文档库 最新最全的文档下载
当前位置:文档库 › 自由基聚合机理以及四种常见共聚物

自由基聚合机理以及四种常见共聚物

自由基聚合机理以及四种常见共聚物
自由基聚合机理以及四种常见共聚物

自由基聚合机理

烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。

热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。

自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。

自由基聚合的基元反应

烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。

1 链引发

链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成:(1)引发剂I分解,形成初级自由基R?;

(2)初级自由基与单体加成,形成单体自由基。

单体自由基形成以后,继续与其他单体加聚,而使链增长。

比较上述两步反应,引发剂分解是吸热反应,活化能高,约105~150kJ/mo1,反应速率小,分解速率常数约10-4~10-6s-1。初级自由基与单体结合成单体自由基这一步是放热反应,活化能低,约20~34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法继续链增长。

有些单体可以用热、光、辐射等能源来直接引发聚合。这方面的研究工作不少,苯乙烯热聚合已工业化;紫外光固化涂料也已大规模使用。

2 链增长

在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。新自由基活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。这个过程称做链增长反应,实际上是加成反应。

为了书写方便,上述链自由基可以简写成,其中锯齿形代表由许多单元组成的碳链骨架,基团所带的独电子系处在碳原子上。

链增长反应有两个特征:一是放热反应,烯类单体聚合热约55~95kJ/mol;二是增长活化能低,约20~34KJ/mol,增长速率极高,在0.01~几秒钟内,就可以便聚合度达到数千,甚至上万。这样高的速率是难以控制的,单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。

对于链增长反应,除了应注意速率问题以外,还须研究对大分子微观结构的影响。在链增长反应中,结构单元间的结合可能存在“头-尾”和“头-头”或“尾-尾”两种形式。经实验证明,主要以头-尾形式连接。这一结果可由电子效应和空间位阻效应得到解释。对一些取代基共轭效应和空间位阻都较小的单体聚合时头-头结构会稍高,如醋酸乙烯酯、偏二氟

乙烯等。聚合温度升高时,头-

头形式结构将增多。

由于自由基聚合的链增长活性中心—链自由基周围不存在定向因素,因此很难实现定向聚合,即单体与链自由基加成由sp2杂化转变为sp3杂化时,其取代基的空间构型没有选择性,是随机的,得到的常常是无规立构高分子,因此该种聚合物往往是无定型的。

3 链终止

自由基活性高,有相互作用而终止的倾向。终止反应有偶合终止和歧化终止两种方式。

两链自由基的独电子相互结合成共价键的终止反应称做偶合终止。偶合终止结果,大分子的聚合度为链自由基重复单元数的两倍。用引发剂引发并无链转移时,大分子两端均为引发剂残基。

某链自由基夺取另一自由基的氢原子或其他原子的终止反应,则称做歧化终止。歧比终止结果,聚合度与链自由基中单元数相同,每个大分子只有一端为引发剂残基,另一端为饱和或不饱和,两者各半。

根据上述特征,应用含有标记原子的引发剂,结合分子量测定,可以求出偶合终止和歧比终止的比例。

链终止方式与单体种类和聚合条件有关。一般单取代乙烯基单体聚合时以偶合终止为主,而二元取代乙烯基单体由于立体阻碍难于双基偶合终止。由实验确定,60℃下聚苯乙烯以偶合终止为主。甲基丙烯酸甲酯在60℃以上聚合,以歧化终止为主;在60 ℃以下聚合,两种终止方式都有。聚合温度增高,苯乙烯聚合时歧化终止比例增加。

在聚合产物不溶于单体或溶剂的非均相聚合体系中,聚合过程中,聚合产物从体系中沉析出来,链自由基被包藏在聚合物沉淀中,使双基终止成为不可能,而表现为单分子链终止。

此外,链自由基与体系中破坏性链转移剂反应生成引发活性很低的新自由基,使聚合反应难以继续,也属单分子链终止。

工业生产时,活性链还可能为反应器壁金属自由电子所终止。

链终止活化能很低,只有8~2lKJ/mo1,甚至为零。因此终止速率常数极高[106~108L /(mol·s)]。但双基终止受扩散控制。

链终止和链增长是一对竞争反应。从一对活性链的双基终止和活性链—单体的增长反应比较,终止速率显然远大于增长速率。但从整个聚合体系宏观来看,因为反应速率还与反应物质浓度成正比,而单体浓度(1~l0mo1/L)远大于自由基浓度(10-7~l0-9mo1/L),结果,增长速率要比终止速率大得多。否则,将不可能形成长链自由基和聚合物。

任何自由基聚合都有上述链引发、链增长、链终止三步基元反应。其中引发速率最小,成为控制整个聚合速率的关键。

4 链转移

在自由基聚合过程中,链自由基有可能从单体、溶剂、引发剂等低分子或大分子上夺取—个原子而终止,并使这些失去原子的分子成为自由基,继续新链的增长,使聚合反应继续进行下去。这一反应称做链转移反应。

向低分子链转移的反应式示意如下:

向低分子转移的结果,使聚合物分子量降低。

链自由基也有可能从大分子上夺取原子而转移。向大分子转移一般发生在叔氢原子或氯原子上,结果使叔碳原子上带上独电子,形成大分子自由基。单体在其上进一步增长,形成支链。

自由基向某些物质转移后,形成稳定的自由基,不能再引发单体聚合,最后只能与其他自由基双基终止。结果,初期无聚合物形成,出现了所谓

“诱导期”。这种现象称做阻聚作用。具有阻聚作用的物质称做阻聚剂,如苯醌等。阻聚反应并不是聚合的基元反应,但颇重要。

根据上述机理分析,可将自由基聚合的特征概括如下。

①自由基聚合反应在微观上可以明显地区分成链的引发、增长、终止、转移等基元反应。其中引发速率最小,是控制总聚合速率的关键。可以概括为慢引发、快增长,速终止。

②只有链增长反应才使聚合度增加。一个单体分子从引发,经增长和终止,转变成大分子,时间极短,不能停留在中间聚合度阶段,反应混合物仅由单体和聚合物组成。在聚合全过程中,聚合度变化较小。

