文档库 最新最全的文档下载
当前位置:文档库 › 三重积分概念及其计算

三重积分概念及其计算

三重积分概念及其计算
三重积分概念及其计算

§5 三重积分

教学目的 掌握三重积分的定义和性质.

教学内容 三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求 掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变

换和球面坐标变换计算三重积分的方法.

教学建议 (1) 要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可

积.由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较.

(2) 对较好学生可布置这节的广义极坐标的习题.

一、三重积分的概念

背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤,

利用求柱体的质量方法来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义.

定义1 设()z y x f ,,是定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于V 的任何分割T ,当它的细度δ

所有积分和都有

ε

σζ

ηξ<-?∑=J f N

i i i

i

i

1

),,(,

则称()z y x f ,,在V 上可积,数J 称为函数()z y x f ,,在V 上的三重积分,记作

J =

()???V

dvdydz

z y x f ,,,

其中()z y x f ,,称为三重积分的被积函数,z y x ,,称为积分变量,称为V 积分区域.

可积函数类

(ⅰ)有界闭区域V 上的连续函数必可积.

(ⅱ)有界闭区域V 上的有界函数()z y x f ,,的间断点集中在有限多个零体积的曲面上,

则()z y x f ,,必在V 上可积.

二、化三重积分为累次积分

定理21.15 若函数()z y x f ,,在长方体V =[][][]f e d c b a ,,,??上的三重积分存在,且对任何x ∈[]b a ,,二重积分

()x I =()dydz z y x f D

??,,

存在,其中D =[][]f e d c ,,?,则积分

?b

a

dx ()??D

d z y x f σ

,,

也存在,且

()???V

dxdydz z y x f ,,=?b

a

dx ()??D

d z y x f σ

,,. (1)

为了方便有时也可采用其他的计算顺序.若简单区域V 由集合

()()()()(){

}b x a x y y x y y x z z y x z z y x V ≤≤≤≤≤≤=,,,,,,2121

所确定,V 在xy 平面上的投影区域为

D =()()(){}

b x a x y y x y y x ≤≤≤≤,,21

是一个x 型区域,设()z y x f ,,在上连续,

()y x z ,1,()y x z ,2在D 上连续,()x y 1,()x y 2上[]b a ,连续,则

()???V

dxdydz z y x f ,,=

()()???D

z y

x z dz z y x f dxdy 21,,,=()()()()

???b a

x y x y z y

x z dz

z y x f dy dx 212

1,,,,

其他简单区域类似.

一般区域V 上的三重积分,常将区域分解为有限个简单区域上的积分的和来计算.

例1 计算???+V dxdydz y x 221

,其中V 为由

平面x y z x x ====,0,2,1,y z =所围的区域.

例2 求???????

??++V dxdydz

c z b y a x 222222,其中V 为

222

222

1x y z a b c ++≤. 例3改变下列累次积分顺序

110

(,,)x

x y

dx dy f x y z dz --??

?

三、三重积分换元法

设变换T :()w v u x x ,,=,()w v u y y ,,=,()w v u z z ,,=把uvw 空间中的区域V '一对一地映成xyz 空间中的区域V ,并设函数()w v u x x ,,=,()w v u y y ,,=,()w v u z z ,,=及它的偏导数在区域V '内连续且行列式

()w v u J ,,=x x x u

v w y

y y

u v w z z z u

v w

??????????????????≠0 , ()w v u ,,∈V ', 则

()???V

dxdydz z y x f ,,=

()()()()()???'

V dudvdw

w v u J w v u z w v u y w v u x f ,,,,,,,,,,,(4)

其中()z y x f ,,在V 上可积. (一)、柱面坐标变换:如下图所示

变换T :???

??+∞

<<∞-=≤≤=+∞

<≤=z z z r y t r x ,20,sin 0,cos πθθθ,

()z r J ,θ=

10

0cos sin 0sin cos θ

θθθ

r r -=r ,

按(4)式

()???V

dxdydz z y x f ,,=

()???'

