文档库 最新最全的文档下载
当前位置:文档库 › 高温超导材料

高温超导材料

高温超导材料
高温超导材料

高温超导材料

摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。

关键词:超导材料研究进展高温应用

一、高温超导材料的发展背景及其发展历史

高温超导体通常是指在液氮温度(77 K)以上超导的材料。人们在超导体被发现的时候(1911年),就被其奇特的性质(即零电阻,反磁性,和量子隧道效应)所吸引。但在此后长达七十五年的时间内所有已发现的超导体都只是在极低的温度(23 K)下才显示超导,因此它们的应用受到了极大的限制。

高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧(YBCO)和铋锶钙铜氧(BSCCO)。钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。

1911年,荷兰莱顿大学的卡末林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林·昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。

1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。

自卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973

年,发现了一系列A

15型超导体和三元系超导体,如Nb

3

Sn、V

3

Ga、Nb

3

Ge,其

中Nb

3

Ge超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年柏诺兹和缪勒发现了35K 超导的鑭钡铜氧体系。这一突破性发现导致了更高温度的一系列稀土

钡铜氧化物超导体的发现。通过元素替换,1987年初美国吴茂昆(朱经武)等和我国物理所赵忠贤等宣布了90K钇钡铜氧超导体的发现,第一次实现了液氮温度(77 K)这个温度壁垒的突破。柏诺兹和缪勒也因为他们的开创性工作而荣获了1987年度诺贝尔物理学奖。

这类超导体由于其临界温度在液氮温度(77K)以上,因此通常被称为高温超导体。液氮温度以上钇钡铜氧超导体的发现,使得普通的物理实验室具备了进行超导实验的条件,因此全球掀起了一股探索新型高温超导体的热潮。1987年底,我国留美学者盛正直等首先发现了第一个不含稀土的铊钡铜氧高温超导体。1988 年初日本研制成临界温度达110K的铋锶钙铜氧超导体。1988年2月盛正直等又进一步发现了125K 铊钡钙铜氧超导体。几年以后(1993年)法国科学家发现了 135K 的汞钡钙铜氧超导体

高温超导体的发展现状

目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO)和二硼化镁(MgB

)。氧化物高温超导材料是以铜氧化物

2

为组分的具有钙钛矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂直和平行于铜氧结构层方向上的物理性质差别很大。高温超导体属于非理想的第II类超导体。且具有比低温超导体更高的临界磁场和临界电流,因此是更接近于实用的超导材料。特别是在低温下的性能比传统超导体高得多。

高温超导材料已进入实用化的研究开发阶段,氧化物复合超导材料的耐用(robustness) 和稳定性已引起材料科学家的广泛重视。由于高温超导薄膜材料较早进入电子学器件的应用领域,很多学者做了薄膜材料与环境相关的稳定性和寿命研究工作。浸泡实验是一种常用的方法:在不同试剂 (水、酒精和丙酮等)、不同气氛(干氮、湿氮和流动氧等)中做周期循环和热时效疲劳试验。研究表明,超导电性的退化主要来自于杂相 (第二相) 及时效过程中的析出相。美国西北大学的Mirkin建议把在其它材料中应用已十分广泛的分子单层表面化学改性(又称“自装配,Self assembly”) 引入到高温超导铜氧化合物中来。例如用有机物对YBCO表面进行分子单层表面改性,以此改善薄膜对环境的敏感性。

高温超导带材以铋锶钙铜氧(BSCCO/2223)系为第一代带材,它以优良的可加工性而得到了广泛的开发,并在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。相反,YBCO材料在77 K 的超导电性远优于BSCCO材料;然而它的可加工性却极差,传统的压力加工和热处理工艺难以做出超导性好的带材。

近年来随着材料科学工艺技术的发展,一种在轧制 (rolling) 金属基带上

制造YBCO超导带材的工艺

受到极大重视,并被冠以

“下一代”高温超导带材或

“第二代”带材。有两种基

本技术方案:(1) 以美国橡

树岭国家实验室 (ORNL)

为代表的一个方案,称作

轧制双取向金属基带法

(RABiTS)。会上Specht报告

了基带的退火织构稳定性

分析,并在1m长的取向金属

基带上用激光沉积YBCO外

延膜。

欧洲以德国、丹麦等为

代表,努力开展高温超导材

料工艺及应用研究。丹麦的

NKT已批量制造铋系超导带

材。长10m、2000 A的超导

电力电缆正在研制中,下一步开发三相、50~100 m输电电缆。西门子公司计划到2003年制成20 MVA的超导变压器。用于电子学方面探伤的RF-SQUID及卫星通讯用高温超导滤波器也在试制之中。

二、高温超导材料的制备工艺

为适应各种应用的要求,高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。

1、薄膜

高温超导体薄膜是构成高温超导电子器件的基础,制备出优质的高温超导薄膜是走向器件应用的关键。高温超导薄膜的制备几乎都是在单晶衬底(如

SrTiO

3、LaAlO

3

或MgO)上进行薄膜的气相沉积或外延生长的。经过十年的研究,

高温超导薄膜的制备技术已趋于成熟,达到了实用化水平(Jc>106

Ac·m2 ,T=77K)。目前,最常用、最有效的两种镀膜技术是:磁控溅射(MS)和脉冲激光沉积 (PLD)。这两种方法各有其独到之处,磁控溅射法是适合于大面积沉积的最优生长法之一。脉冲激光沉积法能简便地使薄膜的化学组成与靶的化学组成达到一致,并且能控制薄膜的厚度。

2、厚膜

高温超导体厚膜主要用于HTS磁屏蔽、微波谐振器、天线等。它与薄膜的区别不仅仅是膜的厚度,还有沉积方式上的不同。其主要不同点在以下三个方面:(1)通常,薄膜的沉积需要使用单晶衬底;(2)沉积出的薄膜相对于衬底的晶向而言具有一定的取向度;(3)一般薄膜的制造需要使用真空技术。获得厚膜的方法有很多:如热解喷涂和电泳沉积等,而最常用的技术是丝网印刷和刮浆法,这两种方法在电子工业中得到了广泛的应用。

