文档库 最新最全的文档下载
当前位置:文档库 › 位置随动系统

位置随动系统

位置随动系统
位置随动系统

前言

位置随动是指输出的位移随位置给定输入量而变化。在位置随动控制系统中,一般执行电动机常选用伺服电动机,所以也称位置私服控制系统。位置随动系统的应用十分广泛。如,军事工业中自动火炮跟踪雷达天线或跟踪电子望远镜的目标控制,陀螺仪的惯性导航控制,飞行器及火箭的飞行姿态控制;冶金工业中轧钢机轧辊压下装置的自动控制,按给定轨迹切割金属的火焰喷头的控制;仪器仪表工业中函数记录仪的控制以及机器人的自动控制等。

一般来说,随动控制系统要求有好的跟随性能。位置随动系统是非常典型的随动系统,是个位置闭环反馈系统,系统中具有位置给定,位置检测和位置反馈环节,这种系统的各种参数都是连续变化的模拟量,其位置检测可用电位器、自整角机、旋转变压器、感应同步器等。位置随动系统中的给只给定量是经常变动的,是一个随机量,并要求输出量准确跟随给定量的变化,输出响应具有快速性、灵活性和准确性。为了保证系统的稳定性,并具有良好的动态性能,必须设有校正装置,如在正向通道中设置串联校正装并联校正装置等,为了提高位置随动系统的控制精度,还需要增加系统的开环放大倍数或在系统中增加积分环节等。

1 设计原理及性能指标要求

1.1设计原理

要使角位移的输出量能够跟随给定角位移的输入量的变化而变化,达到位置随动的目的,可以通过位置的检测,反馈,校正等环节,形成位置闭环反馈系统。系统中具有位置给定,位置检测和位置反馈环节,这种系统的各种参数都是连续变化的模拟量,其位置检测可用电位器、自整角机、旋转变压器、感应同步器等。

1.2设计性能指标

根据现实需要,位置随动系统主要技术指标如下: (1)误差系数s C C )200/1(,010== (2)单位阶跃响应的超调量%3%≤σ (3)单位阶跃响应的调节时间s t s 7.0≤ (4)幅值裕度dB dB h 6)(≥

通过对数学模型进行系统分析和动态校正,最后设计出一个符合稳定性、准确性和快速性要求的自整角机随动控制系统。

2 控制方案及系统组成原理方框图

2.1控制方案

要使角位移的输出量能够跟随给定角位移的输入量的变化而变化,达到位置随动的目的,可以通过位置的检测,反馈,校正等环节,形成位置闭环反馈系统。系统中具有位置给定,位置检测和位置反馈环节,这种系统的各种参数都是连续变化的模拟量,其位置检测可用电位器、自整角机、旋转变压器、感应同步器等。

1、自整角机

用作测量机械转角(角位移)的传感器,是位置检测元件。随动系统通过一对自整角机来反映指令轴转角、执行轴转角和它们之间的角差,与指令轴相连的自整角机成为发送机,与执行轴相连的成为接收机。

2、相敏放大器

用作将自整角机测角电路输出的角差电动势整流成直流信号,该信号不仅反映角差的大小,而且要反映角差的极性。

3、可逆功率放大器

用作对控制信号进行功率放大,以便驱动执行机构,实现控制系统的正反转控制。 4、伺服电动机

是随动系统执行机构的主要组成部分,对系统精度和快速性影响较大,要求伺服电动机转动惯量小,过载转矩大以提高系统的快速性。

5、校正电路

通过校正,使系统的稳定性、准确性、快速性得到改善,以达到要求。

2.2系统组成原理方框图

由控制方案,可得未校正前系统组成结构框图如下图所示:

2-1自整角机随动控制系统原理方框图

3 系统数学模型及传递函数

3.1各环节传递函数

1.自整角机环节

自整角机的输入量是失调角,输入量是

bs u 。

bs

u 虽然是随时间变化的量,但

是由于后续环节接有相敏整流器,交流电被整流成直流电,bs

u 随时间变化的因素对

后续电路未产生影响,所以可以将自整角机的输出量看成是

δsin bsm bs U U = .一般

地,当 10≤δ时,可近似认为δbsm bs

U U ≈,则自整角机环节的传递函数为

BST BST

相敏放

大器

URP

校正

装置

可逆功

放PWM

负载

SM

减速器

f

u

bs u

ph

U d U

C U

*

m θ

m θ

自整角机BS

bsm

bs bs U s s U s W ==)()

()(δ

相敏整流环节

相敏整流环节的输入量为自整角机的输出量

bs

U ,输出量为相敏整流电压

ph U 。该环节的滤波电路不仅对时间变量引起的电压波动有绿波作用,对由失调角

的改变引起的电压波动也能够滤波。由于滤波环节只有一个储能元件,由

bs

U 引起

ph

U 的变化是一阶惯性环节的响应,所以相敏整流环节的传递函数可由一阶惯性环

节来描述,即

1

)

()()(+=

=

s T K s U s U s W ph ph bs ph ph

式中,

ph

K 为相敏整流放大器环节的放大倍数,

ap

T 为阻容滤波时间常数。

可逆功率放大器环节

PWM 可你功率放大器的输入量是PWM 控制电路的控制电压c

U ,输出量是电

动机的端电压

d U 。由于控制信号改变时,功率器件需经过一点延时才能体现出来,

因而功率放大环节可以近似为一个小惯性环节,传递函数为

1

)()

()(+=

=s T K s U s U s W ap ap c d ap

式中,

ap

K 为功率放大环节的放大倍数,

ap

T 为延迟时间常数。

执行电动机环节

采用直流伺服电动机作为执行电动机,该环节的传递函数为

1/1)(2++=

s T s T T C s W m l m e

md

由于电动机的电磁时间常数比机电时间常数小一个数量级,可将电动机的传递函数近似为

)1)(1(/1)1(/12

++=++s T s T C s T s T T C l m e

m l m e

减速机构环节

减速机构的输入量是电动机的转速n (单位是r/min),输出量是拖动负载旋转的角度(单位是度)。输入输出的关系满足

??==ndt

i

dt i n m 660360θ

取零初始条件下的拉普拉斯变换,得到减速机构的传递函数为

s

K is s N s s W g

m g =

=Θ=6)()()(

式中,

6

g K i =

为减速机构环节的放大系数。可见,减速机构将转速变换为转

角,是个积环节。

采用串联校正时,校正装置可串接于乡民整流放大器与PWM 控制电路之间。系统的动态结构图如图所示。图中,()