V dz

rdrd z r r f θθθ,sin ,cos ,

这里V '为V 在柱面坐标变换下的原象.

在柱面坐标中:r =常数,是以z 轴为中心轴的圆柱面; θ=常数,是过z 轴的半平面; z =常数,是垂直于z 轴的平面. 若V 在平面上的投影区域D ,即V =

()()()(){}D y x y x z z y x z z y x ∈≤≤,,,,,,2

1

()???V

dxdydz z y x f ,,=

()()()

dz

z y x f dxdy D

y x z y

x z ???,,21,,,

其中二重积分部分应用极坐标计算.

例4 计算()

???+V

dxdydz

y x

22

,其中V 是由曲面(

)z y

x =+2

22与4=z 为界面的区域.

例5 计算

,V

zdxdydz V ???

由2224x y z ++=和抛物面

223x y z +=围成。

例6

计算,V

V ???

由222x y z +=和1z =围

成。

(二)、球坐标变换

变换T :

??

?

??≤≤=≤≤=+∞

<≤=π??πθθ?θ?0,cos 20,sin sin 0,cos sin r z r y t r x ,

()θ?,,r J =

sin cos cos sin sin cos sin sin sin sin cos cos cos sin ?

?

θ

?θ?θ?θ?r r r r r ---=?sin 2r ,

变换公式为:

()???V dxdydz

z y x f ,,=

()θ

???θ?θ?d drd r

r r r f V sin cos ,sin sin ,cos sin 2

???'

在球面坐标中:

r =常数,是以原点为中心的球面

θ=常数,是过z 轴的半平面.

?=常数,是以原点为顶点,以z 轴为中心轴的圆锥面.

()()()(){

}βθαθ??θ?θ?θ?≤≤≤≤≤≤=',,,,,2121r r r r V 时,

()???

V

dxdydz

z y x f ,,=

()()

()()()

dr

r r r r f d d r r ??θ?θ??θθ?θ?θ?θ?θθsin cos ,sin sin ,cos sin 2

,,

21

21

2

1

??? .

例7 求由圆锥体

βcot 22y x z +≥和球体()2222a a z y x ≤-++所确定的立体体

积,其中

?

?? ?

?∈2,0πβ和0>a 为常数.

解 球面方程()2

2

22a a z y x =-++在球坐标系下表

示为?cos 2a r =,圆锥面

β

cot 22y x z +=

在球坐标

系下表示为β?=,

(){

}πθβ??θ?20,0,cos 20,,≤≤≤≤≤≤='a r r V

???V dv =???β

?

π

??θ0cos 202

20sin a dr r d d =()

βπ43cos 134-a .

例8 计算

222(),V

x y z dxdydz V ++???

:2222x y z z ++=

例9 求I =

???V

zdxdydz

,其中V 为由122

222

2≤++c z b y a x 与0≥z 所围区域.

二重积分的概念

第一节 二重积分的概念与性质 一、内容要点 1、引例 例1曲顶柱体的体积 例2平面薄片的质量 通过两个实际意义不同的例子,引出所求量可归结为同一形式的和式的极限,进而一般地抽象出二重积分的定义。 2、二重积分的概念:注意讲清楚定义中两个“任意性”及和式极限中各符号的意义。 3、二重积分的性质1-6,注意将其与定积分性质加以比较。 例3关于估值定理的应用 例4关于中值定理的应用 4、二重积分的几何意义——曲顶柱体的体积。 二、教学要求和注意点 理解二重积分,了解重积分的性质,了解二重积分的中值定理。 第二节 二重积分的计算法 一、内容要点 利用直角坐标计算二重积分 1、从几何入手,利用计算“平行截面面积为已知的立体的体积”方法,将二重分化为二次积分: ①若D 为X —型区域:{}b x a x y x y x ≤≤≤≤),()(),(21?? 则 ????=D x x b a dy y x f dx d y x f )()(21),(),(??σ ②若D 为Y —型区域:{}d y c y x y y x ≤≤≤≤),()(),(21?? 则 ????=D y y d c dx y x f dy d y x f )()(21),(),(??σ ③若D 既非X —型,又非Y —型区域,则将D 划分为若干子区域,使每一个子区域为X —型或Y —型。 2、介绍“对称性”在二重积分计算中的应用。 例1化二重积分为二次积分并求值,通过例子说明确定积分限的方法。 例2更换积分次序并计算,通过该例说明选择积分次序的重要性。