③在聚合过程中,单体浓度逐步降低,聚合物浓度相应提高。延长聚合时间主要是提高转化率,对分子量影响较小。

④少量(0.01%~0.1%)阻聚剂足以使自由基聚合反应终止。

四种共聚物

一无规共聚物

无规共聚物(random copolymer)。单体M1,M2在大分子链上无规排列,两单体在主链上呈随机分布,没有一种单体能在分子链上形成单独的较长链段。:~~~~~M1 M1M2 M2M2 M1M2 M1M2 M2M1~~~~~目前开发出的共聚物中多数是这一类,如丁二烯-苯乙烯无规共聚物(丁苯橡胶),氯乙烯-醋酸乙烯共聚物等。

聚丙烯无规共聚物也是聚丙烯的一种,它的高分子链的基本结构用加入不同种类的单体分于加以改性。乙烯是最常用的单体,它引起聚丙烯物理性质的改变。与PP均聚物相比,无规共聚物改进了光学性能(增加了透明度并减少了浊雾),提高了抗冲击性能,增加了挠性,降低了熔化温度,从而也降低了热熔接温度;同时在化学稳定性、水蒸汽隔离性能和器官感觉性能(低气味和味道)方面与均聚物基本相同。应用于吹塑、注塑、薄膜和片材挤压加工领域,作食品包装材料、医药包装材料和日常消费品。

二嵌断共聚物

嵌段共聚物(block copolymer)又称镶嵌共聚物。由化学结构不同的链段交替聚合而成的线型共聚物。交替结合的链段有有规交替和无规交替两种。嵌段共聚物与共混物和接枝共聚物在结构和性质上是不同的。它的玻璃化温度由温度较低的聚合物决定的,而软化点却随该温度较高的聚合物而变化,因而处于高弹态的温度范围较宽。可用阴离子聚合、自由基聚合、络合聚合、缩聚或机械化学等方法制备。由较长的M1链段和较长的M2链段间隔排列形成的大分子链,根据链段的多少可以分为:二嵌段,如苯乙烯-丁二烯共聚物;三嵌段,如苯乙烯-丁二烯-苯乙烯;多嵌段共聚物等。

TPEE(热塑性聚酯弹性体)是含有聚酯硬段和聚醚软段的嵌段共聚物。其中聚醚软段和未结晶的聚酯形成无定形相聚酯硬段部分结晶形成结晶微区,起物理交联点的作用。TPEE具有橡胶的弹性和工程塑料的强度;软段赋予它弹性,使它象橡胶;硬段赋予它加工性能,使它象塑料;与橡胶相比,它具有更好的加工性能和更长的使用寿命;与工程料相比,同样具有强度高的特点,而柔韧性和动态力学性能更好。

三交替共聚物

由二种或多种单体在生成的共聚物主链上单体单元呈交替(或相同)排列的共聚反应。其产物称交替共聚物。如:…ABABABAB…。

在进行交替共聚的单体中,有的均聚倾向很小或根本不均聚。例如具有吸电子基团的马来酸酐(顺丁烯二酸酐)就不均聚;但它能与具有给电子基团的单体(如苯乙烯或乙烯基醚等)进行交替共聚。又如马来酸酐与具有给电子取代基的1,2-二苯乙烯都不能明显地均聚;但它们却能交替共聚。所以交替效应实质上反映了单体之间的极性效应。例如苯乙

烯和马来酸酐的交替共聚,是由于有给电子取代基的苯乙烯与有吸电子取代基的马来酸酐之间发生电荷转移而生成电荷转移络合物的结果:取代基吸电子能力不够强的单体(如丙烯腈或甲基丙烯酸甲酯)与苯乙烯之间只能进行无规共聚;但是如果加入氯化锌,则它能与丙烯腈或甲基丙烯酸甲酯络合,使这两种单体的取代基的吸电子能力增强,它们都可以与苯乙烯形成1:1的电荷转移络合物,并得到交替共聚物。

自由基聚合习题参考答案

2. 下列烯类单体适于何种机理聚合自由基聚合、阳离子聚合还是阴离子聚合并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。 CH 2=CHC 6H 5:三种机理均可,共轭体系。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。

第三章自由基聚合

第三章自由基聚合 思考题3.2 下列烯类单体适用于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 (1)CH2——CHCl (2)CH2=CCl2(3)CH2=CHCN (4)CH2=C(CN)2 (5)CH2=CHCH3(6)CH2=C(CH3)2(7)CH2=CHC6H5 (8)CF2=CF2(9)CH2=C(CN)COOR (10)CH2=C(CH3)-CH=CH2 答可以通过列表说明各单体的聚合机理,如下表:

思考题3.3 下列单体能否进行自由基聚合,并说明原因。 (1)CH2=C(C6H5)2(2)CH3CH=CHCOOCH3(3)CH2=C(CH3)C2H5 (4)ClCH=CHCl (5)CH2=CHOCOCH3(6)CH2=C(CH3)COOCH3 (7)CH3CH=CHCH3(8)CF2=CFCl 答(1) CH2=C(C6H5)2不能进行自由基聚合,因为l,1-双取代的取代基空间位阻大,只形成二聚体。

(2) CH3CH=CHCOOCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。 (3) CH2=C(CH3)C2H5不能进行自由基聚合,两个取代基均为供电基团,只能进行阳离子聚合。 (4)ClCH=CHCl不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。 (5)CH2=CHOCOCH3能进行自由基聚合,因为-COCH3为吸电子基团,利于自由基聚合。 (6) CH2=C(CH3)COOCH3能进行自由基聚合,因为l,1-双取代,极化程度大,甲基体积小,为供电子基团,而-COOCH3为吸电子基团,共轭效应使自由基稳定。 (7) CH3CH=CHCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称空间阻碍大。 (8) CF2=CFCl能进行自由基聚合,F原子体积小,Cl有弱吸电子作用。 思考题3.7为什么说传统自由基聚合的机理特征是慢引发、快增长、速终止?在聚合过程中,聚合物的聚合度、转化率,聚合产物中的物种变化趋向如何? 答自由基聚合机理由链引发、链增长、链终止等基元反应组成,链引发是形成单体自由基(活性种)的反应,引发剂引发