3、线材、带材

超导材料在强电上的应用,要求高温超导体必须被加工成包含有超导体和一种普通金属的复合多丝线材或带材。但陶瓷高温超导体本身是很脆的,因此不能被拉制成细的线材。在众多的超导陶瓷线材的制备方法中,铋系陶瓷粉体银套管轧制法(Ag PIT)是最成熟并且比较理想的方法。而压制出铋系带材的临界电流密度比通过滚轧技术制备出带材的临界电流密度要高得多。

4、块材

最初的氧化物超导体都是用固相法或化学法制得粉末,然后用机械压块和烧结等通常的粉末冶金工艺获得块材,制备方法比较简单。但T c达到了一定的高度,而载流能力J c太低,则不能满足应用的要求,因此必须要提高其临界电流

密度。经过多年的研究,采用定向凝固技术制备出的无大角度晶界的YBa

2Cu

3

O

x-7

块材,其J c值可达105A·m2- (77 K)。

三、高温超导材料的应用

综合目前超导技术的发展情况,超导技术可以在以下行业得到应用和拓展:1、电力

超导技术与电力技术的结合将给电力行业的发、输、配电带来革命性的改变,电力行业是超导产业最重要的应用场所与市场。超导技术在电力中的应用主要包括:

1)高温超导电缆

现有电缆的扩容问题一直困扰着城市电力的发展。传统的城市地下输电电缆存在着通量小、损耗大、对土壤和地下水有热污染及油污染、土建费用高等问题,城市电力扩容变得越来越困难。高温超导电缆具有体积小、造价低、高节能、无污染等优点,具有巨大的经济效益和环保效益,终将替代传统电缆。

高温超导电缆的大规模应用能够极大地提高电力输电系统的运行效率,降低运行成本。目前国际上高温超导电缆的总体发展趋势是研制大容量、低交流损耗、超长高温超导电缆。据专家估计,高温超导电缆最有可能率先实现实用化和商业化。

2)超导电机:

电动机是最常用的电气设备,但传统电动机耗电量极大。美国工业界专家估计,1,000马力以上的工业用电动机大约要消耗美国能源的25%。与常规电机相比,超导电机具有节能性好、体积小、单机容量大、造价及运营成本低、稳定性能好等优点,具有很好的经济效益和环保效益。供给同样的功率,超导电机的尺寸是常规电机的1/3,制造成本可降低40%,电流损耗可减少50%,运行成本可降低50%。美国能源部估计,高温超导电动机的低损耗每年可减少数十亿美元的运行费用。

在军事上战舰应用高温超导电机,其舰船体积重量更小,空间布置更灵活,推进系统运行更加可靠,效率更高,控制更方便,调速性能更好,能大大提高隐蔽性,达到高速安静运行,具有重要的军事意义。

3)超导变压器:

常规变压器有许多缺点,如负载损耗高、重量和尺寸大、过负载能力低、没有限流能力、油污染及寿命短等。在美国,变压器的总装机容量约为总发电量的3-4倍,其电力系统的网损约为总发电量的7.34%,其中25%为变压器损失。相比较而言,超导变压器体积小、重量轻、电压转换能量效率高、火灾环境事故机率低、无油污染等优点,在提高电力系统的可靠性和运行性能、降低成本、节约能源、保护环境等方面有着重要的现实意义。

4)超导限流器:

限流器(FCL)是一种提高电网稳定性的电力设备。随着社会的发展,对电网的质量要求越来越高,而传统的限流器很难在短时间内对电网的脉冲电流起到限制作用。高温超导限流器正好祢补了传统限流器的缺点,其限流时间可小于百微秒级,能快速和有效地起到限流作用。超导限流器是利用超导体的超导态-常态转变的物理特性来达到限流要求,它可同时集检测、触发和限流于一身,被认为是当前最好的而且也是唯一的行之有效的短路故障限流装置。1989年以来,美国、德国、法国、瑞士和日本等都相继开展了高温超导限流器的研究。当前,国际上适应配电系统的高温超导限流器的技术性能已经接近应用的水平,但大体上仍处在示范试验阶段。

5)超导储能装置

超导储能装置是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其他负载的一种电力设施。由于储能线圈由超导线绕制且维持在超导态,线圈中所储能几乎无损耗地永久储存下去直到需要释放时为止。超导储能装置不仅可用于调节电力系统的峰谷或解决电网瞬间断电对用电设备的影响,而且可用于降低或消除电网的低频功率震荡从而改善电网的电压和频率特性,同时还

可用于无功和功率因数的调节以改善电力系统的稳定性。

2、医疗

1)核磁共振人体成像仪(MRI):

MRI是通过探测人体各个器官在磁场下感应出的不同信号来诊断病变的一种设备。传统的MRI采用常规磁体,磁场小,很难探测到初期的病变,同时,其主磁场处于封闭的磁体空洞内,扫描时需将受检者置于与外界隔绝的狭小空间,易使人产生幽闭恐怖症,大大影响了该设备的广泛应用,低温超导磁体因此被广泛应用于MRI中。由于低温超导的液氦温度要求,其运行和维护费用很高。一些国家加快了高温超导MRI的研究,1998年,Oxford磁体技术公司和西门子公司合作研制了一个用于人体MRI的高温超导磁体。

3、运输

1)磁悬浮列车:

随着国民经济的发展,社会对交通运输的要求越来越高,高速列车应运而生。与现有的铁路、公路、水路和航空四种传统运输方式相比,超导磁悬浮列车具有高速、安全、噪音低和占地小等优点,是未来理想的交通工具。

使用Bi系高温超导线材的超导磁悬浮列车,悬浮间隙大,速度高,相对于低温超导的磁悬浮列车而言,制冷费用低,制冷设备简单。英纳公司和清华大学应用超导研究中心合作开展高温超导磁悬浮列车的研究,目前已取得较大突破,并且已经申请了高温超导磁悬浮专利。

4、IT行业

1)超导计算机:

高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。超导计算机中的超大规模集成电路,其元件间的互连线用接近零电阻和超微发热的超导器件来制作,不存在散热问题,同时计算机的运算速度大大提高。此外,科学家正研究用半导体和超导体来制造晶体管,甚至完全用超导体来制作晶体管。

2)超导开关:

超导开关可以分为电阻开关和电感开关。电阻开关是利用超导体以下性能:若改变磁场、电流和温度三个参量的任一个,就可以使它从零电阻态转变到有阻状态。例如,用冷子管作开关,就是利用一个完全超导的控制元件所产生的磁场,通过使门元件发生超导- - -正常转变来控制门元件的电阻而制成。这种开关的低电阻态为零,高电阻态典型的是毫欧姆数量级,所以,开关比是无限大。电感开关的原理是:不是像线圈、线等电路元件的电感,可用来将靠近它的超导体作正常态和超导态之间的转变,或移动电路元件附近的超导表面,使它发生相同转变,

制成开关。由于超导体的特殊性能,超导开关的开关速度可达纳秒。

5、超导磁分离装置:

磁分离器在物质的提纯、分离方面具有举足轻重的作用。传统的磁分离器由于很难产生高磁场,其应用受到了很大的限制。高温超导线材具有比铜线高100倍的通流能力,用它制成的磁分离器很容易得到高磁场强度和高磁场梯度,解决了许多用传统磁分离器分离不了物质的分离问题,并且能节约大量能源,与传统磁分离器相比,节能效率提高90%。我国高岭土储量占世界的70%,高温超导磁分离器的发展将给我国高岭土工业带来突破性发展。同时,高温超导磁分离器能大大提高一次污水处理能力,将给环保工业带来一场革命。

综合以上分析可以看出,超导线材作为一种新型材料,将广泛应用于国民经济、军事技术、医疗卫生和各种高新技术产业的各个领域,其前景有可能如当年的晶体管取代电子管一样,世界将势必迎来一个崭新的超导时代。高温超导线材及其应用产品有着广阔的市场前景。

四、目前超导材料研究面临的问题

超导材料有着广阔的应用前景,但要用超导材料来改进现有的科技工程又决非易事。科学家和工程师们所遇到的困难是如何使超导材料实用化,即提高临界转变温度、临界电流密度和改良其加工性能,制造出理想的超导材料。目前面临的主要问题如下:

1、提高临界电流密度

目前,高温超导材料的最突出的问题是在外加磁场下,临界电流密度偏低。超导薄膜,一般是在弱磁场中工作,J

c

值(~l06A/era )基本可满足电子器件的

要求。但体材和线(带)材的J

c

值还远未达到实用化所要求的水平,特别是在有

外加磁场时,J

c 急剧下降。科学家对影响J

c

的原因和解决办法进行了大量研究。

许多科学家都认为,影响J

c

的主要原因是:(1)晶界间的弱连结;(2) 晶粒中的

磁力线运动.

1)弱连结

造成弱连结的原因及弱连结的性质尚不十分清楚。一般认为是由于生成的晶体结构不佳、在晶界处存在位错、晶界处化学成份的改变及结晶的细微裂纹等原

因使通道上的电流受阻。解决的方法是使结晶沿a—b导电层(CuO

2

层) 的方向择优生长,采用长时问退火、熔融织构法或定向凝固法等制备大平行板式结晶。这种排成直线的多晶消除了在电流方向上的弱连结,解决了各向异性的问题2)磁力线运动

增强磁通钉扎力可解决磁力线运动问题。一般来说,有效的磁通钉扎需要有足够的钉扎中心,其尺寸要与超导相干长度相匹配。增强磁通钉扎力的方法有中

子辐照、相分解、引入弥散相、化学掺杂等,其作用都是引入钉扎中心。实验证

可提高几十倍到近百倍实际上,很难把弱连接和磁通蠕明,中子或质子辐照后,J

c

动完垒割裂开来,对于超导实用化来说,都是迫切需要解决的问题。

2、制备长线材

在实际应用中,超导线材占有很大比重,困此,制备性能满足要求的高温超导线(带)材是重点研究课题之。

陶瓷超导物质的脆性是其固有的特性,但也不是不可克服的。现在常用办法是将高温超导粉末装入有廷性的金属套管中,然后进行多道次拉拔。一般可采用铜或银包套,阻银包套为最佳。因为高温超导化合物对氧含最十分敏感,在氧气氛下拉拔,氧气要通过金属包套渗透到高温超导化合物内部。银的透气性较好,又有好的延展性,所现在多使用银套管(或称银鞘珐) 为了增加韧性,也可以往超导粉末中掺人一定量的金属粉末(如银粉)。有许多方法可制各线材,如溶胶一凝胶法、纺丝法、芯线涤布法、真空镀膜法、溅射法、化学气相沉积法等等。所有方法制得的线l材长度都达不到实用化的水平。

降低。同时应该看到,线材的长度不是孤立的随着长度的增加,高温超导的J

c

问题,它与高温超导材料的合成、加工、连接等多种因素密切相关。

3、经济效益

高温超导材料研究刚刚起步,经济效益尚未提到议事日程,而对于实用化来说,经济效益是必须考虑的问题近两年超导材料的制备成本已显著下降,例如,钇系超导薄膜1989年的售价是1000~3000美元/片,现在降到350美元/片;铊系超导薄膜的价格从2950美元/cm 2下降到1000美元/cm2,随之薄膜器件的价格也降低了。总的看来,高温超导材料仍处于实验室研究阶段,生产技术很不成熟,目前技术改进的着眼点是提高性能指标,而对经济效益的追求是更远一些的目标。

五、论文总结

高温超导体新的和更高温度超导体的探索工作一直在紧张地进行着。因为高温超导理论还没有很好的建立,探索工作的进展是缓慢的。虽然新超导体和更高温度超导性时有报道,但真正的新突破还没有取得。我们相信,曾在铜氧基高温超导体领域中取得过骄人成就的炎黄子孙,一定会在实现人类室温超导体梦想的征途上作出更为辉煌的贡献。

六、参考文献:

1 李华,胡国程,LI Hua,HU Guo-cheng.超导材料.湖南冶金,2000(5)

2 冯瑞华,姜山.超导材料的发展与研究现状.低温与超导,2007,35(6)

3 谈国强.超导材料的发展状况.佛山陶瓷,2005,5

4 超导材料的应用.内蒙古电大学刊,2004,2

5 石勇.超导材料的制备与特性研究综述.山西煤炭管理干部学院学报,2006,19

6 杨公安,蒲永平,王瑾菲,庄永勇.超导材料研究进展及其应用.陶瓷,2009(7)

7 严仲明,董亮,王豫.超导材料在电工领域的应用.电工材料,2007

8 宗曦华,张喜泽.超导材料在电力系统中的应用.电线电缆,2006(5)

9 袁冠森.高温超导材料的实用化的新进展.稀有金属,1998,22(3)

