大,恒大雅苑、中建锦绣城、绿地缤纷城等住宅项目将在5年内投入使用,这些高密度开发的住宅区将成为未来西客站片区的主要交通发生源。

(2) 交通吸引点

近期西客站片区的交通吸引点主要分布在济南西高铁站、“十艺节”场馆(大剧院、图书馆、群众艺术馆、美术馆)。

远期,较高比重的商业、办公等开发业态,形成较高就业密度。建成的办公写字楼、商务中心、大型购物广场也将成为主要的交通吸引点。

三.交通信号控制的策略

3.1交通信号控制

交通信号控制,是运用现代的信号装置、通信设备、遥测及计算机技术等对动态的交通进行实时的组织与调整。通过交通信号控制,在未饱和交通条件下,降低车辆行驶延误,减少红灯停车次数,缩短车辆在路网内的行驶时间,提高路网的整体通行能力;在饱和交通条件下,使交通流有序行进,分流车辆,缓解堵塞。

3.2交通信号控制系统

智能交通信号控制系统的基本组成是:主控中心、路口交通信号控制机以及数据传输设备。其中主控中心包括操作平台、交互式数据库、效益指标优化模型、数据(图像)分析处理。

智能交通信号控制系统的核心是控制模型算法软件,是贯穿规划设计在内的信号控制策略的管理平台,体现着交通管理者的控制思想,它包括信号控制系统将起到的作用和地位。

交通信号控制系统是现代城市交通控制和疏导的主要手段.而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段.随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统.

国外现状:英国TRANSYT交通信号控制系统,澳大利亚SCAT系统,英国SCOOT系统,意大利UTOPIA/SPOT系统。

(1)英国TRANSYT交通信号控制系统

TRANSYT系统是目前最成功的静态系统,但其缺点很明显:计算量大,在大城市中这一问题尤为突出;不对周期进行优化,故很难获得整体最优配时方案;它是离线优化,需要大量的路网几何、交通流数据,需要花费大量的人力、物力、财力.

(2)澳大利亚SCAT系统

SCATS采取分层递阶式控制结构.其控制中心备有一台监控计算机和一台管理计算机,通过串行数据通讯线路相连.地区级的计算机自动把各种数据送到管理计算机.监控计算机连续地监视所有路口的信号运行、检测器的工作状况.地区主控制器用于分析路口控制器送来的车流数据,确定控制策略,并对本区域各路口进行实时控制.SCATS系统充分体现了计算机网络技术的突出优点,结构易于更改,控制方案较易变换.SCATS系统明显的不足:第一,系统为一种方案选择系统,限制了配时参数的优化程度;第二,系统过分依赖于计算机硬件,移植能力差:第三,选择控制方案时,无实时信息反馈.

(3)英国SCOOT系统

SCOOT是由英国道路研究所在TRANSYT系统的基础上采用自适应控制方法于1980年提出的动态交通控制系统.SCOOT的模型与优化原理与TRANSYT 相仿,不同的是SCOOT为方案生成的控制系统,是通过安装在交叉口每条进口车道最上游的车辆检测器所采集的车辆信息,进行联机处理,从而形成控制方案,并能连续实时调整周期、绿信比和相位差来适应不同的交通流.SCOOT系统的不足是:相位不能自动增减,任何路口只能有固定的相序;独立的控制子区的划分不能自动完成,只能人工完成;安装调试困难,对用户的技术要求过高.

(4)意大利UTOPIA/SPOT系统

UTOPIA/SPOT系统由两部分组成,SPOT(小型的分布式交通控制系统)和UTOPIA(面控软件);系统考虑了公交优先的功能;采用了“强相互作用”的概念来保证区域控制的最优性和鲁棒性.此外,日本Kyosan电器制作有限公司的交通控制系统、德国的Siemens系统等也在我国得到了一定地应用.

国内城市交通控制系统研究状况:交通控制系统主要是简易单点信号机、SCOOT系统、TRANSYT系统和SCATS系统其中几个结合使用。交通控制系统主要还是使用国产的简易单点信号机和集中协调式信号机。

这些信号系统虽然取得了较好的效果,但我国实际情况决定了需要对这些系统进行改进.

1)需要完善信号控制.现有的单点信号控制系统一般只能实现两相位控制,存在一定的局限性.而实际中,如果根据交叉路口的情况,适当采用多相位控制、变相

序控制,可减少交叉路口的交通冲突,提高交通的安全性.

2)需要合理解决混合交通流问题.现有信号控制系统对自行车流大多是与机动车同时开始,容易造成交通流冲突.因此,需要设计一种信号系统能对各个相位包括对自行车流单独进行控制.

3)实现区域网络协调控制.目前,虽然在我国的几个大城市,引进或研制了具有区域控制功能的集中式计算机控制系统,但对于中小城市来说,建立这样庞大的系统一方面代价高昂,另一方面实际利用效率不高.为了解决这一情况,在国内的中小城市应大量推广小型区域网络协调控制信号系统.

4)国产化率低.目前国内采用的信号控制系统,国产化率整体较低,而进口费用十分昂贵.因此,研制并设计出符合我国实际情况的交通信号控制系统,意义重大,效益也将十分明显

3.3交通信号控制系统的发展对策

信息采集方式:环形线圈检测、激光/红外线检测、视频检测。

软硬件架构:硬件方面(通用计算机系统与嵌入式系统)。

软件方面:嵌入式处理器。

控制策略方面:我国大多数城市中的大多数交叉路口采用的控制方式是定时控制或者是车辆感应式控制,其控制策略基于简单的数学模型,对于交通系统这样具有随机性、模糊性和不确定性的复杂系统而言其效果往往差强人意。

其它特殊功能的交通信号机:选用太阳能供电的交通信号机,可适用于无市政供电的郊区路口,也可以节省路口的时间和空间资源,其对硬件的主要要求为低功耗。基于GPS的交通信号控制系统.如现有的SCATS信号控制系统,主要由3部分组成:中央控制中心,路口信号控制器和每辆车的车载GPS装置.该系统可提供丰富而且准确的信息数据,但其要求每辆车都要配有GPS装置。

四.交通信号控制系统的系统框架

现行城市路网交通信号控制系统的控制优先级应遵循“单点交叉路口自适应控制→区域(子区)协调信号控制→中心网络协调信号控制”原则。采用了三级

分布式系统结构框架,即单点路口级信号控制系统、区域(子区)级信号控制系统和中心网络级信号控制系统。

4.1 路口控制级

路口交通信号机及检测器采集路口各检测器提供的实时交通数据并加以初步分析整理,通过通信网络传送到上层控制机,用以调整配时方案;接收上层控制机的指令,控制本路口各个信号灯的灯色变换;在实施感应控制时,根据本路口的交通需求,自主地控制各入口信号灯的灯色变换。

4.2 区域控制级

是决定信号网络协调的高层控制。由区域控制计算机完成。分析各路口送来的车流数据,以控制子区域为基础,计算周期长度、绿信比和相位差,以适应主流交通状况。同时保留收集到的各个交叉口的各种数据并用于脱机分析;监控各路口控制器的工作状态。

4.3 中心控制级

为交叉口及协调控制系统的控制方案设计提供集中式输入工具;提供集中监控功能,监控系统中各个路口级和区域级控制设备的运行情况。可同时控制多个路口,且可以扩展;中心控制软件对控制方案基本数据进行安全保护,即通过硬件或软件系统保护各项基本数据的安全,只有授权人员才能接触;自动记录各路口信号机的故障,便于及时抢修。