第二章_自由基聚合-习题

第二章自由基聚合-习题 1.举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化对单体聚合热的影响。 2.什么是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40、80℃自由基聚合时的平衡单体浓度。 3.什么是自由基聚合、阳离子聚合和阴离子聚合? 4.下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。 CH 2=CHCl,CH 2 =CCl 2 ,CH 2 =CHCN,CH 2 =C(CN) 2 ,CH 2 =CHCH 3 ,CH 2 =C(CH 3 ) 2 , CH 2=CHC 6 H 5 ,CF 2 =CF 2 ,CH 2 =C(CN)COOR, CH 2=C(CH 3 )-CH=CH 2 。 5.判断下列烯类单体能否进行自由基聚合,并说明理由。 CH 2=C(C 6 H 5 ) 2 ,ClCH=CHCl,CH 2 =C(CH 3 )C 2 H 5 ,CH 3 CH=CHCH 3 , CH 2=C(CH 3 )CO℃H 3 ,CH 2 =CH℃℃H 3 ,CH 3 CH=CHCO℃H 3 。 6.对下列实验现象进行讨论: (1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。 (2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。 (3)带有π-π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。 7.以偶氮二异丁腈为引发剂,写出苯乙烯、醋酸乙烯酯和甲基丙烯酸甲酯自由基聚合历程中各基元反应。 8.对于双基终止的自由基聚合反应,每一大分子含有1.30个引发剂残基。假定无链转移反应,试计算歧化终止与偶合终止的相对量。 9.在自由基聚合中,为什么聚合物链中单体单元大部分按头尾方式连接? 10.自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化有何特征?与聚合机理有何关系? 11.自由基聚合常用的引发方式有几种?举例说明其特点。 12.写出下列常用引发剂的分子式和分解反应式。其中哪些是水溶性引发剂,哪些是油溶性引发剂,使用场所有何不同? (1)偶氮二异丁腈,偶氮二异庚腈。 (2)过氧化二苯甲酰,过氧化二碳酸二乙基己酯,异丙苯过氧化氢。 (3)过氧化氢-亚铁盐体系,过硫酸钾-亚硫酸盐体系,过氧化二苯甲酰-N,N二甲基苯胺。 13.60℃下用碘量法测定过氧化二碳酸二环己酯(DCPD)的分解速率,数据列于下 表,求分解速率常数k d (s -1 )和半衰期t 1/2 (hr)。

自由基聚合习题

4. 下列单体适于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合,并说明理由。CH2=CHCl CH2=CHCl2CH2=CHCN CH2=C(CN)2CH2=CHCH3CH2=C(CH3)2 CH2=CHC6H5CF2=CF2CH2=C(CN)COOR CH2=C(CH3)-CH=CH2 CH2=CHCl 只能进行自由基聚合。Cl原子是吸电子基团,也有共轭效应,但均较弱。 CH2=CHCl2能进行自由基和阴离子聚合,因为两个氯原子使诱导效应增强。 CH2=CHCN 适合自由基聚合和阴离子聚合。-CN是较强的吸电子取代基,并有共轭效应。 CH2=C(CN)2 CH2=CHCH3不能进行自由基、阳离子、阴离子聚合,只能进行配位聚合,因为一个甲基供电性弱,不足以使丙烯进行阳离子聚合。 CH2=C(CH3)2只能进行阳离子聚合。-CH3为推电子取代基,-CH3与双键有超共轭效应,两个甲基都是推电子取代基,其协同作用相当于强的推电子取代基,有利于双键电子云密度增加和阳离子进攻。 CH2=CHC6H5可进行自由基、阳离子、阴离子聚合。因为共轭体系中电子流动性大,容易诱导极化。 CF2=CF2适合自由基聚合。F原子体积小。 CH2=C(CN)COOR适合阴离子聚合,两个吸电子取代基其协同作用相当含有强的吸电子取代基,并兼有共轭效应,只能进行阴离子聚合。 CH2=C(CH3)-CH=CH2 5. 判断下列烯类单体能否进行自由基聚合,并说明理由。 CH2=C(C6H5)2ClCH=CHCl CH2=C(CH3)C2H5CH3CH=CHCH3 CH2=C(CH3)COOCH3CH2=CHOCOCH3CH3CH=CHCOOCH3 CH2=CHCH3 CH2=C(C6H5)2不能通过自由基聚合形成高相对分子质量聚合物。因为C6H5-取代基空间位阻大,只能形成二聚体。 ClCH=CHCl不能通过自由基聚合形成高相对分子质量聚合物。因为单体结构对称,对1,2-二取代造成较大的空间位阻。 CH2=CHCH3与CH2=C(CH3)C2H5均不能通过自由基聚合形成高相对分子质量聚合物。由于双键的电荷密度大,不利于自由基的进攻,且易转移生成较稳定的烯丙基型自由基,难于再与丙烯等加成转变成较活泼的自由基,故得不到高聚物,前者只能进行配位阴离子聚合,后者只能进行阳离子聚合。 CH3CH=CHCH3不能通过自由基聚合形成高相对分子质量聚合物。因为结构结称、位阻大,且易发生单体转移生成烯丙基稳定结构。 CH2=C(CH3)COOCH3能通过自由基聚合形成高相对分子质量聚合物。因为是1,1-二元取代基,甲基体积较小,-COOCH3为吸电子取代基,-CH3为推电子取代基,均有共轭效应。 CH2=CHOCOCH3能通过自由基聚合形成高相对分子质量聚合物。 CH3CH=CHCOOCH3不能通过自由基聚合形成高相对分子质量聚合物。由于是1,2-二元取代基,结构结称,空间阻碍大。 CF2=CFCl能通过自由基聚合形成高相对分子质量聚合物。这是因为F原子体积很小,