APR W s 为校正装置的传递函数。

3.2系统的动态结构图

图3-1位置随动系统动态结构图

bs K 1

ph

ph K T s +()

APR W s

1

ap ap K T s +

)

1)(1(/1++s T s T C l m e

21/1

e

m l m C T T s T s ++g K s

()s δ *()m s θ ()

bs

U s

()

ph U s

()

c U s

()

d U s

()

m s θ—

3.3系统的开环传递函数

)

()

1)(1)(1)(1()

()

1)(1)(1)(1(/)(s W s T s T s T s T s K s W s T s T s T s T s C K K K K s G APR l m ap ph obj

APR l m ap ph e

g ap ph bs ++++=

++++=

式中,e g ap ph bs obj

C K K K K K /=

4 系统稳态分析

4.1系统的稳态分析

位置随动系统稳定运行时,希望输出量能够准确地跟踪输入量,稳态误差却小越好。而在形成随动控制系统误差的诸多因素中,有些属于原理性误差,如系统结构和参数以及给定输入量引起的误差可以通过系统的校正设计加以抑制或消除,而有些属于非原理性误差,例如,检测误差和给定装置的误差靠校正是无法消除的,需要在设计时选用精密元件来加以限制。

检测误差

检测误差是由检测元件产生的,误差的大小取决于检测元件的精度。位置随动控制系统常用的检测元件有自整角机、旋转变压器、感应同步器、光电编码盘等,它们均有一定的准确度等级。各类检测元件也有准确度分级。不同检测元件的误差范围如表4-1所示(表中N 指光电编码盘的栅缝数)

表4-1几种检测元件的误差范围

检测元件

电位器

自整角机

旋转变压

感应同步器

光电码盘

旋转式 直线式 误差范围

角度级

1

角分级

角秒级

微米级 360

N

原理误差

原理误差是由系统结构和参数以及输入函数决定的稳态误差。图3-1所示位置随动系统的故有开环传递函数为

)

1)(1)(1()

1)(1)(1(/)(22'

++++=

++++=s T s s T T s T s T s K s T s s T T s T s T s C K K K K s G m l m ap ph obj

m l m ap ph e

g ap ph bs

式中,

e

g ap ph bs obj C K K K K K /=

校正后系统的开环传递函数为

)

()

1)(1)(1)(1()()()('

s W s T s T s T s T s K s W s G s G APR l m ap ph obj

APR ++++=

=

式中,

()APR W s 为位置调节器的传递函数。

由自动控制原理知:

选择比例调节器,则校正后的开环传递函数仍是I 型系统,Ⅰ型系统只对位置输入信号是无静差的,对于速度输入能够跟踪,但有偏差,其偏差大小与系统的开环增益K 成正比,并且由于积分环节位于系统的输出端,在积分环节之前,任何部位的阶跃扰动都将产生稳态误差,Ⅰ型系统不能够在加速度输入下工作。

Ⅱ型系统对位置输入和速度输入都是无差的,对于加速度输入也能跟踪,但有稳态误差,偏差大小与系统的开环增益成正比。与Ⅰ型系统相比,Ⅱ型系统比较理想,其稳态跟踪精度优于Ⅰ型系统。若设计成Ⅱ型系统,即要求位置调节器具有积分功能,一般选

()

APR W s 为PI (或滞后网络)或PID (或滞后超前网络)型调节器,这类调

节器传递函数的坟墓含有一个S 的独立因子(或将大惯性环节近似为积分环节产生一个s 独立因子)。按这样的传递函数设计系统,可使调节器后面前向通道中恒值扰动的稳态误差为0。

在有负载扰动时,负载扰动使Ⅰ型系统产生稳态误差,误差大小与负载扰动作用点以前的增益K 成正比。而对型系统不产生稳态误差。

从上述分析可以看出,Ⅱ型系统的跟踪能力和抗扰能力均比型系统优越。因此采

用Ⅱ型系统的结构比较合理。

5 系统的动态校正

带入具体数值后系统的开环传递函数为:

200

()(0.11)(0.021)(0.011)(0.0051)G s s s s s s =

++++

5.1绘出校正前的系统频率特性曲线

绘出校正前的系统频率特性曲线如图5-1所示.由图知系统的性能指标未复合要求。

图5-1系统校正前和校正后的频率特性曲线

根据性能指标要求,可以采用串联综合校正

5.2串联综合校正

先绘系统期望特性曲线:

1)期望特性曲线的低频段。低频段绘于图5.1,起延长线在s rad /200=ω处于横

60 40

20

0 0.13

0.1 1.3 13 10

1

100 200 -20 -40 -60

ω

0lg 20G

-40

-20 -40 50

-60 -80

-100

1000

G lg 20

)(ωL

轴相交,且在s rad /1=ω时,dB

G 46lg 20=

2)期望特性的中频段。首先,将给定的时域指标%σ,s t 换算为相应的频域指标γ,H 及c ω。

由经验公式

8.11),1(4.016.0≤≤-+=r r M M σ

解出 35.1=r M ;

再由经验公式

γs i n 1

r M ,

求得 8.47=γ,为留有余地,选相角裕度要求值

50=γ

再由

11

-+=r r M M H 和

γsin 1

r M 知,中频区宽度应取

5

.7sin 1sin 1=-+≥

γγ

H

最后由经验公式

c s K t ωπ

0=

, 2

0)1(5.2)1(5.12-+-+=r r M M K

解得s rad c /7.12=ω,取期望特性的截止频率s rad c /13=ω。

其次,在图上,过s rad c /13=ω作斜率为dec dB /20-直线,其上下限角频率2ω及

3ω按

r r c M M 12-≤ωω 及r r c

M M 1

3+≥ωω

求得;s rad /37.32≤ω,s rad /6.223≥ω.初选s rad /3.12=ω,即c ωω1.02=,以及

s rad /503=ω,此时中频区宽度5.38/23==ωωH ,大于要求值。

3)期望特性低、中频段的衔接频段。在图中,找出中频段与过s rad /3.12=ω的横轴垂线的交点,过该交点作斜率为dec dB /40-直线,交低频段于s rad /13.01=ω,从而完成衔接频段设计。