4.4 终端控制

路口控制包括车辆检测器、信号机和信息传输三个部分;区域控制包括区域控制机;指挥中心控制包括控制计算机和管理软件。

1)中心控制主机:主要完成全区域的管理和全市级的交通控制功能,包括参数设置、区域监视等;

2)区域通信处理机:主要完成区域内信号机的交通信息采集、处理、预测及优化,并将控制方案下发给路口执行。区域控制服务器的优化预测功能是对本区域路口进行战略级的优化,对周期长、绿信比、相位差进行第一级优化。区域控制服务器同时负责本区域内信号机的控制与监视;

3)路口信号机:完成交通信息采集和上传,完成中心控制方案的执行。同时要根据路口的实际交通需求,在中心优化的基础上实时调整绿灯时间,使信号配时最大程度的适应路口情况,达到最佳程度的畅通。

五.区域协调控制子区的划分

交通控制子区是指:一个面积较大的路网,在实行信号联网协调控制(即“区域控制”或“面控”)时,根据路网所辖范围不同区域具有不同交通特性(交通方式构成、交通量、流向等),把控制范围分成不同的控制区域,每个控制区域采用不同的控制策略,各自实行适合本区域交通特点的控制方案。这些相对独立的控制区域就是交通控制子区。

而交通控制子区自动划分是指:在对一个路网实行自适应信号协调控制时,为了使整个控制系统取得最佳的交通效益,在受控路网区域控制中心各个控制子区实时交通状况的基础上,根据某种确定的判断原则,在某一时刻让一些控制子区合并起来,采取统一的控制方案;而在另一时刻,这些控制子区则可分解成若干个相对独立的部分,每一部分有自己独特的控制方案,各自实行适合本子区交通特性的控制方案;或再与另外一些控制子区合并,在更大的范围内采用统一的控制方案;控制子区这种根据实时交通状况自动合并或分解的过程就称为交通控制子区自动划分过程。

5.1 交通控制子区划分的原则

5.1.1 周期原则

按信号周期长度来划分交通控制子区,被目前许多成功的交通控制系统所采用。周期划分原则的实质是:相邻交叉口信号最佳周期长度相近(周期差小于t秒),表明其交通状况相似。此时,交叉口合并实行信号协调控制,可使得合并后的各交叉口总延误小于合并前的总延误。

t值亦应根据当地实际情况,考察周期时长与交通状况的相关性,经实地观测调查后确定。

5.1.2 流量原则

相邻交叉口流量若处于下列三种情况之一,应进行协调控制:

其一,若相邻各交叉口流量都大于某个值(Qm),说明交叉口交通拥挤程度比较高,甚至已处于交通阻塞状态。为了迅速分流,缓解这种局部交通拥挤,应把这些交叉口划入同一个交通控制子区。

其二,若相邻交叉口流量差大于某个值(Qz),虽然交通特性差异大,但为了确保流量大的交叉口车流到达流量小的交叉口不至于遇到红灯,产生大量的停车延误,应考虑把它们划入同一个交通控制子区,进行协调控制。

其三,若相邻交叉口车流量差小于某个值(Qh),说明交叉口交通流特性相似,也应考虑把这些交叉口划入同一个交通控制子区,进行协调控制。Qm、Qz、Qh 可根据当地实际情况,结合流量历史统计数据,经实地观测调查后确定。

5.1.3 距离原则

设相邻交叉口的距离为L。为了避免车辆排队长度阻塞上游交叉口,当L≤Lh 时,将这两个交叉口划入同一个交通控制子区,进行协调控制。

从上游交叉口进口道驶入的车流,驶出交叉口后,会随着行驶距离的增大逐渐离散开来,当L≥Lf时,到达下游交叉口停车线的车流已显随机状态,这时实行信号协调控制反而降低系统整体交通效益,因此,可将这两个交叉口分开,划入不同的

交通控制子区。

合并距离Lh和分离距离Lf值可根据当地情况,经现场观测调查后确定。5. 2交通控制子区自动划分过程

5.2.1 周期原则子区自动划分过程

在诱导条件下,周期原则子区自动划分要经历一个判断过程:交通控制子区合并或分离是以“合并指标”是否达到“标准”来判断的。若合并指标达到“标准”,区域控制中心就会发出“合并”指令,从而实现相邻交叉口的合并。这里所提到的“标准”包含一个量的概念,可用“合并指数”来表示。在每一个信号控制周期及信息发布周期内,都要进行“合并指标”的判断计算(不一定同时进行)。

信息发布周期,路线诱导系统根据导行车辆OD数据,经动态交通分配,得到路网各路段交通流量,然后由区域交通控制中心计算出路网各交叉口最佳周期长,判断相邻交叉口周期差。而信号控制周期内“合并指数”的判断计算是根据车辆检测器检测到的交叉口实时交通流量,结合历史流量数据,也由区域交通控制中心经动态交通模型计算各交叉口最佳周期时长,判断相邻交叉口周期差。若相邻交叉口各自所要求的信号周期长度相差不超过t秒,则,“合并指数”累积值为(+1),反之为(-1)。若“合并指数”的累积值达到“s”,则可认为相邻交叉口已经达到合并为一个控制子区的“标准”。合并后的控制子区,在必要时还可以自动重新分解,只要“合并指数”累积值降至“0”。一旦“合并指数”累计至临界值s或0,即使达到累计标准,“合并指数”也不再累加,即s和0是“合并指数”的上界值和下界值。诱导条件下周期子区自动划分过程见图1。

图1 周期子区自动划分过程

5.2.2 流量原则子区自动划分过程

交通控制子区若根据相邻交叉口车流量情况来划分,其子区自动划分过程与周期原则子区自动划分过程基本相似。但“合并指数”定义为一个流量差,同时“合并指数”的计算要经过三个判断过程:

首先,在每个信号周期,车辆检测器都能检测到一组交叉口实时交通流量数据;而每一个信息发布周期,路线诱导系统都要进行路网交通流分配,各相关交叉口因此得到一组预测性数据(路线诱导系统直接提供,与传统的由历史数据,经交通模型计算得到预测数据有别)。区域控制中心根据这两组交通流进行交叉口流量大小的判断(不一定同时进行),若相邻交叉口的流量都大于Qm,说明该区域交通拥挤程度高,甚至已处于交通阻塞状态,为了缓解路网上的这种局部交通拥挤或阻塞,不得不从—个较大的范围(超过几个控制子区的范围)的交通信号协调入手来解决问题。这样,就有必要抛弃按“合并指数”累积值来决定控制子区合并的常规作法,而是让区域控制中心会立即强制多个控制子区(或交叉口)合并。

若第一步判断得出控制区域各交叉口处于正常交通状态,则进入第二个判断过程:判断相邻交叉口流量差是否大于Qz。若为了避免车流量大的交叉口停车次数的剧增,应对这两个交叉口进行协调控制(合并指数+1);否则,进入第三个判断过程:判断相邻交叉口的流量差是否小于Qh,且都比Q1大(Q1是交叉口实施信号联网协调控制的最小值,应根据实际观测得到),可认为相邻交叉口交通流情况一致,

应进行信号联网协调控制(合并指数+1)。若相邻交叉口的车流量都很小,也会出现流量差很小的情况,但此时,道路上行驶的交通流随机性较大,进行协调控制所获得的交通效益不如单点控制的好。因此,流量控制下限值Q1的确定非常重要。诱导条件下流量子区自动划分过程见图2。