例3关于利用对称性计算二重积分的例子。 例4被积函数为绝对值函数、符号函数,取最大值或最小值等函数的例子。 利用极坐标计算二重积分 1、介绍极坐标下二重积分的换元公式。 2、何时选用极坐标进行计算,一般说来,当积分域D 的边界曲线用极坐标方程表示比较简单或被积函数用极坐标表示比较简单,可考虑用积坐标计算。 3、确定积分上下限的办法。 例1将直角坐标系下的二次积分化为极坐标系下的二次积分 例2利用二重积分计算概率积分 dx e x 2 0-+∞? 例3将极坐标系下的二次积分化为直角坐标系下的二次积分 例4利用极坐标计算二重积分 二、教学要求和注意点 1、掌握二重积分(直角坐标、极坐标)的计算方法 2、将重积分化为累次积分计算时,积分限的确定要保持每个单积分的下限小于上限,因此在交换二次积分次序时应注意符号问题。 3、在二重积分的计算时应尽量利用区域和被积函数的对称性以简化计算。 第四节 三重积分 一、内容要点 1、三重积分的概念,存在性及性质 2、三重积分在直角坐标系下的计算 ①先单积分后二重积分 ②先二重积分后单积分 3、更换积分次序 例1将三重积分化为三次积分 例2更换积分次序 例3先二重积分后单积分 4、柱面坐标系下三重积分的计算。 5、何时选用柱面坐标——当Ω是柱形,锥形或旋转体且在坐标面上的投影是圆域或其部分,或者被积函数含有式子)(22y x +?等时,常用柱面坐标计算。 6、球面坐标系下三重积分的计算。 7、何时选用球面坐标——当Ω是球体或其部分,或被积函数含有式子)(222z y x ++?

三重积分n重积分简介

§5 二重积分 一、三重积分的概念 1三重积分的物理解释 设非均匀物体A内分布着一种物质,其密度为,(x,y,z),并假定T在A上连续,那么怎样定义和计算这个物体的质量呢?我们的办法还是通过“分割,近似求和,取极限”这三个步骤得到A的质量是 m= ?(x, y, z)dxdydz A 2三重积分的定义 P243-244 3三重积分的性质、可积条件 与二重积分类似 线性性,单调性,可加性,绝对可积性,乘积可积性,中值定理等? 二、三重积分的计算---化三重积分为累次积分 1长方体[a,b] [c,d] [k,h]上的积分 定理21.15设A二[a,b] [c,d] [e, f],f是A上的连续函数,那么f在A上的三重积分 b d f 可以化为先对z,后对y,x的积分:丨丨丨f (x, y, z)dxdydz= dx dy f (x, y,z)dz, -a c e A 或先y > x > z: f b d II .1 f (x, y, z)dxdydz= dz dx f(x,y,z)dy e a c A 等等(共6种),并且此时(f连续时),各个三次积分的值与积分次序无关,他们都相等。 b d h III f (x, y,z)dxdyd^ dx dv f (x, y,z)dz. ack V 2. 一般区域上的三重积分、简单区域上的三重积分 一般区域上的三重积分、可以分解有限个简单区域上的三重积分简单区域(典型区域)的定义V 二{(x,y,z)|Z i(x,y)乞z ^Z2(x,y), (x,y) D},其中D 为V 在XY 平面上的投影, D =《x, y)|a 兰b, y i(x)兰y 兰y2(x)> 或者D ={(x,y) ^d,x1 (y)兰x2(y)}