自由基聚合习题参考答案

2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。 CH 2=CHC 6H 5:三种机理均可,共轭体系。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。 CH 2=CHOCOCH 3:醋酸乙烯酯,能,吸电子基团。 CH 2=C(CH 3)COOCH 3:甲基丙烯酸甲酯,能。 CH 3CH=CHCOOCH 3 :不能,1,2双取代,位阻效应。 CF 2=CFCl :能,结构不对称,F 原子小。 计算题 1. 甲基丙烯酸甲酯进行聚合,试由H ?和S ?来计算77℃、127℃、177℃、227℃时的平衡单体浓度,从热力学上判断聚合能否正常进行。 解:由教材P75上表3-3中查得:甲基丙烯酸甲酯H ?=mol ,S ?=mol K 平衡单体浓度:)(1]ln[ΘΘ ?-?= S T H R M e T=77℃=,=e M ]ln[*10-3 mol/L T=127℃=,=e M ]ln[L T=177℃=,=e M ]ln[L T=227℃=,=e M ]ln[L

自由基聚合机理以及四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA 可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS 树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成: (1)引发剂I 分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约 105?150kJ/mol,反应速 率小,分解速率常数约10-4?10 —6s—1。初级自由基与单体结合成单体自由基这一步是 放热反应,活化能低,约20?34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引 发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法

第三章__自由基聚合

第三章自由基聚合 思考题下列烯类单体适用于何种机理聚合自由基聚合、阳离子聚合还是阴离子聚合并说明原因。 (1)CH2——CHCl (2)CH2=CCl2 (3)CH2=CHCN (4)CH2=C(CN)2 (5)CH2=CHCH3 (6)CH2=C(CH3)2 (7)CH2=CHC6H5 (8)CF2=CF2 (9)CH2=C(CN)COOR (10)CH2=C(CH3)-CH =CH2 答可以通过列表说明各单体的聚合机理,如下表:

思考题下列单体能否进行自由基聚合,并说明原因。 (1)CH2=C(C6H5)2(2)CH3CH=CHCOOCH3(3)CH2=C(CH3)C2H5 (4)ClCH=CHCl (5)CH2=CHOCOCH3 (6)CH2=C(CH3)COOCH3 (7)CH3CH=CHCH3 (8)CF2=CFCl 答 (1) CH2=C(C6H5)2不能进行自由基聚合,因为l,1-双取代的取代基空间位阻大,只形成二聚体。 (2) CH3CH=CHCOOCH3不能进行自由基聚合,因为1,2-双取代,

单体结构对称,空间阻碍大。 (3) CH2=C(CH3)C2H5不能进行自由基聚合,两个取代基均为供电基团,只能进行阳离子聚合。 (4)ClCH=CHCl不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。 (5)CH2=CHOCOCH3能进行自由基聚合,因为-COCH3为吸电子基团,利于自由基聚合。 (6) CH2=C(CH3)COOCH3能进行自由基聚合,因为l,1-双取代,极化程度大,甲基体积小,为供电子基团,而-COOCH3为吸电子基团,共轭效应使自由基稳定。 (7) CH3CH=CHCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称空间阻碍大。 (8) CF2=CFCl能进行自由基聚合,F原子体积小,Cl有弱吸电子作用。 思考题为什么说传统自由基聚合的机理特征是慢引发、快增长、速终止在聚合过程中,聚合物的聚合度、转化率,聚合产物中的物种变化趋向如何 答自由基聚合机理由链引发、链增长、链终止等基元反应组成,链引发是形成单体自由基(活性种)的反应,引发剂引发由2步反应组成,第一步为引发剂分解,形成初级自由基,第二

自由基聚合习题参考答案

第3章自由基聚合-习题参考答案 1、判断下列单体能否进行自由基聚合并说明理由 H2C CHCl H2C CH H2C CCl2H2C CH2H2C C H2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHCl H2C C CH3 COOCH3H2C C CN COOCH3 HC CH OC CO O 答: (1)可以。Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。 (2)可以。为具有共轭体系的取代基。 (3)可以。结构不对称,极化程度高,能自由基聚合。 (4)可以。结构对称,无诱导效应共轭效应,较难自由基聚合。 (5)不能。1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。 (6)可以。吸电子单取代基。 (7)不可以。1,1双强吸电子能力取代基。 (8)不可以。甲基为弱供电子取代基。 (9)可以。氟原子半径较小,位阻效应可以忽略不计。 (10)不可以。由于位阻效应,及结构对称,极化程度低,难自由基聚合 (11)可以。1,1-双取代。 (12)可以。1,1-双取代吸电子基团。 (13) 不可以。1,2-双取代,空间位阻。但可进行自由基共聚。 2、试比较自由基聚合与缩聚反应的特点。

答: 自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。 (2)单体加到少量活性种上,使链迅速增长。单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。 (3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。聚合一开始就有高聚物产生。 (4)在聚合过程中,单体逐渐减少,转化率相应增加 (5)延长聚合时间,转化率提高,分子量变化较小。 (6)反应产物由单体,聚合物,微量活性种组成。 (7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。 缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。 (2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。 (3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。 (4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。 (5)延长缩聚时间分子量提高,而转化率变化较小。 (6)任何阶段都由聚合度不等的同系缩聚物组成。 (7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。 3、解释下列概念: 歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合, 答: 歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。 偶合终止:两链自由基的独电子相互结合成共价键的终止反应。 引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,