图2 流量子区自动划分过程

5.2.3 距离原则子区自动划分过程

若交通控制子区划分是根据交叉口间距来划分,由于交叉口间距是固定的,故可采用先固定,后自动的方法对交通控制子区进行划分。即先对受控路网各交叉口间距L、合并距离Lh 和分离距离Lf进行调查。若L≤Lh,由于交叉口间距较小,不仅它们间的绿灯起步时差可选择的范围很小,而且排队长度限制很严格(可容纳的排队车辆数十分有限),因此,它们其余两项配时参数也被限制得较死。在这种情况下应将它们组合成一个整体(可认为是一个新的交叉口),并固定下来,参与同其它交叉口的配时优化或子区划分,进行协调控制。若L≥Lf,由于交叉口间距较大,从上游交叉口停车线驶出到达下游交叉口停车线的车流离散性较高,进行信号协调控制后的效益费用比很小,或者进行信号协调比较困难,此时,可把这两个交叉口划入不同的区域控制中心,采用不同的控制策略。

5.2.4 西客站各子区划分方式

子区五按周期原则划分。周期都为180s。

六.信号灯设置与安装位置(布点)

6.1 信号灯设置

6.1.1信号灯设置时应该注意的情况

当交叉路口的交通量接近路口的通行能力时,考虑在交叉路口设置交通信号控制。信号灯设得合理、正确,能较充分地发挥道路的交通效益,如设置不当,非但浪费了设备和资金,并且会对交通造成不良后果。如有些不合理信号控制的路口,由于主要道路上驾驶员遇红灯而停车,但他在相当长的时间内并未看到次要道路上有车通行,往往会引起有意或无意的闯红灯。因此,信号控制交叉口的交通事故,多发生在交通量较低的交叉口上或交通量较低的时间内。

在吸取国外信号灯设置经验的基础上,结合我国目前具体的交通状况,路口信号灯的设置与改进要运用交通工程学理论作指导,根据路口的地形特点、车流状况,作好车辆与行人交通流量的调查,进口道上车辆行驶速度的调查,交通事故及违章调查,车辆可穿越的空当及延误调查等,具体问题具体分析,制定优化的信号配时,保证现代交通高效、节能、低公害运行。

一般规定

交通信号灯控制路口均需设置交通信号控制机。

交通信号控制系统应配备GPRS 无线通讯卡与城市道路交通监控中心实现信息联网。

交通信号控制策略应根据路口交通流量及通行能力确定,应与交叉口平面布局和交通标志、交通标线同步设计。

交通信号控制系统的建设应根据城市交通流的分布,由主到次、由内而外,将关联的交叉口逐步纳入系统进行协调控制,并形成交通信号联网控制系统。

城市主干道可视条件实施绿波协调控制。

对于商业、旅游、大型办公区域路口,以及人流量和转弯车流量均较大的路口,应根据行人过街需求选择不同时段设置机动车全红相位,即行人专用相位。

6.1.2信号灯设置方式与原则

交叉路口交通信号灯安装方式有两种,一种是安装在伸向交叉路口中央上空型臂上;一种是安装在路口边或中央的灯柱上。

信号灯的排列方式通常分为两种:

1、水平排列式

从道路的中心线一侧起以红、黄、绿的顺序向路边排列。常用于路面较宽的道路。

2、垂直排列式

从上往下依次是红、黄、绿灯。这种方式常用于路面较窄的道路。按固定方

式排列信号灯有两个好处:一是把红灯信号放在最醒目的位置;二是可使患有色盲的人凭借位置来判断信号的含义。在交叉路口中央上空安装信号灯时应符合车辆通行净空高度界限的要求。信号灯的亮度应保证人们在1O0m以外能看清。

信号灯设置条件总则:

根据所采用的控制装置的不同,交通信号一般有三种控制方式:周期式信号、半感应式信号、全感应式信号。

6.2 信号灯的安装位置

6.2.1 机动车信号灯和方向指示灯安装位置

图1 有机动车与非机动车分隔带6.2.2 非机动车信号灯安装位置

6.2.3 人行横道信号灯安装位置

智能交通信号灯控制系统设计

智能交通信号灯控制系 统设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

智能交通信号灯控制系统设计 摘要:本文对交通灯控制系统进行了研究,通过分析交通规则和交通灯的工作原理,给出了交通灯控制系统的设计方案。本系统是以89C51单片机为核心器件,采用双机容错技术,硬件实现了红绿灯显示功能、时间倒计时显示功能、左、右转提示和紧急情况发生时手动控制等功能。 关键词:交通灯;单片机;双机容错 0 引言 近年来随着机动车辆发展迅速,给城市交通带来巨大压力,城镇道路建设由于历史等各种原因相对滞后,特别是街道各十字路口,更是成为交通网中通行能力的“隘口”和交通事故的“多发源”。为保证交通安全,防止交通阻塞,使城市交通井然有序,交通信号灯在大多数城市得到了广泛应用。而且随着计算机技术、自动控制技术和人工智能技术的不断发展,城市交通的智能控制也有了良好的技术基础,使各种交通方案实现的可能性大大提高。城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,是现代城市交通监控指挥系统中最重要的组成部分。本文设计的交通灯管理系统在实现了现代交通灯系统的基本功能的基础上,增加了容错处理技术(双机容错)、左右转提示和紧急情况(重要车队通过、急救车通过等)发生时手动控制等功能,增强了系统的安全性和可控性。 1 系统硬件电路的设计 该智能交通灯控制系统采用模块化设计兼用双机容错技术,以单片机89C51为控制核心,采用双机容错机制,结合通行灯输出控制显示模块、时间显示模块、手动模块以及电源、复位等功能模块。现就主要的硬件模块电路进行说明。 主控制系统 在介绍主控制系统之前,先对交通规则进行分析。设计中暂不考虑人行道和主干道差别,对一个双向六车道的十字路口进行分析,共确定了9种交通灯状态,其中状态0为系统上电初始化后的所有交通灯初试状态,为全部亮红灯,进入正常工作阶段后有8个状态,大致分为南北直行,南北左右转,东西直行,与东西左右转四个主要状态,及黄灯过渡的辅助状态。主控制器采用89C51单片机。单片机的P0口和P2口分别用于控制南北和东西的通行灯。 本文的创新之处在于采用了双机容错技术,很大程度上增强了系统的可靠性。容错技术以冗余为实质,针对错误频次较高的功能模块进行备份或者决策机制处理。但当无法查知运行系统最易出错的功能,或者系统对整体运行的可靠性要求很高时,双机容错技术则是不二选择。 双机容错从本质上讲,可以认为备置了两台结构与功能相同的控制机,一台正常工作,一台备用待命。传统的双机容错的示意图如图1所示,中U1和U2单元的软硬件结构完全相同。如有必要,在设计各单元时,通过采用自诊断技术、软件陷阱或Watch dog等系统自行恢复措施可使单元可靠性达到最大限度的提高。其关键部位为检测转换(切换)电路。 图 1 传统双机容硬件错示意图