4)期望特性的高频段。根据1=ν及1

200-=s K v 的要求,在图上绘上不可变部分

的幅频特性

lg 20G ,知其高频段斜率为60-~dec dB /100-,表明待校正系统具有良

好的抑制高频噪声的能力,故可使其期望特性的高频段与

lg 20G 的高频段相同。

5)期望特性中、高频段的衔接频段。在图中,找出过s rad /503=ω的横轴垂线与期望中频率的交点,通过该点作斜率为dec dB /40-直线并与期望特性的高频段相交,交点对应的频率s rad /1004=ω是期望特性从低频到高频的第四个交接频率,从而完成中、高频段之间的衔接频段设计。期望特性的第五个交接频率s rad /2005=ω。

通过期望特性进行的综合串联校正,显然满足系统性能指标的要求。 由期望特性曲线可得校正后系统的开环传递函数为:

)1005.0)(102.0)(19.7()

179.0(200)(++++=

s s s s s s G

由[])lg(20)()(00C c G G L L =+ωω及图5-2,可得串联校正装置对应开环传递函数

为:

)102.0)(19.7()

11.0)(179.0()(++++=

s s s s s G c

通过以上校正,经验证,系统的性能指标完全达到要求。

总 结

根据被控对象及给定的技术指标要求设计自动控制系统,需要进行大量的分析计

算。设计中需要考虑的问题是多方面的,既要保证所设计的系统有良好的性能满足给定技术指标的要求;又要照顾到便于加工,经济性好,可靠性高。在设计过程中,既要有理论指导,也要重视实践经验,往往还要配合许多局部和整体的实验。

当被控对象给定后,按照被控对象的工作条件,被控信号具有的最大速度和加速度要求,可以初步选定执行元件的型式、特性和参数。然后,根据测量精度、抗扰能力、被测信号的物理性质、测量过程中的惯性及线性度等因素,选择合适的测量变送元件。在此基础上,设计增益可调的前置放大器与功率放大器。这些初步选定的元件及被控对象,构成系统中不可变部分。设计控制系统大的目的,是将构成控制器的各元件与被控对象适当组合起来,使之满足表征控制精度、阻尼程度和响应速度的性能指标要求。如果通过调整放大器增益后仍不能全面满足设计要求的性能指标,就需要在系统中增加一些参数及特性可按需要改变的校正装置,使系统性能全面满足设计要求。

设计体会

通过这次课程设计,让我了解了控制系统设计的一般方法,也让我了解了有关随动系统的原理与设计理念,巩固了自己所学的知识,加深了自己对理论与实际相结合

的理解,深刻体会到要把书本上的知识运用到实际中去,这样才能在实践中才能提高自己,使自己能够融会贯通,把自己和社会联系到一起。

在做课程设计的过程中,我深深地感受到了自己所学到知识的有限,明白了只学好课本上的知识是不够的,要通过图书馆和互联网等各种渠道来扩充自己的知识。在实验过程中我们曾经遇到过问题。

从这次课程设计中我学习到了如何对待遇到的困难,进一步培养了自己一丝不苟的科学态度和不厌其烦的耐心。在实验的过程中我和其它同学一起探讨,我们互相讨论互相合作,使得我课程设计得以顺利完成,体会到了合作的力量。这次课程设计的体会对我以后的学习和工作有帮助作用,衷心心感谢老师在设计过程中给我们的谆谆教导;衷心感谢学校给我们提供这次机会。

参考文献

[1]任彦硕,赵一丁,张家生.自动控制系统[M].北京:北京邮电大学出版社,2006.

[2]刘建昌.自动控制系统[M].第2版.北京:冶金工业出版社.2001.

[3]John J.D’azzo ,Constantine H.Houpis. Linear Control System Analysis and Design [M]. Fourth

Editian. New York:McGraw-Hill.1995.

[4] 夏小华,高为柄,程勉,(等).非线性控制系统[M].第2版.北京:科学出版社,2004.

[5] D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications [M].New York:

Academic Press, 2002.

[6] 蔡幸生.非线性控制系统的发展[J].自动化学报,2003,17(4):513~523.

[7] 夏小华,高为柄.稳定设计中的分解和参数化方法[Z].全国控制与决策会议,黄山,2005.

自动控制系统位置随动系统课程设计

摘要 随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。在现代计算机集成制造系统(CIMC)、柔性制造系统(FMS)等领域,位置随动系统得到越来越广泛的应用。 位置随动系统要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性为位置随动系统的主要特征。 本次课程设计研究的是位置随动系统的超前校正,并对其进行分析。 关键词:随动系统超前校正相角裕度

目录 1 位置随动系统原理 (1) 1.1 位置随动系统原理图 (1) 1.2 各部分传递函数 (1) 1.3 位置随动系统结构框图 (4) 1.4 位置随动系统的信号流图 (4) 1.5 相关函数的计算 (4) 1.6 对系统进行MATLAB仿真 (5) 2 系统超前校正 (6) 2.1 校正网络设计 (6) 2.2 对校正后的系统进行Matlab仿真 (8) 3 对校正前后装置进行比较 (9) 3.1 频域分析 (9) 3.2 时域分析 (9) 4 总结及体会 (10) 参考文献 (12)

位置随动系统的超前校正 1 位置随动系统原理 1.1 位置随动系统原理图 图1-1 位置随动系统原理图 系统工作原理: 位置随动系统通常由测量元件、放大元件、伺服电动机、测速发电机、齿轮系及绳轮等组成,采用负反馈控制原理工作,其原理图如图1-1所示。 在图1-1中测量元件为由电位器Rr 和Rc 组成的桥式测量电路。负载固定在电位器Rc 的滑臂上,因此电位器Rc 的输出电压Uc 和输出位移成正比。当输入位移变化时,在电桥的两端得到偏差电压ΔU=Ur-Uc ,经放大器放大后驱动伺服电机,并通过齿轮系带动负载移动,使偏差减小。当偏差ΔU=0时,电动机停止转动,负载停止移动。此时δ=δL ,表明输出位移与输入位移相对应。测速发电机反馈与电动机速度成正比,用以增加阻尼,改善系统性能。 1.2 各部分传递函数 (1)自整角机: 作为常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。自整角机作为角位移传感器,在位置随动系统中是成对使用的。与指令轴相连的是发送机,与系统输出轴相连的是接收机。 12()(()())()u t K t t K t εεθθθ=-=? (1-1) 零初始条件下,对上式求拉普拉斯变换,可求得电位器的传递函数为

位置随动系统校正资料

目录 一、设计题目 (2) 二、设计报告正文 (3) 摘要 (3) 关键词 (3) (报告正文内容) (3) 三、设计总结 (22) 四、参考文献 (22)