三重积分的计算方法与例题

三重积分的计算方法: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

二重积分的概念及性质

二重积分的概念及性质 前面我们已经知道了,定积分与曲边梯形的面积有关。下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。 二重积分的定义 设z=f(x,y)为有界闭区域(σ)上的有界函数: (1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n); (2)在每一个子域(△σk)上任取一点,作乘积; (3)把所有这些乘积相加,即作出和数 (4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作: 即:= 其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域. 关于二重积分的问题 对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。 上述就是二重积分的几何意义。

如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。 二重积分的性质 (1).被积函数中的常数因子可以提到二重积分符号外面去. (2).有限个函数代数和的二重积分等于各函数二重积分的代数和. (3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末: (4).如果在(σ)上有f(x,y)≤g(x,y),那末: ≤ (5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使 其中σ是区域(σ)的面积. 二重积分的计算法 直角坐标系中的计算方法 这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:

[整理]三重积分的计算方法小结与例题76202

三重积分的计算方法介绍: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

定积分与重积分的定义与性质应用

定积分与重积分的定义与性质应用 1.定义 (1)定积分: <1>定积分定义与夹逼定理的综合应用 例1 :1 2222 lim n n n n n →+∞ +… 提示:分母由夹逼定理全部替换成1/n ,然后用定积分定义求和。 <2>取对数,求积变求和后用定积分定义 例2:求122 2=1 4 (n +i ) lim n n i n n →∞ ∏ 222=1 22=122=12 22 2 2 2 2 n 0 2arctan 2-4 n ln =ln[n (1+())]-4ln 11=22ln +ln[1+()]-4ln 1=ln[1+()]2+2-2lim ln =lim ln (1+x )dx=ln (1+x )|-1+=2ln 5-4+2arctan 2lim =25n n n i n i n i n n n x i x n n i n n n n n n i n n x x x x x e →∞ →∞ →∞ =∴∑∑∑?? 令原式,则 <3>使用定义累次积分 例3:112220011lim ()() 11n n n i j n dx dy n i n j x y →+∞===++++∑∑?? <4>不是所有和式一看到就用定积分定义 例4:(stolz 定理) 例5:基本代数变换技巧 A.(隔项约分)

例5.1:33=2-1 lim +1 n n k k k →+∞ ∏求 22=222=22211 =lim 11 1(1)(1)1 lim 1 112(1)(1)12lim (1)2113 n n k n n k n k k k k k k k k k k k k n n n n →+∞ →+∞→+∞-+++-+-+-++=+-+?+-++==+-+∏∏解:原式 B.(连环反应(分子分母同乘)) a.例5.2: n n 1242n 242n 21111lim(1)(1)(1)(1)=2222 11111lim (1)(1)(1)(1)122221-2 1 lim 2(1)22 n n +→∞→∞→∞ ++++++++=-=………… 变式:22n n lim(1)(1)(1),|a|<1lim n n a a a x →∞ →∞ +++……其中,求; b.例5.3: 23232311 lim cos cos cos cos 2222 cos cos cos cos sin 22222lim sin 2 cos cos cos cos sin 22222lim 2sin 2 sin lim =12sin 2 n n n n n n n n n n n n n x x x x x x x x x x x x x x x x x x →∞→∞--→∞→∞===……………… C.本身就有公式(下例分母) 例5.4: 0lim lim n n n === (2)二重积分

二重积分的计算方法

重庆三峡学院数学分析课程论文 二重积分的计算方法 院系数学与统计学院 专业数学与应用数学(师范) 姓名 年级 2010级 学号 指导教师刘学飞 2014年5月

二重积分的计算方法 (重庆三峡学院数学与统计学院10级数本1班) 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 引言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重 要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被 积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求 二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),D J f x y d σ= ??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??. 1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????.