智能交通信号灯系统的设计

智能交通信号灯系统的设计 发表时间:2016-05-30T16:34:43.267Z 来源:《基层建设》2016年2期作者:刘景平卜亚洲杨小军颜志坦 [导读] 东莞麦可龙医疗科技有限公司 523656 海每小时创造财富2亿元,据此推算,15个城市每天损失近10亿元人民币。从上面数据我们发现交通拥堵是巨大的经济浪费。 刘景平卜亚洲杨小军颜志坦 东莞麦可龙医疗科技有限公司 523656 摘要:当今中国的汽车飞速发展,私家车也前所未有的达到高峰,面对固定道宽的公路。不断飞速增量的汽车与有限的公路宽度的矛盾就迅速明显起来,目前最重要的就是努力调和现有资源进行最大程度的整体调度,尽可能的提高汽车行驶的顺畅度。本文即为解决此问题而设计的智能交通信号灯系统,通过实时监控,对车流量实时采集,通过CPU调度中心进行智能调控,进行智能信号灯的交替变化,而给予驾驶者一个有效的实施导向,从而使汽车流进行最大程度的行驶顺畅度。 关键词:智能交通信号灯;汽车流;行驶顺畅度 1、背景 上个世纪八十年代中国的汽车就开始发展,直到今日汽车的增长量已经势不可挡,国家信息中心日前发布的报告显示,2007年我国汽车市场产销量达830万辆,总体增长率达16.3%。中国汽车消费量占全球总消费量的12%左右,仍维持全球第二大市场的地位。报告同时指出,原来预计2020年超过美国成为全球第一大汽车市场的目标有可能在2015年提前实现。这样一个可怕的增长速度,对于有限的公路必须需要一种有效的交通调度方式。 早在2004年美国TTI(Texas Transportation Institute)交通年度报告,全美85个主要城市因交通拥堵损失37亿小时的时间和23亿加仑的汽油浪费。还有根据中国科学院研究,2010年中国百万人以上的50座主要城市,这些城市的居民平均单行上班时间要花39分钟。中国15座主要城市居民每天上班单行比欧洲多消耗288亿分钟,折合4.8亿小时。上海每小时创造财富2亿元,据此推算,15个城市每天损失近10亿元人民币。从上面数据我们发现交通拥堵是巨大的经济浪费。 目前交通信号灯比较死板,绿灯红灯交替变化的时间都是固定,无论塞车还是顺畅都是一成不变的,这就不可以很顺畅的调节到车辆。 2、解决概况 当两个事物配合使用的时候,当其中一个事物是变化的,如果另外一个事物是固定的,这无疑问就会产生不匹配的情况。 那么怎么样才可以使两个事物相互配合,做到游刃有余呢?那么必定是当一个事物变化的时候,通过某种工具或者规律来对另外一个事物进行实时调整调度以满足那个变化实物的变化,才会起到一个和谐融洽的相互配合关系。 车辆与交通信号灯就是这两种相互配合的事物,当车辆不断的变化的时候,信号灯却不形成任何与车辆的互动,而按自己的规律和行程交替运转,这就会导致没有实时性。例如,一条十字路口纵向的车几乎没有,而横向的车却在严重塞车,那么在这种情况下是不是需要把纵向的绿灯时间分给横向的绿灯一些呢?还有,当在上班时间或者下班时间,基本上车流量都是一个方向的,那么是不是应该把某个方向的绿灯时间分给其他方向或者左转等方向一些呢?等等。 下面我们就具体的方案来改进目前的交通信号灯系统。 3、智能交通信号灯的设计 首先通过车流量实时监测模块进行实际车流的采集,然后通过无线数据传输系统,传至大数据调度中心,通过大数据分析计算,从而得到有效的调节数据控制交通信号灯的显示,并且实时备份数据并上传数据。框图如下: 3.1、车流量监测系统 车流量检测系统是非常重要的部分。目前主要有三种车流量判断方式,电磁感应装置法、车流信息的超声波检测法,还有基于机器视觉的车流量检测法。超声波检测精度不太高,容易受车辆遮挡或者人的干扰,检测的距离短,一般在10m左右,本设计的车辆检测器采用地感线圈检测方案。地感线圈车辆检测器是一种基于电磁感应原理的车辆检测器。地感线圈Ll埋在路面下,通有一定工作电流的环形线

智能交通管理系统建项目内容

附件2: 市辖城区智能交通管理系统建设招标要求 一、项目内容 南充市辖城区智能交通管理系统包含一个指挥中心、一个顶层应用平台、两个基础支撑平台和十一个子系统以及通信网络等配套系统建设。包括内场、外场两部分。外场涵盖范围包括顺庆、高坪、嘉陵三区,内场涵盖信息网络机房、南充公安交通警察支队7楼指挥中心,详见下表,具体建设内容详见《市辖城区智能交通管理系统项目采购清单与技术参数(功能)配臵及要求》和《市辖城区智能交通管理系统一期工程初步设计》。

警务资源管理系统新建1套 机房及配套工程市公安局14楼新建机房,包括模块化UPS1套、机房精密空调3套、33个机柜、走线架、200KW后备柴油发电机1台。 二、项目要求 1.本项目必须按专家评审及财政评审部门审定的技术方案实施建设,详见《市辖城区智能交通管理系统项目采购清单与技术参数(功能)配臵及要求》和《市辖城区智能交通管理系统一期工程初步设计》。 2.投标现场须由投标人指派的本项目的项目经理对投标文件进行讲解,讲解时间15-20分钟。 3.鉴于本系统后期将与智能交通相关系统进行对接,与市级智能交通相关部门实现数据共享,因此,投标人须无条件承诺:系统平台应设臵完善的用户权限、访问控制策略,同时,系统硬件平台、软件平台、网络等接口协议须采用国际、国家和行业标准协议,具有开放性、可扩展性,能够与其他系统实现互联互通,确保系统平滑扩容或升级。平台为其他平台、社会资源或后期项目开放接口,需接入时无需支付接入费,平台厂商不得限制其他厂商接入。 4.系统在全市公安视频专网内运行,不允许与其它任何网络有直接物理连接,非南充市公安局交警支队授权,不允许为其它任何部门、企事业单位和个人提供接入,不得将视频、图片、数据资源用于其它商业目的。 5.系统的传输网络限于裸光纤、MSTP、PON三种方式。 6.指挥中心LED大屏、交通诱导屏、信号控制机、交通视频采集设备、雷达测速设备、精密空调、UPS电源、服务

智能交通信号灯控制系统设计

编号: 毕业论文(设计) 题目智能交通信号灯控制系统设计 指导教师xxx 学生姓名杨红宇 学号201321501077 专业交通运输 教学单位德州学院汽车工程系(盖章) 二O一五年五月十日

德州学院毕业论文(设计)中期检查表

目 录 1 绪论............................................................................................................................ 1 1.1交通信号灯简介...................................................................................................... 1 1.1.1 交通信号灯概述.................................................................................................. 1 1.1. 2 交通信号灯的发展现状...................................................................................... 1 1.2 本课题研究的背景、目的和意义 ......................................................................... 1 1. 3 国内外的研究现状 ................................................................................................. 1 2 智能交通信号灯系统总设计.................................................................................... 2 2.1 单片机智能交通信号灯通行方案设计 ................................................................. 2 2.2 功能要求 ............................................................................... 错误!未定义书签。 3 系统硬件组成............................................................................................................ 4 4 系统软件程序设计.................................................................................................... 5 5 结论和展望................................................................................................................ 6 参考文献...................................................................................... 错误!未定义书签。 杨红宇 要: 但是传统的交通信号灯不已经不能满足于现代日益增长的交通压力,这些缺点体现在:红绿 以及车流量检测装置来实现交通信号灯的自控制,随着车流量来改变红绿灯1 绪论 1.1 1.1.1 为现代生活中必不可少的一部分。