10 钱九红,袁冠森.高温超导材料制备工艺的进展.稀有金属,1998年 22(2)

11 李想.我国超导材料发展快步走向实用产业化.稀有金属快报,2006,25(5)

12 钱廷欣,周雅伟,赵晓鹏.新型超导材料的研究进展.材料导报,2006,20(2)

13 李想.中国超导材料发展快步走向实用化.稀土信息,2006(5)

科技小论文:常温超导体

改变世界——常温超导体 摘要: 火力发电厂可以建造在任何地方,但利用可再生能源的绿色电厂就要谨慎选址了,因为高原上才有强劲的风,沙漠中方能长沐日光,因此要向绿色能源转变,我们面临的最大挑战之一,就是如何跨越数百千米的距离,将这些来自偏远之地的电力输送至城市。何为超导: 超导是指导电材料在温度接近绝对零 度的时候,物体分子热运动下材料的电阻趋近于0的性质。“超导体”是指能进行超导 传输的导电材料。零电阻和抗磁性是超导体的两个重要特性。人类最初发现物体的超导现象是在1911年。当时荷兰科学家海克·卡末林·昂内斯(Heike Kamerlingh Onnes,1853~1926)等人发现,某些材料在极低的温度下,其电阻完全消失,呈超导状态。使超导体电阻为零的温度,叫超导临界温度。(来自:必应) 发明经历: 1911年,荷兰莱顿大学的卡茂林-昂尼 斯意外地发现,将汞冷却到-268.98℃时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去 电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导态。卡茂林由于他的 这一发现获得了1913年诺贝尔奖。 这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一 定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中流大的电流,从而产生超强磁场。(来自:百 度百科) 常温超导体: 室温超导体,即为室温下电阻为零的导电体。电能因输电线存在电阻而变成热量白白损耗,是远距离电力传输中困扰人们的一大难题。随着低温超导体被发现,超导电缆逐渐投入应用,但是复杂的制冷设备和加工工艺,依然使输电成本难以降低。因此,科学家希望能找到一种可以在常温下就实现 超导的导电体。 在2014年以前,学术界认为室温超导 体是个理想化的概念,现实中基本不可能存在室温超导体,但是,在2014年12月,多家媒体突然报道常温超导被证实。尽管只能存在几皮秒,但是这也许就是真的突破的开始。以前的问题是怎么找到常温超导材料,现在的问题变了——怎么让常温超导材料 坚持久一点!(来自:百度百科) 工业应用背景: 常温超导技术可广泛应用于铁道、机动车、发电机、马达、蓄电池、变压器、航空、船舶、诊断装置、电脑等众多行业。应用常温超导技术的机动车,不使用一切石化燃料,可全自给动力且有超环保性能。应用常温超导技术的磁浮列车,车身轻、极低噪音、时速达500公里以上,可使列车浮上地面达 10厘米(其他磁浮列车浮上地面仅8毫米),除发生严重事故外,列车行驶时与轨道接触的危险性极小,故在安全性能上大大超过其他磁浮列车。 结语: 最先进的超导电缆可将电能输送几千 千米而仅有百分之几的损耗。但麻烦的是,电缆必须一直浸在77K(约-196℃)的液氮之中。因此,如果要架设这样的电缆,每隔一千米左右就必须安装泵机和冷却设备,大大增加了超导电缆方案的成本和复杂程度。 能在常温常压下工作的超导体,将使全球化电力供应梦想成真。通过横穿地中海底的超导电缆,非洲撒哈拉沙漠的太阳也可以给西欧供电。然而,制作室温超导体的秘诀至今依然成谜,与1986年时没有什么两样——研究人员就是在那一年,首次制备出了可在相对“高温”的液氮中实现超导的物质(此前的超导体需要冷却至23K以下)。 2008年,一大类以铁元素为基质的全 新超导体(铁基超导体)被人发现。理论学家 能够找到高温超导体工作机制的希望也因 此而大增(参见《环球科学》2009年第8期《高温超导“铁”的飞跃》)。如果掌握了 这一机制,室温超导体也许就不再遥不可及。

高温超导体及其研究近况

高温超导体及其研究近况 姓名:高卓班级:材料化学09-1 学号:200901130805 所谓超导,是指在一定温度、压力下,一些金属合金和化合物的电阻突然为零的性质.利用此次性质做成的材料称为超导材料. 超导材料按其化学组成可分为:元素超导体,合金超导体,化合物超导体。近年来,由于具有较高临界温度的氧化物超导体的出现,有人把临界温度Tc达到液氮温度(77K)以上的超导材料称为高温超导体,上述元素超导体,合金超导体,化合物超导体均属低温超导体。以下就高温超导体作一个简要介绍。 一材料特点 自1964年发现第一个超导体氧化物SrTiO3以来,至今已发现数十种氧化物超导体。这些氧化物超导体具有如下共同的特征:(1)超导温度相对而言比较高,但载流子浓度低;(2)临界温度Tc随组分成单调变化,且在某一组分时会过渡到绝缘态;(3)在Tc以上温度区,往往呈现类似半导体的电阻-温度关系;(4)Tc和其他超导参量对无需程度敏感。 高温超导体在结构和物性方面具有以下特征;(1)晶体结构具有很强的地维特点,三个晶格常数往往相差3-4倍;(2)输运系数(电导率、热导率等)具有明显的各向异性;(3)磁场穿透深度远大于相干长度,是第二类超导体;(4)载流子浓度低,且多为空穴型导电;(5)同位素效应不显著;(6)迈斯纳效应不完全;(7)隧道实验表明能隙存在,且为库柏型配对。氧化物超导体的这些特征,引起人们的兴趣和关注。 二发展趋势 目前,在高温超导研究领域中,各国科学家正着重进行三个方面的探索,一是继续提高Tc,争取获得室温超导体;二是寻找适合高温超导的微观机理;三是加紧进行高温超导材料与器件的研制,进一步提高材料的Jc和Tc,改善各种性能,降低成本,以适用实用化的要求。 三国内外发展现状 超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。 一、美国 美国能源部(DOE)早在1988年就创建了超导计划,该计划将高科技公司、国家实验室和大学结合起来,进行具有高度复杂性的高温超导技术的应用研发工作,并在此基础上于1993年底制定了超导伙伴计划(Superconductivity Partnership Initiative,SPI)。SPI是整个超导计划的一部分,目的是加速高温超导(High temperature superconductors,HTS)电力设备走进市场。DOE 在2001年9月24日宣布了新一轮的高温超导计划——SPI二期,投入总资金达1.17亿美元,支持高温超导商业化示范电缆、100MVA高温超导发电机、1000英尺、3相长距离高温超导输电电缆、高温超导变压器、高温超导核磁共振成像装置、超导飞轮储能装置、高温超导磁分离器等7个项目的研发。 2003年7月,DOE在公布的《‘Grid 2030’A National Vision for Electricity’s Second 100 Years》报告中,把高温超导技术列为美国电力网络未来30年中发展的关键技术之一。该计划制订了2010年、2020年和2030年美国在电力方