一.设计题目 题3:位置随动系统校正 该随动系统通过控制信号θi 通过与检测信号ω相减的角度误差经过相敏放大和可控硅功率放大,通过电机带动拖动系统,经过减速器减速得到需要转动的角度θo 。 o 图1位置随动系统 其中,相敏其中可调放大系数K1=1,可控硅滤波放大环节K2=800,伺服电机系统等 效模型为1 1+s T L ,滤波器时间常数TL=0.25秒,伺服电机电机拖动及减速器系统系 统数学模型为)1(1 +s T s M ,其时间常数TM=0.2秒。 1、写出系统传递函数,并简述各部分工作原理。 2、画出未校正系统的Bode 图,分析系统是否稳定。 3、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 4、设计一个校正装置进行串联校正。要求校正后的系统满足指标: (1)超调量<15%,(2)调整时间<1.5s ,(3)相角稳定裕度>55deg ,(4)幅值稳定裕度>65dB 5、计算校正后系统的剪切频率ωcp 和-π穿频率ωcs 。 6、给出校正装置的传递函数数。 7、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 8、设计PID 控制器,实现闭环控制,仿真系统的阶跃相应曲线。 9、分析控制参数Kp ,Ki ,Kd 对系统动态响应的影响。 10、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 二、要求: 1、给出设计、校正前系统性能分析、拟采取的解决方案、方法及分析。 2、校正步骤、思路、计算分析过程和结果,建立控制、校正装置的simulink 模。

位置随动系统建模与时域特性分析-自控

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 位置随动系统建模与时域特性分析 初始条件: 图示为一位置随动系统,测速发电机TG 与伺服电机SM 共轴,右边的电位器与负载共轴。放大器增益为Ka=40,电桥增益5K ε=,测速电机增益2t k =,Ra=6Ω,La=12mH ,J=0.006kg.m 2,C e =Cm=0.4N ?m/A ,f=0.2N ?m ?s ,i=0.1。其中,J 为折算到电机轴上的转动惯量,f 为折算到电机轴上的粘性摩擦系数,i 为减速比。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1) 求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数; (2) 当Ka 由0到∞变化时,用Matlab 画出其根轨迹。 (3) Ka =10时,用Matlab 画求出此时的单位阶跃响应曲线、求出超调量、峰值 时间、调节时间及稳态误差。 (4) 求出阻尼比为0.7时的Ka ,求出各种性能指标与前面的结果进行对比分析。 (5) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过 程,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处

标准书写。时间安排:

指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 1 系统建模及分析 0 1.1 各部分传递函数 0 1.1.1 电位器传感部分 ...................................................................................................... 0 1.1.2 放大器部分 .............................................................................................................. 1 1.1.3 电动机部分 .............................................................................................................. 1 1.1.4 测速发电机部分 ...................................................................................................... 2 1.1.5 减速器部分 .............................................................................................................. 2 1.2 位置随动系统建模 . (3) 1.2.1 结构图 ...................................................................................................................... 3 1.2.2 信号流图 .................................................................................................................. 3 1.3 开闭环传递函数 .. (3) 1.3.1 开环传递函数 .......................................................................................................... 3 1.3.2 闭环传递函数 . (4) 2 绘制根轨迹曲线 ...................................................................................................... 4 3 10 a K 时系统各项性能指标 .. (5) 3.1 单位阶跃响应曲线 ............................................................................................................. 6 3.2 各项性能指标计算值 (6) 4系统阻尼比为0.7时各种性能指标 (7) 4.1阻尼比为0.7时a K 值的计算 .......................................................................................... 7 4.2 性能指标对比 . (9) 5 设计心得体会 ........................................................................................................ 10 参考文献 (11)

位置随动控制系统设计与实现

位置随动控制系统设计与实现 王桂霞, 李 媛 (中国船舶重工集团公司第704研究所,上海 200031) 摘 要:计算机控制系统是保证位置随动系统功能和性能的重要部分,文中结合船用仿真 转台阐述了多机集散控制结构形式的位置随动转台的计算机控制系统方案,并以某位置随动转台为背景,对系统工程实现中的接口电路设计、电机、伺服放大器以及采样频率选取、程序设计等一系列问题进行了讨论,设计结果在位置随动试验样机中应用取得了良好效果. 关键词:位置随动;控制系统;采样频率;设计 中图分类号:T M571,TP273 文献标识码:A 文章编号:100528354(2007)1220029204 Desi gn and reali zati on of control syste m of rando m positi on WANG Gui 2Xia,L I Yuan (No .704Research I nstitute,CSI C,Shanghai 20031,China ) Abstract :The co m puter control syste m is an i m portant part of guaranteeing perfor m ance of control syste m of rando m position .Co m bining the m arine si m ulation turntable,this paper set forth the co m puter control syste m sche m e on the rando m position turntable w ith m ulti 2co m puter distributes control structure .Then taking a certain turntable of rando m position as background,it respectively discussed such key proble m s of syste m engineering re 2alization as the interface circuit design,choice of m otor ,servo am plifier and sam ple frequency and the program design .The design sche m e is applied in a rando m position proto type and gets a good result . Key words :rando m position;control syste m;sam ple frequency;design 收稿日期:2007211219 作者简介:王桂霞(19772),女,工程师,主要从事自动控制的工作位置随动控制系统设计与实现 0 引言 位置随动转台系统由机械台体和计算机控制系统两个重要部分组成,前者是实现仿真功能的基础,而后者是保证转台系统功能和性能的核心部分.转台既要满足一定的动态、静态指标要求,也要为试验提供方便的操作界面和数据采集、处理手段,计算机控制系统不仅要具有实时控制功能,而且应具备监控管理功能,因此,计算机控制系统设计就成为仿真转台设计和工程实现的重要内容. 当前在各种控制系统中计算机已得到非常广泛的应用,根据不同的情况,控制系统的结构形式各不相同,一般分为操作指示系统、直接数字控制系统(DDC )和集散控制系统(DCS )等类型,在下文中将讨论集散控制结构形式的计算机控制系统的设计问题,其中主 要包括结构设计、系统工程实现中的接口线路设计、采样频率选择、程序设计等内容,并给出设计结果. 1 结构设计 本仿真转台采用多机集散控制形式,即采用上下位机的两级式结构.图1 为集散控制系统应用于本转 图1 原理框图