交通信号控制系统方案

交通信号 控制系统(ATC)设计方案 x x x x有限责任公司

目录 1.概述 (1) 1.1系统简介 (1) 1.2设计原则 (2) 1.3系统设计依据及执行标准 (4) 2.总体设计方案 (6) 2.1控制系统总体功能 (6) 2.2通信系统总体结构 (6) 2.3通信系统主要优势 (8) 3.详细设计方案 (9) 3.1监测点设备 (9) 3.1.1设备功能描述 (9) 3.1.2监测点设备组成、结构及特点 (9) 3.2防雷保护及安全设计 (14) 3.3详细设备说明 (15) 3.3.1高清晰摄像机 (15) 3.3.2标清视频检测 (15) 3.3.3补光设备 (15) 3.3.4嵌入式存储 (15) 3.3.5 GOE210千兆工业以太网交换机 (15) 3.3.6 POE工业以太网光纤收发器 (17) 3.4系统典型配置清单 (18)

1.概述 城市发展交通智能信号灯,减少道路拥堵,最终达到智能化区域交通信号控制系统。智能交通信号灯迎合实现绿色经济的时代潮流,为了解决这个问题,提出智能交通信号灯及网络技术,会根据路口车辆多少,自动调节时间,可减少等候时间在75%以上,从而大大节省了人们的出行时间,减少了路口的无效等候,使出行更快捷。 在智能交通系统中,以往的常规摄像机是对所有通过该地点的机动车辆的车牌进行拍摄、记录与处理。由于受到图像采集设备分辨率的制约,图片仅能反映出车型、车身颜色、车牌号码等简单信息。公安执法部门对部分治安案件、交通肇事案件的取证要求上,希望能掌握更详细更清楚的资料,如驾驶员的面貌特征、车内驾驶室的情况、清晰的车辆信息、货车的装载情况。采用高清晰摄像机做前端采集,可以实现所抓拍的图像中用肉眼清楚地分辨:车辆的颜色、特征、车牌的号码、车牌颜色、司乘人员的面部特征。 如此一来智能化同时也带来了网络数据流量的剧增,对网络通信的可靠传输提出了更高的要求。工业以太网交换机在区域交通信号控制系统网络中稳定性、高可靠性、高安全性成为关键中的关键。 1.1系统简介 区域交通信号控制系统(ATC) 智能化区域交通信号控制系统采用百万像素的数字化网络摄像机(1600×1200 CCD传感器),一台摄像机覆盖两条车道,准确抓拍正常行驶、压线行驶、并行通过的车辆,并自动识别车牌号码,抓拍的车辆图片可清晰地显示车辆特征及前排司乘人员的面部特征。摄像机工作于外触发方式,通过视频分析、环形线圈或者窄波雷达检测通过车辆,在抓拍车辆的同时可获取车辆的行驶速度。两条车道共用一台高清数字摄像机的方式在保障系统性能的前提下,大大降低了系统成本。

新型智能交通信号控制系统(终)

新型智能交通信号控制系统 报名号:BS2011-B241设计者:GARDING指导教师:匿名 摘要:本作品针对当前日益严重的交通拥堵问题,以EXP-89S51单片机为核心,设计出了一种新型智能交通信号控制系统,实现了对交通信号灯的实时智能控制。该新型控制系统在控制方案上采用了我们自主设计的新型两级模糊控制方案,该方案是一种同时具有自适应控制、分级模糊控制、相位繁忙优先和准确显时等优势的控制方案,更适用于实际的交通情况,且已获国家实用新型专利和相关论文已在科技核心期刊《现代电子技术》上发表。在软件设计上,采用了MATLAB和VB进行动态模拟,并与当前正在采用的几种控制方案进行了对比验证,验证了新方案的优越性。在硬件设计上,我们采用了EXP-89S51单片机、SP-MDCE25A 交通灯模组、E-TRY通用板和倒计时LED数码管模块等,并搭建了较好的逼真的外围平台来对其实现更具真实性的实时控制。该作品不论是在创新性、实用性、技术先进性,还是在可靠性、经济性上都具有很强的优势。 关键词:智能交通信号新型两级模糊控制 VB动态模拟 EXP-89S51单片机 1、系统总体方案介绍 1.1自主提出的新型智能交通信号控制的总控制系统原理 我们自主提出的新型智能交通信号控制的总控制系统原理如图1所示: 图1自主提出的新型智能交通信号控制的总控制系统原理图在该系统中,交叉口的交通参数经检测装置检测,将被测参数转换成统一的标准电信号,再经A/D转换器进行模数转换,转换后的数字量通过I/O接口电路送入新型两级模糊控制器再到控制台。 在新型两级模糊控制器和控制台内部,用软件对采集的数据进行处理和计算,然后经数字量输出通道输出。输出的数字量通过D/A转换器转换成模拟量,再经驱动模块对交通情况进行控制,从而实现对交叉口的实时智能交通控制。 1.2 基于EXP-89S51单片机的新型智能交通信号控制系统的总控制系统设计 本系统运用我们的新型两级模糊控制方案,采用了EXP-89S51来控制智能交通系统。系统的整体结构框图如图2所示:

122智能交通管理系统需求书

122智能交通管理系统需求书 1)概述 智能交通系统ITS(Intelligent Transportation Systems)是将先进的信息技术、数据通讯技术、自动控制技术以及信息处理技术等有效地融合起来,并运用于整个交通管理系统而建立起来的一种在大范围内,全方位发挥作用的实时、准确、高效的运输综合智能控制和管理系统;是提高交通运输系统的运输效率,缓解城市交通拥挤、保证交通安全、减少城市环境污染的一项重大关键技术;同时也是加大交通基础设施投入之外解决目前交通运输问题的主要途径。 智能交通系统在国外的发展状况:从70年代末,智能交通系统的开发和应用即引起了西方发达国家的重视,尤其是近年来美国、日本、欧盟等发达国家或各种组织都投入了大量的资金,与高校和研究机构联合,积极致力于智能交通系统的开发与应用,已取得一定的成绩,并已得到相应的应用。如美国,早在1993年起,每年就投入2亿美元以上的国家政府预算以促进ITS事业的发展。 目前,国外在城市智能交通系统的相关方面已取得了许多可行的研究结果和应用实例,这些成果包括用于动态信息采集的传感器和测量信号的处理方法,基于闭路电视(CCTV)系统的交通监控系统,针对静态信息组织管理和应用的地理信息系统GIS(Geographical Information System)技术及其应用系统,具有一定适用范围的交通建模方法和模型,结合全球定位系统GPS(Global Positioning System)技术实现的车辆路径优化算法,非混杂环境的交通流量控制系统及方法等等。

日本政府在ITS领域进行了大量的资金、政策等方面的投入,以期形成ITS 产业推动日本经济发展。在过去的5-6年的时间里,已经有近400万套车内导航系统在市场上应用。日本的ITS应用主要是在交通信息提供;电子收费;公共交通;商业车辆管理以及紧急车辆优先等方面。在长远方面,日本将开发自动公路系统(Automated Highways System)。由于日本政府的直接支持,极大地推动了日本ITS领域的发展。 在美国,ITS应用发展较快的几个方面分别是,车辆安全系统(占51%),电子收费(占37%),公路及车辆管理系统(占28%),实时自动定位系统(占20%),商业车辆管理系统(占14%)。 智能交通系统在国内的发展状况:随着我国社会经济的飞速发展,交通事业在我国迅猛发展,智能交通系统引起越来越多的关注。许多大城市对此进行了研究并实施。上海和深圳是这一方面的先行者。 在上海,采用高新技术改善交通状况的尝试已经有较长时间。80年代初,上海市就引进了澳大利亚的SCAT悉尼自适应交通信号控制系统。1991年,作为上海市“八五”科技攻关项目,上海市科学技术委员会立项进行“上海城市交通诱导信息系统”的研究。1996年,国家自然科学基金委员会资助进行“城市交通控制与路线诱导系统基础理论”的研究。1998年,上海市科委资助进行“车内自动导航系统的研究与开发”的课题研究。1999年,上海市科委资助进行“上海快速路网交通监控收费技术的研究与开发”的课题研究。 深圳市也非常重视智能交通项目的研究与开发,努力建设综合智能交通管理系统,形成了发展智能交通系统的基础条件。先后建成了多个系统:无线集群调度系统、GPS卫星定位系统、远程电子监控系统、运政稽查管理系统、交通一