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

二重积分的计算方法

第二节 二重积分的计算法 教学目的:熟练掌握二重积分的计算方法 教学重点:利用直角坐标和极坐标计算二重积分 教学难点:化二重积分为二次积分的定限问题 教学内容: 利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的. 一、利用直角坐标计算二重积分 我们用几何观点来讨论二重积分的计算问题. 讨论中,我们假定 ; 假定积分区域可用不等式 表示, 其中, 在上连续. 据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积. 在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为

一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为 利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为 从而有 (1) 上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对 计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分. 这个先对, 后对的二次积分也常记作 在上述讨论中,假定了,利用二重积分的几何意义,导出了二重积分的计算公式(1).但实际上,公式(1)并不受此条件限制,对一般的(在上连续),公式(1)总是成立的. 例如:计算 解: 类似地,如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2)

显然,(2)式是先对,后对的二次积分. 二重积分化二次积分时应注意的问题 1、积分区域的形状 前面所画的两类积分区域的形状具有一个共同点: 对于I型(或II型)区域, 用平行于轴(轴 )的直线穿过区域内部,直线与区域的边界相交不多于两点. 如果积分区域不满足这一条件时,可对区域进行剖分,化归为I型(或II型)区域的并集. 2、积分限的确定 二重积分化二次积分, 确定两个定积分的限是关键.这里,我们介绍配置二 次积分限的方法 -- 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交 点与,这里的、就是将,看作常数而对积分时的下限和上限; 又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为 . 例1计算,其中是由轴,轴和抛物线在第一象限内所围成的区域.

重积分论文

重积分论文 摘要:高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。重积分主要用来解决实际问题,在本文中,首先我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及其在几何和物理方面的应用,并借以实例加以说明。其次,谈谈我个人对学习重积分的一些建议和想法。 关键词:重积分 在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。在本章中将介绍重积分的概念、计算法以及它们的一些应用。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。文章中我分为两个部分来谈重积分,第一部分主要归纳了重积分的应用,对于重积分的学习,要求主要掌握重积分的计算和应用,会用重积分的思想解决实际问题,然而计算又涵盖在具体应用中。因此学习重积分要从它的应用着手。第二部分谈了谈自己对学习重积分的一些建议和想法。主要从学习重积分的思想和计算方法两方面来谈。

三重积分概念及其计算

§5 三重积分 教学目的 掌握三重积分的定义和性质. 教学内容 三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求 掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变 换和球面坐标变换计算三重积分的方法. 教学建议 (1) 要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可 积.由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较. (2) 对较好学生可布置这节的广义极坐标的习题. 一、三重积分的概念 背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤, 利用求柱体的质量方法来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 定义1 设()z y x f ,,是定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于V 的任何分割T ,当它的细度δ

则()z y x f ,,必在V 上可积. 二、化三重积分为累次积分 定理21.15 若函数()z y x f ,,在长方体V =[][][]f e d c b a ,,,??上的三重积分存在,且对任何x ∈[]b a ,,二重积分 ()x I =()dydz z y x f D ??,, 存在,其中D =[][]f e d c ,,?,则积分 ?b a dx ()??D d z y x f σ ,, 也存在,且 ()???V dxdydz z y x f ,,=?b a dx ()??D d z y x f σ ,,. (1) 为了方便有时也可采用其他的计算顺序.若简单区域V 由集合 ()()()()(){} b x a x y y x y y x z z y x z z y x V ≤≤≤≤≤≤=,,,,,,2121 所确定,V 在xy 平面上的投影区域为 D =()()(){ }b x a x y y x y y x ≤≤≤≤,,21 是一个x 型区域,设()z y x f ,,在上连续, ()y x z ,1,()y x z ,2在D 上连续,()x y 1,()x y 2上[]b a ,连续,则 ()???V dxdydz z y x f ,,= ()()???D z y x z dz z y x f dxdy 21,,,=()()()() ???b a x y x y z y x z dz z y x f dy dx 212 1,,,, 其他简单区域类似. 一般区域V 上的三重积分,常将区域分解为有限个简单区域上的积分的和来计算. 例1 计算 ???+V dxdydz y x 221 ,其中V 为由