位置随动系统教学提纲

位置随动系统

1位置随动系统的结构与工作原理 1.1 位置随动系统的结构组成 位置随动系统的原理图如图1-1。该系统的作用是使负载J(工作机械)的角位移随给定角度的变化而变化,即要求被控量复现控制量。系统的控制任务是使工作机械随指令机构同步转动即实现:Q(c)=Q(r) 图1-1 位置随动系统原理图Z1—电动机,Z2—减速器,J—工作机械 系统系统主要由以下部件组成:系统中手柄是给定元件,手柄角位移Qr是给定值(参考输入量),工作机械是被控对象,工作机械的角位移Qc是被控量(系统输出量),电桥电路是测量和比较元件,它测量出系统输入量和系统输出量的跟踪偏差(Qr –Qc)并转换为电压信号Us,该信号经可控硅装置放大后驱动电动机,而电动机和减速器组成执行机构。 1.2 系统的工作原理 控制系统的任务是控制工作机械的角位移Qc跟踪输入手柄的角位移Qr。如图1-1,当工作机械的转角Qc与手柄的转角Qr一致时,两个环形电位器组成的桥式电路处于平衡状态。其输出电压Us=0,电动机不动,系统处于平衡状态。当手柄转角Qr发生变化时,若工作机械仍处于原来的位置不变,则电桥输出电压Us不等于0,此电压信号经放大后驱动电动机转动,并经减速器带动工作机械使角位移Qc向Qr变化的方向转动,并

逐渐使Qr和Qc的偏差减小。当Qc=Qr时,电桥的输出电压为0,电机停转,系统达到新的平衡状态。当Qr 任意变化时,控制系统均能保证Qc 跟随Qr任意变化,从而实现角位移的跟踪目的。 该系统的特点:1、无论是由干扰造成的,还是由结构参数的变化引起的,只要被控量出现偏差,系统则自动纠偏。精度高。 2 、结构简单,稳定性较高,实现较容易。 2系统的分析与设计 2.1 位置随动系统方块图 根据系统的结构组成和工作原理可以画出系统的原理方块图,如图2-1。可以看出,系统是一个具有负反馈的闭环控制系统。 R C 给定电放大器电动机减速器负载 — 反馈电位 图2-1位置随动控制系统方块图 2.2 系统数学模型的建立 该系统各部分微分方程经拉氏变换后的关系式如(2-1): (2-1)(a) (2-1)(b) (2-1)(c) (2-1)(d) (2-1)(e) (2-1)(f) (2-1)(g) (2-1)(h) 根据各个环节结构图及其传函写出整个系统的结构图,如图2-2所示。

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

位置随动系统

目录 课程设计任务书 1.建立系统模型 2.建立数学模型 2.1测速发电机 2.2电枢控制直流侍服电动机 2.3功率放大器 2.4运算放大器Ⅰ,Ⅱ 2.5电位器 3.系统结构图、信号流图及闭环传递函数 3.1系统结构图 3.2信号流图 3.3开环传递函数 3.4闭环传递函数 4.开环系统的波特图和奈奎斯特图,稳定性4.1开环系统的波特图 4.2开环系统的奈奎斯特图 5.开环系统的截至频率、相角裕度和幅值裕度5.1开环传递函数 5.2开环截止频率 5.3相角域度 5.4幅值域度 6.总结

课程设计任务书 题 目: 位置随动系统建模与频率特性分析 初始条件 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、 求出系统各部分传递函数,画出系统结构图、信号流图,并求出 闭环传递函数; 2、 用Matlab 画出开环系统的波特图和奈奎斯特图,并用奈奎斯特 判据分析系统的稳定性。 —K 1 —K 2 功放 K 3 SM TG 10K 10K -15V +15V 40K 10K 10K 40K K 0 0θ K i i θ 】

3、 求出开环系统的截至频率、相角裕度和幅值裕度。 时间安排: 1.15~16 明确设计任务,建立系统模型 1.17~19 绘制波特图和奈奎斯特图,判断稳定性 1.23~24 计算频域性能指标,撰写课程设计报告 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日 位置随动系统建模与频率特性分析 1. 建立系统模型 该系统由电位器,运算放大器,功率放大器,电枢控制直流侍服电动机,测速发电机五个部分组成。 2. 建立数学模型 2.1.测速发电机: 测速发电机是用于测量角速度并将它转换成电压量的装置。在本控制系统中用的是永磁式直流测速发电机。如下图: 测速发电机的转子与待测量的轴相连接,在电枢两端输出与转子角速度成正比的支流电压,即 TG U(t ) w

位置随动系统课程设计之令狐文艳创作

第一章位置随动系统的概述 令狐文艳 1.1 位置随动系统的概念 位置随动系统也称伺服系统,是输出量对于给定输入量的跟踪系统,它实现的是执行机构对于位置指令的准确跟踪。位置随动系统的被控量(输出量)是负载机械空间位置的线位移和角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化,所以位置随动系统必定是一个反馈控制系统。 位置随动系统是应用非常广泛的一类工程控制系统。它属于自动控制系统中的一类反馈闭环控制系统。随着科学技术的发展,在实际中位置随动系统的应用领域非常广泛。例如,数控机床的定位控制和加工轨迹控制,船舵的自动操纵,火炮方位的自动跟踪,宇航设备的自动驾驶,机器人的动作控制等等。随着机电一体化技术的发展,位置随动系统已成为现代工业、国防和高科技领域中不可缺少的设备,是电力拖动自动控制系统的一个重要分支。 1.2位置随动系统的特点及品质指标 位置随动系统与拖动控制系统相比都是闭环反馈控制系统,即通过对输出量和给定量的比较,组成闭环控制,这两个系统的控制原理是相同的。对于拖动调速系统而言,给定量是恒值,要求系统维持输出量恒定,所以抗扰动性能成为主要技术指标。对于随动系统而言,给定量即位置指令是经常变化的,是一个随机变量,要求输出量准确跟随给定量的变化,因而跟随性能指标即系统输出响应的快速性、灵敏性与准确性成为它的主要性能指标。位置随动系统需要实现位置反馈,所以系统结构上必定要有位置环。位置环是随动系统重要的组成部分,位置随动系统的基本特征体现在位置环上。根据给定信号与位置检测反馈信号综合比较的不同原理,位置随动系统分为模拟与数字式两类。总结后可得位置随动系统的主要特征如下:

位置随动系统课程设计

第一章位置随动系统的概述 1.1 位置随动系统的概念 位置随动系统也称伺服系统,是输出量对于给定输入量的跟踪系统,它实现的是执行机构对于位置指令的准确跟踪。位置随动系统的被控量(输出量)是负载机械空间位置的线位移和角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化,所以位置随动系统必定是一个反馈控制系统。 位置随动系统是应用非常广泛的一类工程控制系统。它属于自动控制系统中的一类反馈闭环控制系统。随着科学技术的发展,在实际中位置随动系统的应用领域非常广泛。例如,数控机床的定位控制和加工轨迹控制,船舵的自动操纵,火炮方位的自动跟踪,宇航设备的自动驾驶,机器人的动作控制等等。随着机电一体化技术的发展,位置随动系统已成为现代工业、国防和高科技领域中不可缺少的设备,是电力拖动自动控制系统的一个重要分支。 1.2 位置随动系统的特点及品质指标 位置随动系统与拖动控制系统相比都是闭环反馈控制系统,即通过对输出量和给定量的比较,组成闭环控制,这两个系统的控制原理是相同的。对于拖动调速系统而言,给定量是恒值,要求系统维持输出量恒定,所以抗扰动性能成为主要技术指标。对于随动系统而言,给定量即位置指令是经常变化的,是一个随机变量,要求输出量准确跟随给定量的变化,因而跟随性能指标即系统输出响应的快速性、灵敏性与准确性成为它的主要性能指标。位置随动系统需要实现位置反馈,所以系统结构上必定要有位置环。位置环是随动系统重要的组成部分,位置随动系统的基本特征体现在位置环上。根据给定信号与位置检测反馈信号综合比较的不同原理,位置随动系统分为模拟与数字式两类。总结后可得位置随动系统的主要特征如下: 1.位置随动系统的主要功能是使输出位移快速而准确地复现给定位移。 2.必须具备一定精度的位置传感器,能准确地给出反映位移误差的电信号。 3.电压和功率放大器以及拖动系统都必须是可逆的。 4.控制系统应能满足稳态精度和动态快速响应的要求,其中快速响应中,更强调快速跟随性能。 1.3 位置随动系统的基本组成

单轴位置控制系统设计

1.单轴位置控制系统设计 1.1. 基本控制要求 该单元有电机带动轴运动,气泵产生气体带动气缸(用气缸模拟机械手)上下运动和吸附物块组成。电机带动轴的左移Y0和右移Y1。轨道有三个接近开关(1、2、 3)定位三个工位, 气缸由电磁阀控制进气和出气,实现气缸的上升和下降(Y2), 吸附开关X3控制吸附物块(Y3),设计有手动和自动控制部分,可以通过开关X14选择控制方式。 1.1.1.手动控制要求 通过X14开关选择手动控制方式,通过控制面板来控制,手柄控制气缸向左X16、向右X17移动,气缸的上X4和X5下通过面板旋钮控制,物块的吸附通过面板旋钮 X3控制,来完成物块在三个工位上的移动。 1.1. 2.自动控制要求 通过X14开关选择自动控制方式,按复位按钮,气缸回到工位1,按启动按钮后,气缸下降吸附物块,然后上升,再从工位1移动到工位2,再下降,释放物块回升气缸,4秒过后气缸下降吸附物块从工位2移动到工位3,再下降释放物块回升气缸,4秒后再下降吸附物块从工位3移动到工位1,下降释放物块回升气缸,工作全部完成,气缸停止在工位1。

1.2.硬件设计 1.2.1 I/O地址分配表 根据对单轴运动控制系统的分析,分配对应的I/O口,I/O地址分配表如表XO 急停按钮X11 停止按钮X1 位置1 X12 右移 X2 位置2 X13 手动 X3 位置3 X14 吸附 X5 吸附/松开X15 上移 X6 上位X16 下移 X7 下位X17 左移 X10 启动按钮 表1.2.1.1 PLC输入设备 Y4 吸附控制 Y10 上升控制 Y11 下降控制 Y2 左移控制 Y3 右移控制 Y6 启动控制 Y5 停止控制 Y7 复位控制 表1.2.2.2PLC输出设备

位置随动系统超前校正设计讲解

课程设计任务书 学生姓名: 专业班级:_____________________ 指导教师:____________ 工作单位:________________ 题目:位置随动系统的超前校正 初始条件: & = 0.12 V.s, 2 Ra=8O, La=15mH J=0.0055kg.m , C e=Cm=0.38N.m/A,f=0.22N.m.s,减速比i=0.4 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数; 2、求出开环系统的截至频率、相角裕度和幅值裕度,并设计超前校正装置,使得系统的相角裕 度增加10度。 3、用Matlab对校正前后的系统进行仿真分析,比较其时域相应曲线有何区别,并说明原因。 时间安排: 任务时间(天) 审题、查阅相关资料 1 分析、计算 1.5

指导教师签名:年月日 系主任(或责任教师)签名:年月日 位置随动系统的超前校正 1位置随动系统原理分析 1.1系统原理分析 工作原理:输入一定的角度弓,如果输出角度礼等于输入角度齐,则电动机不转动,系统处于平衡状态;如果兀不等于4,则电动机拖动工作机械朝所要求的方向快速偏转,直到电动机停止转动,此时系统处于与指令同步的平衡工作状态,即完成跟随。 电枢控制直流电动机的工作实质:是将输入的电能转换为机械能,也就是有输入的电枢电压u a t在电枢回路中产生电枢电流i a t,再由电流i a t与励磁磁通相互作用产生电磁转矩M m t,从而拖动负载运动。 工作过程:该系统输入量为角度信号,输出信号也为角度信号。系统的输入角度信号片与反馈来的输出角度信号入通过桥式电位器形成电压信号u;,电压信号u ;与测速电机的端电压ut相减形成误差信号u,误差信号u再经过放大器驱动伺服电机转到,经过减速器拖动负载转动。 1.2系统框图 由题目可得系统框图如图1.1所示:

位置随动系统建模与分析--自控课设教材

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 自动化学院 题 目: 位置随动系统建模与分析 初始条件: 图示为一位置随动系统,放大器增益为8=a k ,电桥增益2=εk ,测速电机增 益15.0=t k V.s ,Ω=5.7a R ,La=14.25mH ,J=0.0006kg .m 2, C e =Cm=0.4N.m/A, f=0.2N.m.s, 减速比i=10 。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等 具体要求) 1、 求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递 函数; 2、 当Ka 由0到∞变化时,用Matlab 画出其根轨迹。 3、 Ka =10时,用Matlab 画出此时的单位阶跃响应曲线、求出超调量、超调 时间、 调节时间及稳态误差。 4、 求出阻尼比为0.7时的Ka ,求出此时的性能指标与前面的结果进行对比分 析。