交通信号灯控制系统

交通信号控制系统 1. 设计任务 设计一个十字路口交通控制系统,要求: (1)东西(用A表示)、南北(用B表示)方向均有绿灯、黄灯、红灯指示,其持续时间分别是30秒、3秒和30秒,交通灯运行的切换示意图如图1-1 所示。 (2)系统设有时钟,以倒计时方式显示每一路允许通行的时间。 (3)当东西或南北两路中任意一路出现特殊情况时,系统可由交警手动控制立即进入特殊运行状态,即红灯全亮,时钟停止记时,东西、南北两路所有车辆停止通行;当特殊运行状态结束后,系统恢复工作,继续正常运行。 2.总体框图 本系统主要由分频计、计数器和控制器等电路组成,总体框图如1-2所示。分频计将晶振送来的信号变为1Hz时钟信号;当紧急制动信号无效时,选择开关将1Hz脉冲信号送至计数器进行倒计时计数,并使控制器同步控制两路红、黄、绿指示灯时序切换;当紧急制动信号有效时,选择开关将紧急制动信号送至计数器使其停止计数,同时控制器控制两路红灯全亮,所有车辆停止运行。 2-1 交通灯总体结构框图 3 模块设计 (1)分频器 设晶振产生的信号为2MHz,要求输出1Hz时钟信号,则分频系数为2M,需要21位计数器。用VHDL设计的2M分频器文本文件如下:

LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY fenpin2m IS PORT(clk:IN STD_LOGIC; reset:IN STD_LOGIC; --时钟输入 clk_out:out STD_LOGIC); END ENTITY fenpin2m; ARCHITECTURE one OF fenpin2m IS signal count:integer range 0 to 1999999; BEGIN PROCESS(clk) BEGIN if reset='1' then count<=0; clk_out<='0'; else if clk'EVENT and clk='1'THEN IF count<999999 THEN count<=count+1; clk_out<='0'; ELSif count<1999999 then count<=count+1; clk_out<='1'; else count<=0; END IF; END IF; END IF; END PROCESS ; END one; (2) 模30倒计时计数器 采用原理图输入法,用两片74168实现。74168为十进制可逆计数器,当U/DN=0时实现9~0减法计数,记到0时TCN=0;当U/DN=1时实现0~9加法计数,计到9时TCN=0;ENTN+ENPN=0时执行计数,否则计数器保持。该电路执行减法计数,当两片计数器计到0时同步置数,因此该计数器的计数范围是29~0,当系统检测到紧急制动信号有效时,CP=0计数器停止计数。

交通信号控制系统解决实施方案

交通信号控制系统解决方案 1概述 交通信号控制系统,是智能交通系统(ITS)在交通管理工作中的基本应用,也是城市智能交通管控系统中最直接、最基础的应用系统。通过建设信号控制系统,实现信号路口联网远程控制、交通流量的采集、路口自适应控制、绿波协调控制以及区域的自适应控制,有效减少车辆的停车次数,节省旅行时间;后台实时调整信号配时,采取多时段控制方式,必要时,可通过智能交通管理中心人工干预,直接控制路口交通信号机执行指定相位,有效的疏导交通,减少行车延误,提高通行能力,缓解日益严峻的城区道路交通拥堵压力,提高城区交通综合管理能力,减少汽车尾气排放,美化环境,提升城区形象。 2系统结构设计 系统结构划分为3级:分别为中心控制级设备、区域控制级设备以及路口控制级设备。交通信号控制系统设备主要包括中心设备、前段设备和通信设备。

(1)中心控制级设备 中心控制级设备作用主要是: ?监控整个系统的运行。 ?协调区域控制级的运行。 ?具备区域控制级的所有功能。(2)区域控制级设备 区域控制级设备作用主要是: ?监控受控区域的运行。

?对路口交通信号进行协调控制。 ?对路口交通信号机的工作状态和故障情况进行监视。 ?通过人机回话对路口交通信号机进行人工干预。 ?监视和控制区域级外部设备的运行。 ?进行交通流量统计处理。 (3)路口控制级设备 路口控制级设备即信号机,其作用主要是: ?控制路口交通信号灯。 ?接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送。 ?接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息。 ?具有单点优化能力。 3系统功能设计 3.1基础功能 (1)区域自适应控制 系统以控制子区作为基本控制单元,综合考虑子区内的交通运行状态(如交通阻塞、交通拥挤、交通顺畅)、交叉口的关联性大小、交叉口的实际交通量,确定公共信号周期与相位差的决策模型,并运用智能优化算法实时优化子区协调控制配时参数,实现控制子区交叉口的协调控制功能。 系统的区域交叉口协调控制能够确保控制区域内的交通流时刻处于最佳运行状态,相邻交叉口之间协调方向的行驶车流可以获得尽可能不停顿的通行权,大大降低车辆在交叉口频繁加减速所产生的交通污染,减少区域交通总的车辆燃油

智能交通信号灯控制系统设计

智能交通信号灯控制系统设计 摘要:本文对交通灯控制系统进行了研究,通过分析交通规则和交通灯的工作原理,给出了交通灯控制系统的设计方案。本系统是以89C51单片机为核心器件,采用双机容错技术,硬件实现了红绿灯显示功能、时间倒计时显示功能、左、右转提示和紧急情况发生时手动控制等功能。 关键词:交通灯;单片机;双机容错 0 引言 近年来随着机动车辆发展迅速,给城市交通带来巨大压力,城镇道路建设由于历史等各种原因相对滞后,特别是街道各十字路口,更是成为交通网中通行能力的“隘口”和交通事故的“多发源”。为保证交通安全,防止交通阻塞,使城市交通井然有序,交通信号灯在大多数城市得到了广泛应用。而且随着计算机技术、自动控制技术和人工智能技术的不断发展,城市交通的智能控制也有了良好的技术基础,使各种交通方案实现的可能性大大提高。城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,是现代城市交通监控指挥系统中最重要的组成部分。本文设计的交通灯管理系统在实现了现代交通灯系统的基本功能的基础上,增加了容错处理技术(双机容错)、左右转提示和紧急情况(重要车队通过、急救车通过等)发生时手动控制等功能,增强了系统的安全性和可控性。 1 系统硬件电路的设计 该智能交通灯控制系统采用模块化设计兼用双机容错技术,以单片机89C51为控制核心,采用双机容错机制,结合通行灯输出控制显示模块、时间显示模块、手动模块以及电源、复位等功能模块。现就主要的硬件模块电路进行说明。 1.1 主控制系统 在介绍主控制系统之前,先对交通规则进行分析。设计中暂不考虑人行道和主干道差别,对一个双向六车道的十字路口进行分析,共确定了9种交通灯状态,其中状态0为系统上电初始化后的所有交通灯初试状态,为全部亮红灯,进入正常工作阶段后有8个状态,大致分为南北直行,南北左右转,东西直行,与东西左右转四个主要状态,及黄灯过渡的辅助状态。主控制器采用89C51单片机。单片机的P0口和P2口分别用于控制南北和东西的通行灯。 本文的创新之处在于采用了双机容错技术,很大程度上增强了系统的可靠性。容错技术以冗余为实质,针对错误频次较高的功能模块进行备份或者决策机制处理。但当无法查知运行系统最易出错的功能,或者系统对整体运行的可靠性要求很高时,双机容错技术则是不二选择。 双机容错从本质上讲,可以认为备置了两台结构与功能相同的控制机,一台正常工作,一台备用待命。传统的双机容错的示意图如图1所示,中U1和U2单元的软硬件结构完全相同。如有必要,在设计各单元时,通过采用自诊断技术、软件陷阱或Watch dog等系统自行恢复措施可使单元可靠性达到最大限度的提高。其关键部位为检测转换(切换)电路。