重积分论文

《高等数学》——重积分 麻安平 贵州民族大学建筑工程学院土木一班 摘要:高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。重积分主要用来解决实际问题,在本文中,首先我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及其在几何和物理方面的应用。 关键词:重积分;曲面面积. I .重积分的应用归纳如下: 1.1曲面的面积 设曲面∑的方程为(),y x f z ,=∑在xoy 面上的投影为xy D ,函数 ()y x f ,在D 上具有连续偏导数,则曲面∑的面积为: ()()????++=? ??? ????+??? ????+=D y x D d y x f y x f dxdy y f x f A σ,,11222 2 若曲面∑的方程为 (),z y g x ,=∑在yoz 面上的投影为yz D ,则曲面 ∑ 的面积为:

()()???? ++=??? ????+? ??? ????+=D z y D d z y f z y f dydz z g y g A σ,,112 22 2 若曲面∑的方程为(),x z h y ,=∑在zox 面上的投影为zx D , 则曲面∑的面积为: ()()????++=??? ????+??? ????+=D x z D d x z f x z f dzdx x h z h A σ,,112 22 2 例1:计算双曲抛物面xy z =被柱面222R y x =+所截出的面积A 。 解:曲面在xoy 面上投影为222 :R y x D ≤+,则 ??++=D y x dxdy z z A 2 2 1 即有 : ()322 20 2113R D A d R πθπ??===+-???? ???? 从而被柱面222 R y x =+所截出的面积A 如上所示。 1.2质量 1.2.1平面薄片的质量 若平面薄片占有平面闭区域 D ,面密度为()y x ,μ,则它的质量为 ()??=D d y x m σμ,,其中()σμd y x dm ,=称为质量元素. 1.2.2物体的质量

最新定积分的概念与性质

定积分的概念与性质

第五章定积分 第一节定积分的概念与性质 教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容: 一、定积分的定义 1.曲边梯形的面积 设?Skip Record If...?在?Skip Record If...?上非负,连续,由直线?Skip Record If...?,?Skip Record If...?,?Skip Record If...?及曲线?Skip Record If...? 所围成的图形,称为曲边梯形. 求面积: 在区间?Skip Record If...?中任意插入若干个分点 ?Skip Record If...?, 把?Skip Record If...?分成?Skip Record If...?个小区间[?Skip Record If...?],[?Skip Record If...?], … [?Skip Record If...?],它们的长度依次为: ?Skip Record If...? 经过每一个分点作平行于?Skip Record If...?轴的直线段,把曲边梯形分成?Skip Record If...?个窄曲边梯形,在每个小区间[?Skip Record If...?]上任取一点?Skip Record If...?,以[?Skip Record If...?]为底,?Skip Record If...?为高的窄边矩形近似替代第?Skip Record If...?个窄边梯形?Skip Record If...?,把这样得到的