高温超导材料的发展及应用

高温超导材料的发展及应用 摘要:现代社会高度物质文明和材料科学进步密切有关,本文通过介绍超导及高温超导材料的相关知识阐述目前高温超导材料的发展和应用。 Abstract: the modern social highly material civilization Closely relates to the material's science progress, this paper is about the knowledge of superconducting and HTS materials,and it introduces High temperature superconducting materials 's development and application. 关键词:超导、高温超导材料、材料、技术。 Keywords: superconductivity, high temperature superconducting materials, materials, technology. 正文:日新月异的现代技术的发展需要很多新型材料的支持。自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。 超导体由于其得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用,因而需要探索新的高温超导材料。所谓高温超导材料是指具有高临界转变温度(Tc)的超导材料,目前高温超导材料主要有:钇系(92 K)、铋系(110K)、铊系(125K)和汞系(135K)以及2001年1月发现的新型超导体二硼化镁(39K)。其中最有实用前途的是铋系、钇系(YBCO)和二硼化镁( Mg B)。氧化物高温超 2 导材料是以铜氧化物为组分的具有钙钦矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂直和平行于铜氧结构层方向上的物理性质差别很大。高温超导体属于非理想的第II类超导体,且具有比低温超导体更高的临界磁场和临界电流,因此是更接近于实用的超导材料,特别是在低温下的性能比传统超导体高得多。 一、高温超导材料 1、高温超导线带材高温超导体在强电方面众多的潜在应用(如:磁体、电缆、限流器、电机等)都需要研究和开发高性能的长线带材(千米量级)。所以,人们先后在YBCO、BSCCO及 Mg B线材带化实 2

材料化学论文

材料化学论文题目:高温超导材料研究 班级:2009级3班 姓名:梁秋菊 学号:200910140315

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧(YBCO)和铋锶钙铜氧(BSCCO)。钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林·昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge超导 体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1 系高温超导体,将超导临界温度提高到当时公认的最高记录125K。瑞士苏黎世的希林等发现在HgBaCaCuO超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。 二、高温超导体的发展现状 目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO)

高温超导材料临界转变温度

实验 预习说明 1.附录不必看,因为示波器改用Kenwood CB4125A 型,它的使用指南见实验室说明资料。 2.测量B-H 曲线,用示波器直接测出R 1上的电压值u 1(3.11.1)式和电容上电压值u C ()式。 3.由于R 1、R 2和C 值不确定,仍需要用教材方法标定B 0、H 0,但是(3.11.7)、()式中L x 、L y 分别用标 定时的电压u x 、u y 代替。u x 、u y 为电压的峰峰值。 选做实验 高温超导材料临界转变温度的测定 一.引言 1911年荷兰物理学家卡默林翁纳斯(Kamerling Onnes)首次发现了超导电性。这以后,科学家们在超导物理及材料探索两方面进行了大量的工作。二十世纪五十年代BCS 超导微观理论的提出,解决了超导微观机理的问题。二十世纪六十年代初,强磁场超导材料的研制成功和约瑟夫森效应的发现,使超导电技术在强场、超导电子学以及某些物理量的精密测量等实际应用中得到迅速发展。1986年瑞士物理学家缪勒(Karl Alex Muller)等人首先发现La-Ba-Cu-O 系氧化物材料中存在的高温超导电性,世界各界科学家在几个月的时间内相继取得重大突破,研制出临界温度高于90K 的 Y-Ba-Cu-O (也称YBCO )系氧化物超导体。1988年初又研制出不含稀土元素的Bi 系和Tl 系氧化物超导体,后者的超导完全转变温度达125K 。超导研究领域的一系列最新进展,特别是大面积高温超导薄膜和临界电流密度高于105A/cm 2 Bi 系超导带材的成功制备,为超导技术在各方面的应用开辟了十分广阔的前景。测量超导体的基本性能是超导研究工作的重要环节,临界转变温度T C 的高低则是超导材料性能良好与否的重要判据,因此T C 的测量是超导研究工作者的必备手段。 二.实验目的 1.通过对氧化物超导材料的临界温度T C 两种方法的测定,加深理解超导体的两个基本特性; 2.了解低温技术在实验中的应用; 3.了解几种低温温度计的性能及Si 二极管温度计的校正方法; 4.了解一种确定液氮液面位置的方法。 三.实验原理 1.超导现象及临界参数 1)零电阻现象 我们知道,金属的电阻是由晶格上原子的热振动(声子)以及杂质原子对电子的散射造成的。在低温时,一般金属(非超导材料)总具有一定的电阻,如图1所示,其电阻率 与温度T 的关系可表示为: 50AT +=ρρ (1) 式中0是T =0K 时的电阻率,称剩余电阻率,它与金属的纯度和晶格的完整性有关,对于实际的金属,其内部总是存在杂质和缺陷,因此,即使使温度趋于绝对零度时,也总存在 0。 1911年,翁纳斯在极低温下研究降温过程中汞电阻的变化时,出乎意料地发现,温度在附近,汞的 电阻急剧下降好几千倍(后来有人估计此电阻率的下限为1023cm ,而迄今正常金属的最低电阻率 仅为1013cm ,即在这个转变温度以下,电阻为零(现有电子仪表无法量测到如此低的电阻),这就是零电阻现象,如图2所示。需要注意的是只有在直流情况下才有零电阻现象,而在交流情况下电阻不为零。 目前已知包括金属元素、合金和化合物约五千余种材料在一定温度下转变为具有超导电性。这种材料称为超导材料。发生超导转变的温度称为临界温度,以T C 表示。 图1 一般金属的电阻率温度关系 图2 汞的零电阻现象 T 0 105 电 阻 ︵ ︶ T (K)