自由基聚合和阴阳离子聚合-区别.doc

引发剂种类 > 自由基聚合: 采用受热易产生自由基的物质作为引发剂< 偶氮类 过氧类 氧化还原体系 引发剂的性质只影响引发反应,用量影响R p和 > 离子聚合: 采用容易产生活性离子的物质作为引发剂 * 阳离子聚合:亲电试剂,主要是Lewis酸,需共引发剂* 阴离子聚合:亲核试剂,主要是碱金属及其有机化合物引发剂中的一部分,在活性中心近旁成为反离子 其形态影响聚合速率、分子量、产物的立构规整性 单体结构 自由基聚合< 带有弱吸电子基的乙烯基单体共轭烯烃 离子聚合:对单体有较高的选择性 < 阳离子聚合: 阳离子聚合:带有强推电子取代基的烯类单体 共轭烯烃(活性较小) 阴离子聚合: 带有强吸电子取代基的烯类单体 共轭烯烃 环状化合物、羰基化合物 溶剂的影响 自由基聚合< 向溶剂链转移,降低分子量 笼蔽效应,降低引发剂效率f 溶剂加入,降低了[M],R p略有降低水也可作溶剂,进行悬浮、乳液聚合 离子聚合< 溶剂的极性和溶剂化能力,对活性种的形态有较大影响:离子对、自由离子 影响到RR p、Xn 和产物的立构规整性 溶剂种类:阳:卤代烃、CS2、液态SO2、CO2;阴:液氨、醚类(THF、二氧六环) 反应温度 自由基聚合:取决于引发剂的分解温度,50 ~80 ℃ 离子聚合:引发活化能很小 为防止链转移、重排等副反应,在低温聚合,阳离子聚合常在-70 ~-100 ℃进行。聚合机理 自由基聚合:多为双基终止< 双基偶合双基歧化 离子聚合:具有相同电荷,不能双基终止< 无自加速现象 阳:向单体、反离子、链转移剂终止 阴:往往无终止,活性聚合物,添加其它试剂终止 机理特征:自由基聚合:慢引发、快增长、速终止、可转移阳离子聚合:快引发、快增长、易转移、难终止阴离子聚合:快引发、慢增长、无终止 阻聚剂种类 自由基聚合:氧、DPPH、苯醌 阳离子聚合:极性物质水、醇,碱性物质,苯醌 阴离子聚合:极性物质水、醇,酸性物质,CO2 自由基聚合和阴阳离子聚合的异同 聚合反应自由基聚合 离子聚合 阴离子聚合阳离子聚合 聚合机理特征慢引发、快增长、 速终止、有链转移 快引发、慢增长、 无终止、无转移, 可成为活性聚合 快引发、快增长、 难终止、有链转移, 主要向单体或溶 剂转移或单分子 自发终止

第二章 自由基聚合-课堂练习题及答案

第二章 自 由 基 聚 合 课 堂 练 习 题 1. 对下列实验现象进行讨论: (1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。 (2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。 (3)带有π-π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。 解: (1) 对单取代乙烯,空间位阻小,可以聚合;对于1,1-二取代乙烯,一般情况下,取代基体积不大,空间位阻小,同时不对称结构使之更易极化,故1,1-二取代乙烯也可聚合;1,2-二取代乙烯,主要是结构对称的两端取代基的空间位阻要比单端二取代的位阻大得多,使之难以聚合。 (2) 对烯类单体来说,其参加聚合的官能团部分绝大多数情况下是碳碳双键或叁键,碳碳双键或叁键的两个碳电负性相同,不会使电子云密度大变化。大多数烯类单体的取代基的给电子或吸电子效应不是很强;自由基是电中性的,对其稳定作用没有太严格的要求,几乎所有取代基对自由基都有一定的稳定作用,因此发生自由基聚合的单体多。少数带有强电子效应取代基的单体,使碳碳双键或叁键的电子云密度发生较大变化,且取代基对生成的离子活性中心有很好的稳定作用,才能进行离子聚合。 (3) π-π体系单体具有大共轭效应,可在诱导极化下产生电子云的流动,从而产生利于在相应反应条件下的电子云密度分布,使反应容易进行,因此这类单体可发生自由基、阴离子、阳离子聚合。 2. 推导自由基聚合动力学方程时,作了哪些基本假定? 解:在不考虑链转移反应的前提下,作了三个基本假定:等活性假定,即链自由基的活性与链长无关;稳态假定,即在反应中自由基的浓度保持不变;聚合度很大假定。 3. 聚合反应速率与引发剂浓度平方根成正比,对单体浓度呈一级反应各是哪一机理造成的? 解:R p 与[I]1/2成正比是双基终止造成的,R p 与[M]成正比是初级自由基形成速率远小于单体自由基形成速率的结果。 4. 单体浓度0.2mol/L ,过氧类引发剂浓度为4.2×10-3mol/L, 在60O C 下加热聚合。如引发剂半衰期为44hr ,引发剂引发效率f=0.80,k p =145L/mol·s ,k t =7.0×107 L/mol·s ,欲达5%转化率,需多少时间? 答案:t = 24113s=6.7h 。 解:(1)法:0][][ln M M = kp -21)(t d k fk []21I t )1ln(x - = kp -21)(t d k fk []21I t k d =ln2/t 1/2=ln2/44×3600=4.38×10-6(S -1), k p =145(L/mol .s ), k t =7.0×107(L/mol .s )