时间安排: 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 1 位置随动系统原理 (3) 1.1 位置随动系统原理框图 (3) 1.2 元件结构图分析 (3) 1.3 位置随动系统各元件传递函数 (5) 1.4 位置随动系统的结构框图 (5) 1.5 位置随动系统的信号流图 (6) 1.6 相关函数的计算 (6) 2根轨迹曲线 (7) 2.1参数根轨迹转换 (7) 2.2绘制根轨迹 (7) 3单位阶跃响应分析 (8) 3.1单位阶跃响应曲线 (8) 3.2单位阶跃响应的时域分析 (9) 4系统性能对比分析 (11) 4.1 新系统性能指标计算 (11) 4.2 系统性能指标对比分析 (11) 5 总结体会 (12) 参考文献 (13)

位置随动系统建模与分析

课程设计任务书 题 目: 位置随动系统建模与分析 初始条件: 图示为一位置随动系统,放大器增益为Ka ,电桥增益2K ε=,测速电机增益0.15t k =V.s ,Ra=7.5Ω,La=14.25mH ,J=0.006kg.m 2 ,C e =Cm=0.4N.m/A,f=0.2N.m.s,减速比i=0.1 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写 等具体要求) 1、 求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递 函数; 2、 当Ka 由0到∞变化时,用Matlab 画出其根轨迹。 3、 Ka =10时,用Matla 画求出此时的单位阶跃响应曲线、求出超调量、超 调时间、调节时间及稳态误差。 4、 求出阻尼比为0.7时的Ka ,求出各种性能指标与前面的结果进行对比分 析。 时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日 位置随动系统建模与分析

1 位置随动系统的建模 1.1 系统总体分析 1.1.1 系统概述 随动控制系统又名伺服控制系统。其参考输入是变化规律未知的任意时间函数。随动控制系统的任务是使被控量按同样规律变化并与输入信号的误差保持在规定范围内。这种系统在军事上应用最为普遍.如导弹发射架控制系统,雷达天线控制系统等。其特点是输入为未知。伺服驱动系统(Servo System)简称伺服系统,是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。当然,其基本工作原理和普通的交直流电机没有什么不同。该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括电流、速度和/或位置闭环。 1.1.2 系统基本原理分析 首先输入角度和输出角度通过圆形电位器将角位移量转换为电压量,通过两个电位器构成的电桥进行比较产生角度电压误差,这个角度电压误差反映了输入角度与输出角度的角度误差,测速发电机的输出电压与伺服电机的角速度ω成正比,测速发电机产生的电压与角度电压误差通过比较产生电压误差,将这个电压误差送给放大器,经过放大器放大之后用来驱动伺服电机。伺服电机的输出角度还要经过减速箱进行转速变换之后才是最终的输出角度。 1.1.2 系统基本原理框图 图1-1 系统基本原理框图 1.2 各部分传递函数 1.2.1 由双电位器构成电桥 电位器是一种把线性位移或角位移变换成电压量的装置,在控制系统中一对电位器可以构成误差检测器。 单个电位器的工作原理:单个电位器的电刷角位移与输出电压是线性正比

机器人抓取装置位置控制系统校正装置设计

自动控制原理课程设计题目:机器人抓取装置位置控制系统校正装置设计 专业:电气工程及其自动化 姓名: 班级:学号: 指导老师:职称:

初始条件: 一个机器人抓取装置的位置控制系统为一单位负反馈控制系统,其传递函数为()()() 15.013 0++=s s s s G ,设计一个滞后校正装置,使系统的相 角裕度?=45γ。 设计内容: 1.先手绘系统校正前的bode 图,然后再用MATLAB 做出校正前系统的bode 图,根据MATLAB 做出的bode 图求出系统的相角裕量。 2.求出校正装置的传递函数 3. 用MATLAB 做出校正后的系统的bode 图,并求出系统的相角裕量。 4.在matlab 下,用simulink 进行动态仿真,在计算机上对人工设计系统进行仿真调试,确使满足技术要求。 5.对系统的稳定性及校正后的性能说明 6.心得体会。

1频率法的串联滞后校正特性及方法 1.1特性:当一个系统的动态特性是满足要求的,为改善稳态性能,而又不影响其动态响应时,可采用此方法。具体就是增加一对靠的很近并且靠近坐标原点的零、极点,使系统的开环放大倍数提高β倍,而不影响开环对数频率特性的中、高频段特性。 1.2该方法的步骤主要有: ()1绘制出未校正系统的bode 图,求出相角裕量0γ,幅值裕量g K 。 ()2在bode 图上求出未校正系统的相角裕量εγγ+=期望处的频率 2c ω,2c ω作为校正后系统的剪切频率,ε用来补偿滞后校正网络2c ω处的 相角滞后,通常取??=15~5ε。 ()3令未校正系统在2c ω的幅值为βlg 20,由此确定滞后网络的β值。 ()4为保证滞后校正网络对系统在2c ω处的相频特性基本不受影响,可 按10 ~ 2 1 2 2 2c c ωωτ ω= =求得第二个转折频率。 ()5校正装置的传递函数为()1 1 ++= s s s G C βττ ()6画出校正后系统的bode 图,并校验性能指标 2确定未校正前系统的相角裕度 2.1先绘制系统的bode 图如下:

最新位置随动系统的超前校正设计

位置随动系统的超前 校正设计

学号: 课程设计 题目位置随动系统的超前校正设计 学院自动化学院 专业自动化专业 班级自动化****班 姓名*** 指导教师*** 2011 年12 月26 日

课程设计任务书 学生姓名: *** 专业班级: 自动化**** 指导教师: ** 工作单位: 自动化学院 题 目: 位置随动系统的超前校正设计 初始条件: 图示为一位置随动系统,测速发电机TG 与伺服电机SM 共轴,右边的电位器与负载共轴。放大器增益为Ka=40,电桥增益5K ε=,测速电机增益25.0=t k ,Ra=6Ω,La=12mH ,J=0.006kg.m 2,C e =Cm=0.3N m/A ,f=0.2N m s ,i=0.1。其中,J 为折算到电机轴上的转动惯量,f 为折算到电机轴上的粘性摩擦系数,i 为减速比。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、 求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数; 2、 求出系统的截止频率、相角裕度和幅值裕度,并设计超前校正装置,使得系统的相角裕度增加12度; 3、 用Matlab 对校正前后的系统进行仿真分析,比较其时域响应曲线有何区别,并说明原因; 4、 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。