高温超导材料的特性与表征

四川理工学院 材料物理性能 高温超导材料论文 【摘要】 在本实验中我们的主要目的是通过通过氧化物高温超导材料特性的测量和演示,加深理解超导体的两个基本特性,即零电阻完全导电性和完全抗磁性。我们还通过此实验对不同的温度计(铂电阻温度计和硅二极管温度计)进行比较。我们采用的是四引线测量法,利用低温恒温器和杜瓦容器测量了超导电性,绘制了超导样品的电阻温度曲线,验证了超导在高温冷却电阻突然降为零的电特性。我们也绘制了磁悬浮力与超导体-磁体间距的关系曲线,对其进行了分析。在进行磁悬浮的实验中我们验证了超导体的混合态效应和完全抗磁性。 关键词: 超导体零电阻温度完全磁效应磁场 一、引言: 1911年H.K.Onnes首次发现在4.2K水银的电阻突然消失的超导现象,此温度也被称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。

但这里所说的高温,其实仍然是远低于冰点0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。此后,科学家们几乎每隔几天,就有新的研究成果出现。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。 高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。 本实验中,我们通过对氧化物超导材料特性的测量和演示,加深理解超导体的两个基本特性;了解金属和半导体的电阻随温度的变化及温差电动势;了解超导磁悬浮的原理;掌握液氮低温技术。 二、原理: 物理原理: 1.超导现象及临界参数 (1)零电阻现象 1911年,卡麦林·翁纳斯用液氮冷却水银线并通以几毫安电流,在测量其电压时发现,当温度稍低于液氮沸点时,水银电阻突然降为零,这就是零电阻现象或超导现象。具有此现象的物体称为超导体。只有在直流条件下才会存在超导现象,在交流下电阻不为零。 临界温度是指当电流,磁场及其他外部条件保持为零或不影响测量时,超导体呈现超导态的最高温度。我们用电阻法测定超导临界温度。 (2)MERSSNER效应 1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,而且,不管加磁场的顺序如何,超导体内磁场总为零。这种现象称为抗磁性即MERSSNER效应。 3)超导体分类 超导体分为两类第1类超导体是随温度变化只分为超导态和正常态,第2类是在超导态和正常态中间部分还存在混合态。 纯金属材料的电阻特性 纯金属材料的电阻产生于晶体的电子被晶格本身和晶格中的缺陷的热振动所散射。ρ=ρL(T)+ρ R,其中ρL(T)表示晶格热振动对电子散射引起的电阻率,与温度有关。ρ r表示杂质和缺陷对电子的散射所引起的电阻率,不依赖与温度,与杂质和缺陷的密度成正比,称为剩余电阻率。 半导体材料电阻温度特性 ρi=1/nie(μe+μp) 本征半导体的电阻率ρi与载流子浓度ni及迁移率μ=μe+μp有关, 因ni随温度升高而成指数上升,迁移率μ随温度增高而下降较慢,故本证半导体电阻率随温度上升而电调下降。 实验仪器及其原理:

高温超导材料的研究进展及前景展望论文正稿

兴义民族师范学院 2013届本科毕业生学位论文 高温超导材料的研究进展及 前景展望 姓 名: 马 关 爱 教 学 系: 物 理 系 专 业: 物 理 学 导师姓名: 张 星 中国﹒贵州﹒兴义 2013年5月

目录 摘要............................................................................................................................ I ABSTRACT .................................................................................................................. II 第一章绪论. (1) 1.1超导体的发现 (1) 1.2高温超导体的概述 (4) 第二章高温超导材料研究的内容 (6) 2.1高温超导材料的研究背景 (6) 2.2高温超导材料的特性 (7) 2.3高温超导材料的研究目标 (8) 2.4高温超导材料的研究状况 (9) 2.4.1高温超导的物理进展 (10) 2.4.2对BCS理论的修正[7] (11) 2.4.3RVB理论[7] (11) 2.4.4Luttinger液体理论[7] (12) 2.4.5铁磁自旋理论[7-10-11] (12) 2.4.6掺杂型高温超导体的研究进展 (12) 2.4.7高温超导材料其他方面的进展 (14) 2.5影响高温超导研究的因素 (14) 2.5.1交流损耗是一个影响高温超导材料应用的重要因素 (14) 2.5.2磁场是影响高温超导材料研究的一个重要因素 (15) 2.5.3量子限制效应对超导薄膜性质的影响 (15) 2.5.4超导体中的人工钉扎与磁通匹配效应 (15) 2.5.5薄膜表面等离子激元和增强透射效应 (15) 第三章高温超导材料的制备工艺 (16) 3.1高温超导材料的研究方法 (16) 3.1.1磁控溅射(MS)法 (16) 3.1.2脉冲激光沉积法 (16)

高温超导材料1.29

高温超导材料 高温超导材料,是具有高临界转变温度(Tc)能在液氮温度条件下工作的超导材料。因主要是氧化物材料,故又称高温氧化物超导材料。 1.结构 高温超导材料不但超导转变温度高,而且成分多是以铜为主要元素的多元金属氧化物,氧含量不确定,具有陶瓷性质。氧化物中的金属元素(如铜)可能存在多种化合价,化合物中的大多数金属元素在一定范围内可以全部或部分被其他金属元素所取代,但仍不失其超导电性。除此之外,高温超导材料具有明显的层状二维结构,超导性能具有很强的各向异性。 已发现的高温超导材料按成分分为含铜的和不含铜的。含铜超导材料有镧钡铜氧体系(Tc=35~40K)、钇钡铜氧体系(按钇含量不同,T发生复化。最低为20K ,高可超过90K)、铋锶钙铜氧体系(Tc=10~110K)、铊钡钙铜氧体系(Tc=125K)、铅锶钇铜氧体系(Tc约70K)。不含铜超导体主要是钡钾铋氧体系(Tc约30K)。已制备出的高温超导材料有单晶、多晶块材,金属复合材料和薄膜。高温超导材料的上临界磁场高,具有在液氦以上温区实现强电应用的潜力 2.特性 超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。