智能交通控制解决方案

智能交通控制解决方案

智能交通信号控制系统 解 决 方 案

目录 1系统概述 (6) 2系统功能 (7) 3智能交通信号控制系统..... 错误!未定义书签。 3.1系统说明 错误!未定义书签。 3.2路口需求 10 3.3系统特点 10 3.4系统设计 错误!未定义书签。 3.4.1系统硬件拓扑结构 10 3.4.2PL-20-CM系统软件构成 11 3.4.3路口感应控制模式 12 3.4.4行人过街控制 16 3.4.5公车优先感应控制 错误!未定义书签。

3.4.6绿波控制模式 16 3.4.7区域协调控制模式 20 3.4.8特勤控制 22 3.5智能交通信号控制管理软件系统 错误!未定义书签。 3.5.1系统软件的主要功能 22 3.6PL-5D 智能交通信号控制主机 错误!未定义书签。 3.6.1概述 错误!未定义书签。 3.6.2控制主机视图 错误!未定义书签。 3.6.3技术特点 错误!未定义书签。 3.6.4技术指标 错误!未定义书签。 3.6. 4.1主机箱外形尺寸 ......................... 错误!未定义书签。

3.6. 4.2性能及功能说明......................... 错误!未定义书签。 3.6. 4.3一般要求......................... 错误!未定义书签。 3.6. 4.4启动时序......................... 错误!未定义书签。 3.6. 4.5信号转换......................... 错误!未定义书签。 3.6. 4.6控制方式转换......................... 错误!未定义书签。 3.6. 4.7性能参数......................... 错误!未定义书签。

智能交通灯系统设计样本

智能交通灯系统设 计

智能交通灯系统设计 1.背景及意义 1.1.目的与意义 随着社会经济的发展,城市交通问题也越来越引起人们的关注,交通堵塞也成为人们每天必须面正确问题;交通堵塞不但浪费大量的时间,而且排队过程中刹车和怠速会浪费能源,同时也造成空气污染,如何有效的降低城市交通堵塞,协调好人、车、路三者之间的关系,已成为各大城市面临的难题之一。交通灯系统作为交通系统中的重要元素,对缓解交通堵塞扮演者重要角色。随着现在社会的飞速发展,红绿灯在道路上比较普遍,几乎每个路口都会出现,特别是较大的路口,变换时间周期更长,效率低。因此,如何保证紧急车辆在道路上不受红绿灯的限制但又不闯红灯,使之畅通无阻的行驶,这便成为亟待解决的问题。本文主要针对这些问题,提出了智能交通灯系统的设计,该系统能够智能合理地设置红绿灯的时长以及相位的切换,就能够减少一个周期内十字路口前排队的车辆,从而有效地缓解交通堵塞。1.2.国内外现状 交通灯诞生于19世纪的英国,1958年,在英国伦敦主要街头安装了以燃煤气为光源的红、蓝两色的机械扳手式信号灯,用以指挥马车通行。1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的会议大厦前的广场上安装了煤气红绿灯。19 ,电气启动的

红绿灯出现在美国,这种红绿灯由红绿黄三色圆形的投光器组成。19 又出现了带控制的红绿灯和红外线红绿灯,带控制的红绿灯,一种是把压力探测器按在地下,车辆接近时,红灯变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯是按一下喇叭,就使红灯变为绿灯。红外线红绿灯当当行人踏上对压力敏感的路面时,它就能觉察到有人要过马路。红外光束能把红灯延长一段时间,推迟汽车放行。信号灯的出现,对交通进行有效管理,疏导交通流量、提高了道路通行能力,减少交通事故具有显著效果。欧洲及日本在交通灯的研究上起步较早,美国于上世纪九十年代才开始逐渐重视智能交通信号控制系统的研究。 20世纪70年代末,澳大利亚成功研制出了SCATS系统,该系统采用分层控制,以饱和度和综合量为主要依据,分别对信号周期、相位差和绿信比进行优选,该系统没有建立数学模型而是根据情况从各种已经制定的方案选择最优的方案,可是该系统配时方案有限。20世纪70年代初,英国研制出了SCOOT系统,该系统是一种自适应系统,采用小步长渐进寻优的办法,以使配时参数随交通流量改变而作适量调整,从而短期内适应交通流量的变化趋势,以防止因配时突变而引起的车流不稳定。 ,英国推出了全面升级的SCOOT摄像技术智能交通灯系统,该系统采用的是视频摄像技术,经过自动计算需要过马路的人群数量来调整相应的红绿灯时间。当检测到大量的行人在等待,系统会自动延长绿灯放行的时间,让人们有充分的时间过马路。另

交通信号控制系统方案

交通信号控制系统 1.1项目概述 对当地的简单介绍及交通状况的分析。 1.1.1系统概述 城市交通的管理与控制是智能交通系统的重要组成部分,城市交叉口的通行能力是决定道路通行的关键。交通信号控制系统对城市交叉口进行系统化协调控制,能缓解拥堵区域的交通压力,使交通流量在整个城市范围内的分配趋于合理,能够降低或消除对道路的瓶颈影响,提高道路的通行能力和服务水平。 交通信号控制系统的发展经历了点控、线控和面控3个阶段: (1)每个交叉口的交通控制信号只按照该交叉口的交通情况独立运行,不与其邻近交叉口的控制信号有任何联系的,称为单个交叉口交通控制,也称为单点信号控制,俗称“点控制”。 (2)把干道上若干连续交叉口的交通信号通过一定的方式联结起来,同时对各交叉口设计一种相互协调的配时方案,各交叉口的信号灯按此协调方案联合运行,使车辆通过这些交叉口时,不致经常遇上红灯,称为干道信号联动控制,也叫“绿波”信号控制,俗称“线控制”。 (3)以某个区域中所有信号控制交叉口作为协调控制的对象,称为区域交通信号控制系统,俗称“面控制”。 1.1.2设计目标 交通信号控制系统目标如下: (1)降低交通延误,降低停车次数,提高车速,降低机动车油耗,减少交通污染,改善城市环境; (2)科学控制交通流,最大限度利用现有道路,提高道路的通行能力; (3)使交通有序运动,从而改善交通秩序,有利于交通安全; (4)节省警力,降低交警的劳动强度。 1.1.3设计原则 根据我公司多年来在城市智能交通领域的建设经验,对公安、交通行业业务需求的深入理解,结合我国交通发展的现状,根据信号控制系统设计理论,在设