二重积分计算中的积分限的确定

二重积分计算中积分限的确定 摘要:二重积分计算中积分限的确定对于初学者是一个重点更是一个难点.本文旨在介绍一种二重积分计算中确定积分限的简单易行的方法. 关键词:二重积分累次积分积分限积分次序 引言:高等数学学习过程中,二重积分计算是个难点。原因在于将二重积分化为累次积分时,对于积分限的确定学生难以掌握。本人结合自己的教学过程和自己的学习体会总结出一个口诀,发现在教学过程中效果不错可以很好的帮助学生解决这一难题。 1.高等数学中计算二重积分的方法 在高等数学课本中,在直角坐标系下计算二重积分的步骤为:]1[。 (1)画出积分区域 (2)确定积分区域是否为X-型或Y-型区域,如既不是X-型也不是Y-型区域,则要将 积分区域化成几个X-型和Y-型区域,并用不等式组表示每个X-型和Y-型区域. (3)用公式化二重积分为累次积分. (4)计算累次积分的值. 在教学的过程中我发现学生对于此种方法掌握的很不好,尤其是在第二步中,确定积分区域从而确定累次积分的积分限是一个薄弱环节.下面就本人在教学中的体会谈谈在这方面的一点心得. 2.教学过程中总结的方法 本人的心得可用下面的口诀概括:后积先定限,限内画条线,先交下限取,后交上限见.下面简单解释一下该口诀,然后以具体的例题加以说明.在将二重积分转化为累次积分的时候对于两个积分变量必然会有个先后顺序,这就要求对后积分的那个变量我们要根据积分区域确定其上下限(所谓确定是指根据积分区域图将其上下限定为常数).确定了这个变量的上下限以后,我们在其上下限内画一条和上下限平行的直线,该直线沿着坐标轴的正方向画过来,这样该直线如果和积分区域总是有两个交点,先交的即为另一个积分变量的积分下限,后交的即为其积分上限. 3.例题解析 例1 计算?? D xydxdy,其中D是由直线x y y x= = =,1 ,2所围成的区域. 解:作出积分区域D的图形 x 页脚内容1

二重积分的概念及计算法(一)

习题9-1,9-2 二重积分的概念及计算法(一) 1.填空题: (1)由二重积分的几何意义得 ∫∫≤+=??122221y x d y x σ . (2)根据二重积分的性质,比较下列积分的大小: ① ,其中是三角形区域,三顶点为(1,0),(1,1),(2,0),则 ∫∫+=D d y x I σ)ln(1∫∫ +=D d y x I σ22)][ln(D 1I 2I . ②,,其中是由∫∫++=D d y x I σ21)1(∫∫ ++=D d y x I σ32)1(D x 轴与直线围成的区域,则 1,0?==+x y x 1I 2I . (3)化二重积分为两种不同次序下的二次积分,其中是直线D 2,==x x y 及双曲线)0(1f x x y =所围成的闭区域,= ∫∫d y x f σ),(D = (4)①交换积分次序: ∫∫??=22221),(x x x dy y x f dx ②交换积分次序: ∫∫∫∫?=+y y dx y x f dy dx y x f dy 20313010),(),( 2.利用二重积分的性质,估计积分的值: ∫∫++=D d y x I σ)94(22,其中是圆形闭区域:. D 422≤+y x 3.计算下列二重积分: (1)∫∫+= D d x x y I σ2)1(cos ,其中是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域. D (2),其中是由∫∫+=D y x d e I σD 1≤+y x 所确定的闭区域. 4.计算二次积分∫∫101dx e dy y x y . 5.交换积分次序,证明: ∫∫∫???=a y a x a m x a m dx x f e x a dx x f e dy 000)()()()()(. 6.设平面薄片所占的闭区域是由直线D x y y x ==+,2和x 轴所围成,它的面密度

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε ,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且 ()12 ,D D f x y d σ?? ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}12 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()()() 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

二重积分计算方法

1利用直角坐标系计算1.1 积分区域为X型或Y型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,) f x y在积分区域D上连续时,若D为x型区域(如图1),即 {} 12 (,)()(), D x y x x x a x b ?? =≤≤≤≤,其中 12 (),() x x ??在[,] a b上连续,则有 2 1 () () (,)(,) b x a x D f x y d dx f x y dy ? ? σ= ????;(1) 若D为y型区域(如图2),即{} 12 (,)()(), D x y y y y c y d ψψ =≤≤≤≤,其中 12 (),() y y ψψ在[,] c d上连续,则有 2 1 () () (,)(,) d y c y D f x y d dy f x y dx ψ ψ σ= ????.[1](2)例1 计算 2 2 D y dxdy x ??,其中D是由2 x=,y x =,及1 xy=所围成. 分析积分区域如图3所示,为x型区域()1 D=,12, x y x y x x ?? ≤≤≤≤ ?? ?? .确定了积分区