离子聚合测验题答案

离子聚合测验题 一.填空题 1.只能进行阳离子聚合的单体有异丁烯和乙烯基醚等。 2.阳离子聚合的引发体系有 BF3+H2O 、 SnCl4+H2O 和 AlCl3+H2O 等。 3.阴离子聚合体系中活性中心离子对可能以松散离子对、紧密离子对和自由离子等三种形态存在。 4.阳离子聚合的特点是快引发、快增长、易转移、难终止。 5. 异丁烯阳离子聚合最主要的链终止方式是向单体链转移。合成高相对分 子质量的异丁烯,需要进行低温聚合的原因是抑制链转移。 6.离子聚合中溶剂的极性加大,反应速率加快,原因是极性溶剂使离子对 松散。 7.丁基橡胶是以异丁烯和异戊二烯为单体,按阳离子反应历程, 以AlCl3+H2O 为催化剂,采用溶液聚合方法,在-100℃温度下聚 合制得的。 8.在芳香烃溶剂中,以n-丁基锂为引发剂引发苯乙烯聚合,发现引发速率和增长 速率分别是正丁基锂浓度的1/6级和1/2级,表明引发过程和增长过程中存在着。 9.要制备SBS热塑性弹性体,可以采用_阴离子___聚合的原理。先用碱金属引发 剂引发聚合,生成丁二烯结构单元,然后再加入苯乙烯单体,最后加 终止剂使反应停止。 二.选择题 1. 阳离子聚合的引发剂(C D ) A C4H9Li B NaOH+萘 C BF3+H2O D H2SO4 2. 阳离子聚合的单体(A D ) A CH2=CH-C6H5 B CH2=C(CH3)COOCH3 C CH2=CH-CH3 D CH2=CH-OR 3.只能采用阳离子聚合的单体是(C ) A 氯乙烯 B MMA C 异丁烯 D 丙烯腈。 4.在高分子合成中,容易制得有实用价值的嵌段共聚物的是(B ) A配位聚合B阴离子活性聚合C自由基共聚合D阳离子聚合 5.阳离子聚合的特点可以用以下哪种方式来描述(B ) A慢引发,快增长,速终止B快引发,快增长,易转移,难终止 C 快引发,慢增长,无转移,无终止D慢引发,快增长,易转移,难终止 6.合成丁基橡胶的主要单体是(B ): A丁二烯+异丁烯B异丁烯+异戊二烯C丁二烯 7.制备高分子量聚异丁烯是以BF3为催化剂,在氯甲烷中,于-100℃下聚合,链 终止的主要形式为(B ): A双基终止B向单体转移终止C向溶剂转移终止 8.无终止阴离子聚合,调节聚合物分子量的有效手段是(B ): A、温度 B、引发剂浓度 C、溶剂性质 9.升高温度对阳离子聚合反应速率和分子量的影响规律是(C ): A Rp↑M↑ B Rp↑M↓ C Rp↓M↓

自由基本体聚合过程

3.1 自由基本体聚合过程 3.1.1 自由基本体聚合概述 1、定义:单体在有少量引发剂(甚至不加引发剂而是在光、热、辐射能)的作用下聚合为 高聚物的过程。 2、本体聚合的分类 依据生成的聚合物是否溶于单体分为均相与非均相本体聚合。均相本体聚合指生成的聚合物溶于单体(如苯乙烯、甲基丙烯酸甲酯)。非均相本体聚合指生成的聚合物不溶解在单体中,沉淀出来成为新的一相(如氯乙烯)。 根据单体的相态还可分为气相、液相和固相本体聚合。 3、工业上采用自由基本体聚合生产的聚合物品种 高压法聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯,及一部分聚氯乙烯。 3.1.2 自由基本体聚合的特点 1、优点:组分简单;工艺过程较简单(转化率高时,可免去分离工序,得到粒状树脂);设备利用率高;产品纯度高。 2、缺点:体系粘度大,聚合热不易排出;自动加速现象严重,工艺难控,易爆聚。 3.1.3 自由基本体聚合工艺过程及其特点 1、预聚合:聚合初期,转化率不高;体系粘度不大,反应釜内设置搅拌,聚合热易排出;反应温度相对较高,总聚合时间缩短,提高生产效率;体积部分收缩、聚合热部分排除,利于后期聚合。 2、聚合:聚合中期,转化率较高;反应温度低、时间长,有效利用反应热,使反应平稳进行。 聚合反应是放热反应,本体聚合使无其他介质存在,所以聚合设备内单位质量的反应物料与有反应介质存在的其他聚合方法比较,相对说放出的热量大,并且单体和聚合物的比热小,传热系数低,所以正赛聚合反应热的散发困难。因此物料温度容易升高,甚至失去控制,造成事故。工业上为了解决此难题,在设计反应器的形状、大小时,考虑传热面积等。此外还采用分段聚合即进行聚合达到适当转化率,或于单体中添加聚合物以降低单体含量。从而降低单位质量物料放出的热量。由于本体聚合过程中反应温度难以控制恒定,所以产品的分子量分布宽。 单体在未聚合前是液态,少数为气态,易流动、粘度低。聚合反应发生以后,多数情况下生成的聚合物可溶于单体,则形成粘稠溶液,聚合程度越深入,即转化率越高,物料越粘稠。一聚苯乙烯-苯乙烯物料体系为例,粘度与聚合物含量的关系见图3-2. 因而反应产生黏胶效应。单体反应不易进行完全,残存的单体应进行后处理除去。 3.1.2.2 聚合反应器 自由基本体聚合反应器大致分为以下类型。 1.形状一定的模型 适用于本体浇铸聚合,如甲基丙烯酸甲酯经浇铸聚合以生产有机玻璃板、管、棒材等。 模型的形状与尺寸根据制品要求而定,但要考虑这种反应装置无搅拌器,其聚合条件应根据聚合热传导条件而定。如以水作为散热介质即模型放在水箱中进行聚合,散热条件较好,聚合时间可缩短,但反应末期须进行加热以使反应近于完全时,加热最高温度为100℃。如在烘箱中进行聚合则散热条件较差,聚合时间较在水箱中更长,但末期加热可超过100℃,单体反应较为完全。 浇铸用模型反应器厚度一般不超过2.5cm,因为过厚时,反应热不易散发,内部单体可能过热而沸腾,因而造成塑料浇铸制品内产生气泡而影响产品质量,由于单体转变为聚合物后体积收缩。因此作为模型的反应器如版型反应器,两层模板之间应具有适当弹性,避免聚