1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 2月15日美国报道朱经武、吴茂昆获得了98K超导体.2月20日,中国也宣布发现100K以上超导体.3月3日,日本宣布发现123K超导体.3月12日中国北京大学成功地用液氮进行超导磁悬浮实验.3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象.很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象.高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用.氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100.液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一. 高温超导体通常是指在液氮温度(77 K)以上超导的材料。人们在超导体被发现的时候(1911年),就被其奇特的性质(即零电阻,反磁性,和量子隧道效应)所吸引。但在此后长达七十五年的时间内所有已发现的

超导体论文

超导体的原理、性质及其应用 …(…) (..,南京 211189) 摘要:1911年,荷兰莱顿大学的卡末林—昂内斯意外地发现,将汞冷却到-268.98℃时,汞的电阻突然消失; 后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林—昂内斯称之为超导态。低温时,导体导电度急剧增加,即电阻值为零时,我们称之为超导状态。而处于超导状态的导体我们称之为超导体。超导电性和抗磁性是超导体的两个重要特性。为了实现超导材料的实用性,科学家们经过数十年的努力,跨越了超导材料的磁电障碍,开始了探索高温超导的历程。 关键词:超导应用原理 Principles, Properties and Applications of Superconductors … (…, Nanjing 210000) Abstract: In 1911, H.Kamerlingh Onnes from the University of Leiden finds that when the mercury cooled to -268.98 ℃, the resistance of it suddenly disappeared. Later he found that many metals and alloys are similar to the above mercury at low temperatures. Due to its special conductive properties H.Kamerlingh Onnes calls it the superconducting state. AT low temperatures, the conductor conductivity increased dramatically, we call it the superconducting state. While in the superconducting state, we call the conductor superconductors. Superconductivity and anti-magnetic superconductors are two important features. In order to achieve practical superconducting materials, scientists have spent decades exploring the course. key words: Superconductors Applications Principles 一般材料在温度接近绝对零度的时候,物体分子 热运动几乎消失,材料的电阻趋近于0,此时称为超导体,达到超导的温度称为临界温度。超导体的一系列应用与发展正是基于超导体这一特殊的性质。本文对超导体的原理、性质以及它在现代技术的广大应用进行具体的介绍。超导体原理的介绍 1911年,卡末林发现了零电阻的现象。1914年,他又发现,将超导体置于磁场中,当磁场增大到某一临界值B C时,或者在超导体中通过的电流密度超过某一临界值j C时,超导体都将从超导态转

高温超导材料

高温超导材料 樊世敏 摘要自从1911年发现超导材料以来,先后经历了简单金属、合金,再到复杂化合物,超导转变温度也逐渐提高,目前,已经提高到164K(高压状态下)。本文主要介绍高温超导材料中的其中三类:钇系(YBCO)、铋系 ),以及高温超导材料的应用。与目前主要应用领(BSCCO)和二硼化镁(MgB 2 域相结合,对高温超导材料的发展方向提出展望。 关键词高温超导材料,超导特性,高温超导应用 1 引言 超导材料的发现和发展已经有将近百年的历史,前期超导材料的温度一直处于低温领域,发展缓慢。直到1986年,高温超导(HTS)材料的发现,才进一步激发了研究高温超导材料的热潮。经过20多年的发展,已经形成工艺成熟的第一代HTS带材--BSCCO带材,目前正在研发第二代HTS带材--YBCO涂层导体,近一步强化了HTS带材在强电领域中的应用。与此同时,HTS薄膜和HTS块材的制备工艺也在不断地发展和完善,前者己经在强电领域得到了很好的应用,后者则在弱电领域中得到应用,并且有着非常广阔的应用前景。 2 高温超导体的发现简史 20世纪初,荷兰莱顿实验室科学家卡默林昂尼斯(H K Onnes)等人的不断努力下,将氦气液化[1-7],在随后的1911年,昂尼斯等人测量了金属汞的低温电阻,发现了超导电性这一特殊的物理现象。引起了科学家对超导材料的研究热潮。从1911到1932年间,以研究元素超导为主,除汞以

外,又发现了Pb 、Sn 、Nb 等众多的金属元素超导体;从1932到1953年间,则发现了许多具有超导电性的合金,以及NaCl 结构的过渡金属碳化合物和氮化物,临界转变温度(Tc )得到了进一步提高;随后,在1953到1973年间,发现了Tc 大于17K 的Nb 3Sn 等超导体。直到1986年,美国国际商用机器 公司在瑞士苏黎世实验室的科学家柏诺兹(J. G. Bednorz )和缪勒(K. üller)首先制备出了Tc 为35K 的镧-钡-铜-氧(La-Ba-Cu-O )高温氧化物超导体,高温超导材料的研究才取得了重大突破[10,11]。临界转变温度超过90K 的钇-钡-铜-氧等一系列高温氧化物超导体被发现,成为了高温超导材料研究领域中一个划时代的标志,它使得高温超导材料的研究不只是停留在理论阶段[12]。到目前为止,人们已经发现了几千种超导材料,典型的超导材料临界转 变温度与发现时 间如图1所示。 一百多年来, 人们对于超导材 料的研究一直充 满兴趣。在2011 年,人们在全国 各地举行 了各种活动纪念超导 现象发现100周年,用以探讨超导材料的研究现状和发展方向。随着新超导材料被不断发现,超导材料的临界转变温度也不断被提高,理论机制获图1 超导体Tc 提高的历史简图

材料化学论文

材料化学论文题高温超导材料研 班级:2009级3班 姓名:梁秋菊 学号:200910140315

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧( YBCO和铋锶钙铜氧(BSCCO)钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林?昂尼斯意外地发现,将汞冷却到-268.98 ° C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林?昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A15型超导体和三元系超导体,如Nb s Sn V s Ga Nb s Ge,其中Nb s Ge超导体的临界转变温度(TJ值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuG g 导体,已高于液氮温度(77K) ,高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCu0,再后来又有人将Ca掺人其中,得到Bis尤aCuOg导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了「系高温超导体,将超导临界温度提高到当时公认的最高记录125&瑞士苏黎世的希林等 发现在HgBaCaCi超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。二、高温超导体的发展现状 目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K) 以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO) 和二硼化镁(MgB2)。氧化物高温超导材料是以铜氧化物为组分的具有钙钛矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂

超导体论文

超导体的电磁性质及其应用 院别:物理与电子工程学院 专业:09级物理学 姓名:王雪梅 完成日期:2014 年6 月3 日 摘要:具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料称为超导材料。从1911年荷兰物理学家翁奈首先发现超导现象以来,现已发现有28种元素和几千种合金和化合物可以成为超导体。超导材料具有优越的物理性质和优越的性能,目前已被广泛接受和认同,具有良好的发展前景。 关键词:超导材料;分类;性质;应用;原理;展望 1、引言 1911年荷兰物理学家翁奈在研究水银低温电阻时首先发现了超导现象。后来又陆续发现了一些金属、合金和化合物在低温时电阻也变为零,即具有超导现象。物质在超低温下,失去电阻的性质称为超导电性;相应的具有这种性质的物质就称这超导体。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。目前,超导材料已被应用于很多领域,本文拟就超导材料的分类、性质、应用、原理等方面展开论述,以帮助人们更好的认识超导材料。 2、分类 元素超导体、合金和化合物超导体,有机高分子超导体三类。 3、性质 3.1零电阻性 超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 超导体的零电阻现象与常导体零电阻在实质上截然不同。常导体的零电阻是指在理想的金属晶体中,由于电子运动畅通无阻,因此没有电阻;而超导体零电阻是指当温度降至某一数值Tc或以下时,其电阻突然变为零。 3.2完全抗磁性 1933年迈斯纳和奥尔德首次发现了超导体具有完全抗磁性的特点。把锡单晶球超导体在磁场(H≦Hc)中冷却,在达到临界温度Tc以下时,超导体内的磁通线一下子被排斥出去;或者先把超导体冷却至Tc以下,再通以磁场,这时磁通线也被排斥出动;如图所示。即在超导状态下,超导体内磁感应强度B=0.这就是迈斯纳效应。 3.3约瑟夫森效应 两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 3.4同位素效应 超导体的临界温度Tc与其同位素质量M有关。M越大,Tc越低,这称为同位素效应。例如,原子量为199.55的汞同位素,它的Tc是4.18开,而原子量为203.4的汞同位素,Tc为4.146

纳米材料与超导材料小论文

材料科学技术前沿——纳米材料 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 由于它尺寸特别小,它就产生了两种效应,即小尺寸引起的表面效应和量子效应,即它的表面积比较大,处于表面上的原子数目的百分 比显著增加,当材料颗粒直径只有1纳米时,原子将全部暴露在表面,因此原子极易迁移,使其物理性能发生极大变化。一是它对光的反射能力 变得非常低,低到<1%;二是机械、力学性能成几倍增加;三是其熔点会大大降低;四是有特殊的磁性。 1.纳米结构材料:包括纯金属、合金、复合材料和结构陶瓷,具有十分优异的机械、力学及热力性能。可使构件重量大大减轻。 2.纳米催化、敏感、储氢材料:用于制造高效的异质催化剂、气体敏感器及气体捕获剂,用于汽车尾气净化、石油化工、新型洁净能源等领域。 3.纳米光学材料:用于制作多种具有独特性能的光电子器件。如量子阱型蓝光二极管、量子点激光器、单电子晶体管等。 4.纳米结构的巨磁电阻材料:磁场导致物体电阻率改变的现象称为磁电阻效应,对于一般金属其效应常可忽略。但是某些纳米薄膜具有巨磁电阻效应。在巨磁电阻效应发现后的第6年,1994年IBM公司研制成巨磁电阻效应的读出磁头,将磁盘记录密度一下子提高了17倍。这种材料还可以制作测量位移、角度的传感器,广泛应用于数控机床、汽车测速、非接触开关、旋转编码器中。 5.纳米微晶软磁材料用于制作功率变压器、脉冲变压器、扼流圈、互感器等。 6.纳米微晶稀土永磁材料,将晶粒做成纳米级,可使钕铁硼等稀土永磁材料的磁能积进一步提高,并有希望制成兼备高饱和磁化强度、高矫顽力的新型永磁材料。

(完整word版)高温超导材料的研究进展

高温超导材料的研究进展 程长飞20091410404 引言 2O世纪8O年代后期高温超导的发现,在全球掀起了一股“超导热”。经过2O多年的研究发展,我国高温超导技术在超导材料技术、超导强电技术和超导弱电技术三个方面取得了重大进展和突破。在众多领域中,超导技术的应用具有非常突出的优点和不可取代的作用。随着高温超导材料和低温制冷技术的迅速发展,使超导技术的应用步伐迅速加快。超导技术在电力、通信、高新技术装备和军事装备等方面的应用也十分令人向往,具有重要的战略意义。 根据第五届国际超导工业峰会预测,高温超导应用技术将在今后5~10年时间达到实用化水平,并将在2010年前后形成较大规模的产业。到2010年,全球超导产业的产值预计将达到260亿美元,到2020年将达到2 400亿美元以上。超导技术将是21世纪具有光明前景的高新技术 一、超导的基本概述和基本原理 1911年发现,但直到1957年,美国科学家巴丁、库珀和施里弗在《物理学评论》提出BCS理论,其微观机理才得到一个令人满意的解释。BCS理论把超导

,库珀对在晶格当中可以无损耗的运动,形成超导电流。在BCS理论提出的同时,博戈留波夫(Bogoliubov)也独立的提出了超导电性的 的博戈留波夫变换至今为人常用。 电子间的直接相互作用是相互排斥的库仑力。如果仅仅存在库仑 直接作用的话,电子不能形成配对。但电子间还存在以晶格振动 正是这种吸引作用导致了“库珀对”的产生。大致上,其机理如下:电 变,形成一个局域的高正电荷区。这个局域的高正电荷区会吸引自旋相反的电子,和原来的电子以一定的结合能相结合配对。在很低的温度下,这个结合能可能高于晶格原子振动的能量,这样,电子对将不会和晶格发生能量交换,也就没有电阻,形成所谓“超导”。 BCS理论而获得1972 BCS理论并无法成功的解释所谓第二 二、高温超导材料概述 对超导现象,BCS 理论给出了比较满意的解释。而在应用方面,超导现象具有很宽敞的应用空间,具有很高的应用价值。到了现代, 人们一直致力于对超导材料的研究。在1968 此时

高温超导材料论文 最新

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧(YBCO)和铋锶钙铜氧(BSCCO)。钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林·昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 自卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973年, 发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge 超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1

相关文档