域然后可以利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ??≤≤≤≤???? 则 1.2 积分区域非X 型或Y 型区域二重积分的计 算 当被积函数的原函数比较容易求出, 是简单的x 型或y 型区域,不能直接使用公式(1行计 算,这是可以将复杂的积分区域划分为若干x 型或 y 型区域,然 后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不是y 型区域,但是将可D 划 分为()(){}12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型 区域, 进而通过公式(3)和(1)可进行计算. 解 D 划分为

三重积分概念及其计算

§ 5三重积分 教学目的掌握三重积分的定义和性质. 教学内容三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变 换和球面坐标变换计算三重积分的方法. 教学建议⑴要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可积?由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较. (2)对较好学生可布置这节的广义极坐标的习题. 、三重积分的概念 背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤, 利用求柱体的质量方法来得到结果?一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 定义1设f x, y,z是定义在三维空间可求体积的有界闭区域V上的函数,J是一个确定的数,若对任给 的正数「总存在某个正数:,使对于V 的任何分割T , 当它的细度T ::: '?时,属于T的所有积分和都有 N 瓦f Gl,q)眄-J o \=1 f x,y,z在V上的三重积分,记作 ill f x,y,z dvdydz J = V 其中f x,y,z称为三重积分的被积函数,x,y,z称为积则称f x,y,z在V上可积,数J称为函数 分变量,称为V积分区域. 可积函数类 (i) 有界闭区域V上的连续函数必可积. (ii) 有界闭区域V上的有界函数f x,y,z的间断点集中在有限多个零体积的曲面上, 则f x, y, Z必在v上可积? 二、化三重积分为累次积分

定理21.15若函数fx,y,z在长方体v=a," c,dl e,fl上的三重积分存在,且对任何x a,b I二重积分 H f(x,y,z dydz I x = D 存在,其中D =C,d 1 e,f】,则积分 b dx f x, y,zd r a D b in f x,y, z dxdydz . dx f x,y,zd二 也存在,且V =a D . (1) 为了方便有时也可采用其他的计算顺序?若简单区域v由集合 V J;X y, z|z x, y

三重积分的计算与应用毕业论文

三重积分的计算与应用 毕业论文 目录 摘要 ............................................................... I ABSTRACT .............................................................. II 目录 ............................................................. III 1 前言 (1) 2 三重积分的定义与性质 (2) 2.1 三重积分的定义 (2) 2.2 三重积分的性质 (2) 3 三重积分的计算 (4) 3.1 利用直角坐标计算三重积分 (4) 3.3.1 坐标面投影法 (4) 3.3.2 坐标轴投影法 (7) 3.3.3 利用对称性化简三重积分计算 (8) 3.2 利用换元法计算三重积分 (9) 3.2.1 柱坐标变换 (10) 3.2.2 球坐标变换 (11) 4 三重积分的应用 (14) 4.1 利用三重积分求重心 (14)

4.2 利用三重积分求转动惯量 (16) 4.3 利用三重积分求引力 (17) 5 结论 (20) 参考文献 (21) 致谢 (22) 1 前言 三重积分在现实中有着广泛的应用.利用三重积分求解不规则物体的体积,不仅仅是当代大学生要学习的基础知识,在很多的大型桥梁,建筑工程中,三重积分也有着不可替代的作用. 在国,三重积分的实际应用远远比不上国外应用广泛,因此,国的学生很多情况下只限于对三重积分的书面认识,意识不到它在现实中的广泛应用.很多学生在学习三重积分时,不了解三重积分的几何意义,因而不能熟练掌握求解三重积分的方法.当面临求解三重积分问题时,往往不知如何下手.即便是知道将三重积分化为累次积分,也不知道该选用哪种方法求解,求解过程中更是会出现各种各样的错误.为了让学生更好地掌握三重积分的相关知识,本文系统的总结了三重积分的求解方法,以便学生尽快掌握相关容. 本文主要是将三重积分所有的求解方法系统的进行归纳总结,详尽介绍运用三重

相关文档
相关文档 最新文档