自由基聚合题库

? 1. 目前,悬浮聚合发主要用于生产( )。
A. PVC、PVDC C. PE
正确答案:A.
B. PS D. PP
? 2. 下列单体中可进行自由基、阴离子、阳离子聚合反应的是( )。
A. 氯乙烯 B. 苯乙烯 C. 乙烯 D. 醋酸乙烯 正确答案:B.
? 3. 聚乙烯醇的单体是( )。
A. 乙烯醇 B. 乙醇
C. 乙醛
D. 醋酸乙烯酯
正确答案:D.
? 4. 典型乳液聚合中,主要引发地点是在 ( )。
A. 单体液滴 B. 胶束 C. 水相 D. 单体液滴和胶束 正确答案:B.
? 5. 过硫酸钾引发剂属于( )。
A. 氧化还原引发剂 B. 水溶性引发剂 C. 油溶性引发剂 D. 阴离子引发剂 正确答案:B.
? 6. 在自由基聚合中,若初级自由基与单体的引发速度较慢,则最终聚合速率与单体浓 度呈( )级关系。
A. 1 C. 2
正确答案:B.
B. 1.5 D. 不能确定
? 7. 苯醌是常用的分子型阻聚剂,一般用单体的( )就能达到阻聚效果。
A. 1.0%一 0.5% C. 2.0%一 5.0% 正确答案:D.
B. 1.0%一 2.0% D. 0.1%一 0.001%
? 8. ( )的自由基是引发聚合反应常见的自由基。

A. 高活性 B. 低活性 C. 中等活性 D. 无活性 正确答案:C.
? 9. 某工厂用 PVC 为原料制搪塑制品时,从经济效果和环境考虑,他们决定用( )聚合 方法。
A. 本体聚合法生产的 PVC C. 乳液聚合法生产的 PVC
正确答案:C.
B. 悬浮聚合法生产的 PVC D. 溶液聚合法生产的 PVC
? 10. 自由基链转移反应中,不可能包括活性链向( )的转移。
A. 高分子 B. 单体 C. 引发剂 D. 溶剂
? 1. 对于自由基聚合,在其他条件保持不变的前提下升高聚合温度,得到的聚合物的分 子量将( )。
A. 减小 B. 增大 C. 不变 D. 不一定 正确答案:B.
? 2. 在乙酸乙烯酯的自由基聚合反应中加入少量苯乙烯,会发生( )
A. 聚合反应加速 C. 相对分子量降低 正确答案:B.
B. 聚合反应停止 D. 相对分子量增加
? 3. 传统自由基聚合的机理特征是( )。
A. 慢引发,快增长,速终止 C. 快引发,快增长,难终止
正确答案:A.
B. 快引发,慢增长,不中止 D. 慢引发,慢增长,速终止
? 4. 合成丁基橡胶的主要单体是( )。
A. 异丁烯+丁二烯 C. 异丁烯
正确答案:B.
B. 异丁烯+异戊二烯 D. 丁二烯
? 5. 合成橡胶通常采用乳液聚合反应,主要是因为乳液聚合( )。
A. 产品较纯净
B. 易获得高分子量聚合物
C. 不易发生凝胶效应 D. 聚合反应容易控制

2.自由基聚合

2.自由基聚合 能否进行自由基聚合的判断位阻效应 判断:1,1—二取代易聚合,除大取代基如—C6H5外 1,2—二取代,除取代基为F以外都难聚合 双键上电荷密度大,不利于自由基进攻—烯丙基单体 取代基吸电性太强也不利于自由基聚合,如CH2=C(CN)2,CH2=CH(NO2) 3.(1)链引发: CH3C N CN C· CH3 CH3 CH3 N CH3 CN C CH32 CN +N2 CH2 CHCl CHCl · CN CH3 CH3C·+CH2 CH3 C CH3

(2)链增长: (3)链终止: 偶合: 歧化: 4.自由基聚合时转化率和分子量随时间变化的特征:转化率随时间逐步提高,中间有自加速现象,分子量随时间变化甚小(短时间后变化很小).与反应机理决定,连锁聚合时RM ·→Mn ·时间极短,没有中间停留阶段。 5.引发剂(1)偶氮二异丁腈(AIBN )、(2)偶氮二异庚腈(ABVN )、(3)过氧化二苯甲酰(BPO )、(4)过氧化二碳酸二乙基己酯(EHP )、(6)过硫酸钾-亚硫酸盐体系、(7)过氧化氢-亚铁盐体系的分解反应式见书本的P26~29,(5)异丙苯过氧化氢的见下面: 其中(1)~(5)为偶氮类和有机过氧类,属于油溶性引发剂常用于本体、悬浮和溶液(有机溶剂)聚合,(6)(7)为水溶性氧化-还原体系,适合于水溶液和乳液聚合。 CH 2CHCl CHCl ·CH 2 CH 3 CN C CH 3CHCl ·CH 3C CH 3+CH 2CH 2CHCl CHCl CH 3C CH 3CH 2n-1CH 2CHCl · CH 2CHCl CH 3C CH 3CH 2CHCl CH 3CN C CH 32n 2CHCl CH 3 CN C CH 3CH 2n-1 CH 2CHCl ·2CHCl CH 3C CH 3CH 2n-1CH 2CHCl · CHCl CH 2n-1CH 2CH 3C CH 3CH 2Cl CHCl CH 2n-1CH 3CN C CH 3CH CHCl +COOH CO · ·OH CH 3 C CH 3CH 3C CH 3+