时间安排: 指导教师签名:年月日系主任(或责任教师)签名:年月日

随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的。控制技术的发展,使随动系统得到了广泛的应用。 位置随动系统是反馈控制系统,是闭环控制,调速系统的给定量是恒值,希望输出量能稳定,因此系统的抗干扰能力往往显得十分重要。而位置随动系统中的位置指令是经常变化的,要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性成了位置随动系统的主要特征。简言之,调速系统的动态指标以抗干扰性能为主,随动系统的动态指标以跟随性能为主。 在控制系统的分析和设计中,首先要建立系统的数学模型。控制系统的数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。在自动控制理论中,数学模型有多种形式。时域中常用的数学模型有微分方程、差分方程和状态方程;复数域中有传递函数、结构图;频域中有频率特性等。 本次课程设计研究的是位置随动系统的超前校正,并对其进行分析。

自动控制原理课程设计题目

自动控制原理课程设计题目及要求 一、单位负反馈随动系统的开环传递函数为 1、画出未校正系统的Bode 图,分析系统是否稳定 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标 (1)静态速度误差系数K v ≥100s -1; (2)相位裕量γ≥30° (3)幅频特性曲线中穿越频率ωc ≥45rad/s 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设单位负反馈随动系统固有部分的传递函数为 1、画出未校正系统的Bode 图,分析系统是否稳定。 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标: (1)静态速度误差系数K v ≥5s -1; (2)相位裕量γ≥40° (3)幅值裕量K g ≥10dB 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 三、设单位负反馈系统的开环传递函数为 ) 2(4 )(+= s s s G k 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、设计系统的串联校正装置,要求校正后的系统满足指标: 闭环系统主导极点满足ωn =4rad/s 和ξ=0.5。 3、给出校正装置的传递函数。 4、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量Kg 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 四、设单位负反馈系统的开环传递函数为 ) 2)(1(06 .1)(++= s s s s G k 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、设计系统的串联校正装置,要求校正后的系统满足指标: (1)静态速度误差系数K v =5s -1;

位置随动系统设计与仿真

中文摘要:随动系统,通常也被称为伺服系统,是一种反馈控制系统。它是用来控制被控对象的某种状态,使被控对象的输出能自动、连续、精确地复现输入信号变化规律的一种控制系统,随动系统的控制对象通常为角度或机械位置,该系统最初用于船舶的操舵系统、火炮控制以及指挥仪中,后来慢慢推广到众多领域,尤其多见于自动车床、天线位置的控制还有导弹和飞船的制导等。如今随动系统的应用几乎扩展到了民用、工业、军事等各个领域,随着家用电器的普及和全自动化,它在生活中的应用也越来越广泛。而位置随动系统的被控量是位置,一般用线位移或角位移表示。当位置给定量作某种变化时,该系统的主要任务就是使输出位移快速而准确地复现给定量位移。

第一章绪论 1.1课题研究背景 1.1.1随动系统现状及历史 随动系统,通常也被称为伺服系统,是一种反馈控制系统。它是用来控制被控对象的某种状态,使被控对象的输出能自动、连续、精确地复现输入信号变化规律的一种控制系统,其衡量指标主要有超调量、稳态误差、峰值时间等时域指标以及相角域度、幅值域度、频带宽度等频域指标,其输入是一种变化规律未知的时间函数。随动系统中的驱动电机应该具有响应速度快、定位准确、转动惯量大等特点,这类专用的电机称为伺服电机。早在二十世纪三十年代,伺服机构这个词便进入人们的视线了。到二十世纪中期,在自动控制理论的发展下随动系统也得到了极大的发展,其应用领域进一步扩大。近几十年,伺服技术更是取得飞跃发展,其应用也迅速扩展到民用、工业和军事领域中。在冶金行业,它用于多种冶金炉的电极位置控制,机器的运行控制等;在运输行业中,水路陆路空中三方的运输工作也都用到了伺服系统,比如,飞机的驾驶,电力机车的调速,船舶的操舵等,一定程度上都实现了“自动化”控制;如今,军事领域也充分运用到了伺服系统,比如雷达天线的自动瞄准的跟踪控制,导弹和鱼雷的自动控制等等。另外,随着空调、洗衣机等各类家用电器在家庭中的普及,伺服系统的应用也走入到了我们的日常生活中。 1.1.2随动系统的应用 随动系统的控制对象通常为角度或机械位置,该系统最初用于船舶的操舵系统、火炮控制以及指挥仪中,后来慢慢推广到众多领域,尤其多见于自动车床、天线位置的控制还有导弹和飞船的制导等。如今随动系统的应用几乎扩展到了民用、工业、军事等各个领域,随着家用电器的普及和全自动化,它在生活中的应用也越来越广泛。 人们应用随动控制系统主要是为了达到下面几个目的: ⒈用较小的功率指令信号来控制很大功率的负载,比如火炮控制、船舵控制等。 2.在没有机械连接的情况下,利用输入轴控制远处的输出轴,从而实现远距离的同步传动控制。

步进电机定位控制系统设计

学生学号 课程设计 题目步进电机定位控制系统设计 学院信息工程学院 专业 班级 姓名 指导老师

2013~2014学年6月20日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:步进电机定位控制系统设计 初始条件: 1. 具备电子电路的基础知识及查阅资料和手册的能力; 2. 熟悉ISE 仿真软件的操作与运用; 3. 掌握步进电机的工作原理。 要求完成的主要任务: 1. 设计一个基于FPGA 的4 相步进电机定位控制系统,包括步进电机方向设定 电路模块、步进电机步进移动与定位控制模块和编码输出模块。 2.撰写符合学校要求的课程设计说明书。 时间安排: 1、2014 年06月11日,布置课设具体实施计划与课程设计报告格式的要求说明。 2、2014 年06月12日至2014年06月17日,设计说明书撰写。 3、2014年06月18日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 摘要........................................................................................................................ I Abstract ................................................................................................................. II 1 设计目标及简介 (1) 1.1设计目标 (1) 1.2 步进电机简介 (1) 2 VHDL语言介绍 (2) 3 Quartus Ⅱ介绍 (3) 4 系统组成 (4) 4.1 四相步进电机工作原理 (4) 4.2 系统组成 (6) 5 模块设计 (7) 5.1 FPGA模块图及信号说明 (7) 5.2 系统模块构成 (7) 5.3 各模块间整体共享的电路内部传递信号 (7) 5.4 电机方向设定电路模块 (8) 5.5 步进电机步进移动与定位控制模块 (9) 5.6 编码输出模块 (9) 6 程序设计与仿真 (10) 7 仿真结果 (16) 8 实验总结 (18) 参考文献 (19)

相关文档
相关文档 最新文档