计过程中秉承以下原则: 1.1.3.1标准化原则 交通信号控制系统严格按照公安部颁布的标准GA47-2002《道路交通信号控制机》和GB/T20999-2007《交通信号控制机与上位机间的数据通信协议》规定的技术要求进行设计,所有数据格式与接口均符合国家标准,并在此基础上加以完善,以适应各地的交通状况。 1.1.3.2先进性原则 采用科学的、主流的、符合发展方向的技术、设备和理念,系统集成化、高清化、网络化、模块化,使系统具有“国内领先,国际先进”的总体水平,能够适应交通控制未来发展的要求。 1.1.3.3实用性原则 系统提供清晰、简洁、友好的中文操作界面,操控简便灵活,易学易用,便于管理和维护,系统具有自动恢复功能,整个系统的操作简单、快捷、环节少,以保证不同的操作者都能熟练操作系统,具有高度友好的界面和使用性。 系统设计、选材、选型符合国家及行业的有关标准,与用户及其上级管理部门的有关规定要求相适应,与用户在经济能力方面实际情况相吻合。 1.1.3.4可靠性原则 交通信号控制系统选用集成度和稳定性高的设备,具有系统自诊断和维护管理功能、远程设备监控、数据备份等功能。室外设备具有耐高温、耐高湿、耐低温,防雷、防尘等特性,保证系统的正常可靠运行。 1.1.3.5安全性原则 交通信号控制系统具有防误操作特性,通过合理的硬件结构设计、有效的外场保护措施以及完善的内部管理机制有效避免系统遭到恶意攻击和数据被非法提取的现象出现,保障系统的信息安全。同时通过数据加密、备份、补录、恢复等措施,提高系统在传输链路故障时的数据完整性及安全性。 1.1.3.6经济性原则 交通信号控制系统的可靠性得到提升,因此系统的维护成本显著下降。采用技术先进的设备,通过最优化的系统集成,设备使用寿命长,系统经济性显著提高。

智能交通灯系统设计

智能交通灯系统设计 1.背景及意义 1.1.目的与意义 随着社会经济的发展,城市交通问题也越来越引起人们的关注,交通堵塞也成为人们每天必须面对的问题;交通堵塞不但浪费大量的时间,而且排队过程中刹车和怠速会浪费能源,同时也造成空气污染,如何有效的降低城市交通堵塞,协调好人、车、路三者之间的关系,已成为各大城市面临的难题之一。交通灯系统作为交通系统中的重要元素,对缓解交通堵塞扮演者重要角色。随着现在社会的飞速发展,红绿灯在道路上比较普遍,几乎每个路口都会出现,尤其是较大的路口,变换时间周期更长,效率低。因此,如何保证紧急车辆在道路上不受红绿灯的限制但又不闯红灯,使之畅通无阻的行驶,这便成为亟待解决的问题。本文主要针对这些问题,提出了智能交通灯系统的设计,该系统能够智能合理地设置红绿灯的时长以及相位的切换,就能够减少一个周期内十字路口前排队的车辆,从而有效地缓解交通堵塞。 1.2.国内外现状 交通灯诞生于19世纪的英国,1958年,在英国伦敦主要街头安装了以燃煤气为光源的红、蓝两色的机械扳手式信号灯,用以指挥马车通行。1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的会议大厦前的广场上安装了煤气红绿灯。1914年,电气启动的红绿灯出现在美国,这种红绿灯由红绿黄三色圆形的投光器组成。1918年又出现了带控制的红绿灯和红外线红绿灯,带控制的红绿灯,一种是把压力探测器按在地下,车辆接近时,红灯变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯是按一下喇叭,就使红灯变为绿灯。红外线红绿灯当当行人踏上对压力敏感的路面时,它就能觉察到有人要过马路。红外光束能把红灯延长一段时间,推迟汽车放行。信号灯的出现,对交通进行有效管理,疏导交通流量、提高了道路通行能力,减少交通事故具有显著效果。欧洲及日本在交通灯的研究上起步较早,美国于上世纪九十年代才开始逐渐重视智能交通信号控制

智能交通管理系统需求书

个人资料整理仅限学习使用 122智能交通管理系统需求书 1)概述 智能交通系统ITS

交通信号控制系统

1交通信号控制系统概述交通信号控制系统是智能交通管理系统的重要子系统,其主要功能是自动协 1.1调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。 必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。 NATS交通信号控制系统用于城市道路交通的控制与管理,可以提高车速、减少延误、减少交通事故、降低能耗和减轻环境污染。 从上个世纪八十年代中期以来,中国电子科技集团公司第二十八研究所就开始了NATS系统和路口交通信号控制机的研制开发。 该系统通过了国家鉴定验收,获得了国家重大科技攻关成果奖、公安部科技进步一等奖和国家科技进步三等奖。 NATS交通信号控制系统特点: 适合中国城市混合交通的特点,具有自行车控制功能;系统支持多种硬件平台(微机、工作站以及大、中、小型计算机),多种软件平台(WINDOWS 98/NT/2000/XP);支持多种外部设备(动态地图板、室内信息板、室外信息板、违章记录仪…);支持多种系统互联(电视监视系统、地理信息系统、车辆定位系统、违章捕捉系统、信息管理系统…);系统配置灵活、裁剪方便;支持远程控制和维护;支持多种通信方式(光缆、电话线、GPRS/CDMA无线通信、城域网…);系统人机界面友好,显示内容丰富,操作使用方便;与国外同类系统相比,具有很高的性能价格比。 1.2系统结构 1.2.1系统控制应用层结构NATS交通信号控制系统采用三级分布式递阶基本控制结构: 中心控制级,区域控制级,路口控制级(参见下图)。

中心控制级区域控制级1区域控制级2路口控制级路口控制级路口控制级区域控制级N 1.2.2系统基本结构区域监控台动态地图板室内信息板违章捕捉仪区域控制计算机数据通信控制机(光端机)光纤(光端机)(光端机)路口信号机…(光端机)(光端机)路口信号机室外情报板…室外情报板交通信号灯车辆检测器其中: 区域控制计算机监视、控制、协调整个系统的运行,可同时控制128个外部设备,如果外部设备超过128路,可采用多台区域控制计算机。 区域监控台用作交通工程师工作台,实时显示被控区域内的交通状态和信息,下达人机会话命令;数据通信控制机为区域控制计算机与户外设备提供通信通道;路口信号机负责采集、处理、传送交通信息,控制路口信号灯色;环形线圈检测器和微波检测器安装位置可分布在路口或者路段;动态地图板实时显示被控区域内的交通状态。 1.3系统功能 1.3.1系统三级控制功能1)中心控制级监控整个系统的运行;协调区域控制级的运行;具备区域控制级的所有功能。 2)区域控制级监控受控区域的运行;对路口交通信号进行协调控制; 对路口交通信号机的工作状态和故障情况进行监视;通过人机会话对路口交通信号机进行人工干预;监视和控制区域级外部设备的运行;进行交通流量统计处理。 3)路口控制级控制路口交通信号灯;接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送;接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息;具有单点优化能力。 4)终端控制为了方便灵活地控制系统,系统可挂接终端控制计算机(工作站),终端控制计算机提供与区域控制计算机完全同样的显示操作功能,终端控制计算机既可以是本地的(如放在管控中心),也可以是远程的(如在任何地方通过公安网进行控制)。 1.

相关文档
相关文档 最新文档