教材习题参考答案解析_第三章自由基聚合

教材习题参考答案 第三章自由基聚合 思考题 1.烯类单体家具有下列规律: ①单取代和1,1-双取代烯类容易聚合, 而1,2-双取代烯类难聚合;②大部分烯类单体能自由基聚合,而能离子聚合的烯类单体却很少,试说明原因。 2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 CH2=CHCl CH2=CCl2 CH2=CHCN CH2=C(CN)2 CH2=CHCH3 CH2=C(CH3)2 CH2=CHC6H5 CF2=CF2 CH2=C(CN)COOR CH2=C(CH3)-CH=CH2 答:CH2=CHCl:适合自由基聚合,Cl原子是吸电子基团,也有共轭效应,但均较弱。 CH2=CCl2:自由基及阴离子聚合,两个吸电子基团。 CH2=CHCN:自由基及阴离子聚合,CN为吸电子基团。 CH2=C(CN)2:阴离子聚合,两个吸电子基团(CN)。 CH2=CHCH3:配位聚合,甲基(CH3)供电性弱。 CH2=CHC6H5:三种机理均可,共轭体系。 CF2=CF2:自由基聚合,对称结构,但氟原子半径小。 CH2=C(CN)COOR:阴离子聚合,取代基为两个吸电子基(CN及COOR) CH2=C(CH3)-CH=CH2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH2=C(C6H5)2 ClCH=CHCl CH2=C(CH3)C2H5 CH3CH=CHCH3 CH2=CHOCOCH3 CH2=C(CH3)COOCH3 CH3CH=CHCOOCH3 CF2=CFCl 答:CH2=C(C6H5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl:不能,对称结构。 CH2=C(CH3)C2H5:不能,二个推电子基,只能进行阳离子聚合。 CH3CH=CHCH3:不能,结构对称。 CH2=CHOCOCH3:醋酸乙烯酯,能,吸电子基团。 CH2=C(CH3)COOCH3:甲基丙烯酸甲酯,能。 CH3CH=CHCOOCH3:不能,1,2双取代,位阻效应。 CF2=CFCl:能,结构不对称,F原子小。 第三章自由基聚合 计算题

自由基聚合习题参考答案

第3章自由基聚合-习题参考答案 1判断下列单体能否进行自由基聚合?并说明理由 CN H ?C 二 c COOCH 3 答: (1) 可以。Cl 原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只 能自由基聚合。 ⑵可以。 为具有共轭体系的取代基。 ⑶可以。 结构不对称,极化程度高,能自由基聚合。 ⑷可以。 结构对称,无诱导效应共轭效应,较难自由基聚合。 ⑸不能。 1 , 1 一本基乙烯,一个本基具有很强的共轭稳疋作用,形成的稳疋自由基不 能进一步反应。 (6) 可以。吸电子单取代基。 (7) 不可以。1,1双强吸电子能力取代基。 (8) 不可以。甲基为弱供电子取代基。 (9)可以。 氟原子半径较小,位阻效应可以忽略不计。 (10) 不可以。 由于位阻效应,及结构对称,极化程度低,难自由基聚合 (11) 可以。1,1-双取代。 (12) 可以。1,1-双取代吸电子基团。 (13) 不可以。1,2-双取代,空间位阻。但可进行自由基共聚。 2、试比较自由基聚合与缩聚反应的特点。 H 2C 二 CHCI H 2C CH H 2C 二 CCI 2 H 2C 二 CH 2 H 2C 二CHCN H 2C 二 C(CN)2 H 2C 二CHCH 3 F 2C 二 CF 2 CIHC 二 CHCI CH 3 H 2C 二 C COOCH 3 HC 二 CH OC CO

答: 自由基聚合: (1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。 (2)单体加到少量活性种上,使链迅速增长。单体- 单体,单体-聚合物,聚合物- 聚合物之间均不能反应。 (3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。聚合一开始就有高聚物产生。 (4)在聚合过程中,单体逐渐减少,转化率相应增加 (5)延长聚合时间,转化率提高,分子量变化较小。 (6)反应产物由单体,聚合物,微量活性种组成。 (7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。 缩聚反应: (1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。 (2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。 (3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。 (4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。 (5)延长缩聚时间分子量提高,而转化率变化较小。 (6)任何阶段都由聚合度不等的同系缩聚物组成。 (7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。 3、解释下列概念: 歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合, 答: 歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。偶合终止:两链自由基的独电子相互结合成共价键的终止反应。引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,

第3章自由基聚合生产工艺

第3章自由基聚合生产工艺 3.1 自由基聚合工艺基础 ◆自由基聚合反应是当前高分子合成工业中应用最广泛 的化学反应之一 ◆自由基聚合反应适用单体:乙烯基单体、二烯烃类单体 ◆自由基聚合产物: 合成橡胶(Tg <室温):常温下为弹性体状态 合成树脂(Tg >室温):常温下为坚硬的塑性体,主要用作塑料、合成纤维、涂料等的原料 高分子合成工业中自由基聚合反应的四种实施方法:本体聚合、乳液聚合、悬浮聚合、溶液聚合 合成树脂可用四种聚合方法进行生产。乳液聚合方法是目前唯一的用自由基反应生产合成橡胶的工业生产方法。 聚合方法的选择主要取决于根据产品用途所要求的产品形态和产品成本。 高聚物生产中采用的聚合方法、产品形态与用途以及工艺特点分别见下表1、表2。

表2 四种聚合方法的工艺特点 3.1.1 自由基聚合引发剂 引发剂是自由基聚合反应中的重要试剂。 除少数单体(如St)的本体聚合或悬浮聚合可以受热引发以外,绝大多数单体的聚合反应在工业上都是在引发剂的存在下实现的。 引发剂应具备的条件:①在聚合温度范围内有适当的分解速度常数;②所产生的自由基具有适当的稳定性。引发剂用量:一般仅为单体量的千分之几 1.引发剂种类 (1) 按引发剂的溶解性能分 油溶性引发剂:本体、悬浮与有机溶剂中的溶液聚合 水溶性引发剂:乳液聚合和水溶液聚合 (2) 按化学结构分 过氧化物:大多数是有机过氧化物 偶氮化合物: 氧化-还原引发体系: ① 过氧化物类 通式:R-O-O-H 或 R-O-O-R (R 可为烷基、芳基、酰基、碳酸酯基、磺酰基等) 特点:分子中均含有-O-O-键,受热后-O-O-键断裂而生成相应的两个自由基 有机过氧化物分解产生的初级自由基的副反应 重要的有夺取溶剂分子或聚合物分子中的H 原子,两个初级自由基偶合,本分子歧化或与未分解的引发 剂作用产生诱导分解作用 CH 3CH 3CH 3C O O H CH 3CH 3CH 3C O OH CH 3CH 3CH 3C O CH 3 CH 3CH 3C O CH 3CH 3CH 3C O 2RO CH 2C X CH 3CH CH 3C C CH 3CH 3本分子岐化

相关文档