文档库 最新最全的文档下载
当前位置:文档库 › 移位寄存器逻辑功能测试及应用

移位寄存器逻辑功能测试及应用

移位寄存器逻辑功能测试及应用
移位寄存器逻辑功能测试及应用

实验八移位寄存器逻辑功能测试及应用

一、实验目的:

1、掌握中规模4位双向移位寄存器逻辑功能及使用方法;

2、熟悉移位寄存器的应用——构成环形计数器和实现数据的串行、并行转换。

二、实验原理:

移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。本实验选用的4位双向移位寄存器,型号为74LS194,其引脚排列如图11—1所示。

移位寄存器不仅可以组成串行—并行数码转换器,还可以方便地组成移位寄存器型计数器、脉冲分配器等电路。常用的移位寄存器有环行计数器和扭环型计数器。

图11—1 74LS194引脚排列及功能

三、实验仪器及器材:

实验仪器设备:DGJ—2型电工技术实验装置(D71—2数电实验挂箱)

集成块:74LS194 74LS04

四、实验内容与步骤:

1、验证移位寄存器74LS194的逻辑功能:

计数脉冲由单次脉冲源提供,清零端、工作状态控制端M1 M2、并行数据输入端D0—D3、DS L为左移串行数据输入端、DS R右移串行数据输入端分别接逻辑电平开关,输出端Q0—Q3均接逻辑电平显示。按如下逐项测试并判断该集成块的功能是否正常。

(1)异步清零功能:当=0时,这时Q3Q2Q1Q0=0000,双向移位寄存器清零。其它输入信号都不起作用,与CP无关,故称为异步清零。

(2)保持功能:当=1,且CP=0或M1 =M2=0时,双向移位寄存器保持状态不变。

(3)同步并行送数功能:当=1,M1=M2=1时,在CP上升沿操作下,并行输入数据d3 d2 d1 d0送入寄存器。

(4)右移串行送数功能:当=1,M1=0、M2=1时,在CP上升沿操作下,可依次把加在端的数据从时钟触发器行送入寄存器中。

(5)左移串行送数功能:当=1,M1=1、M2=0时,在CP上升沿操作下,可依次把加在DS L端的数据从时钟触发器串行送入寄存器中。

2、用74LS194构成环行计数器,画出实验电路图及其状态图,并陈述电路功能。

3、用74LS194构成扭环行计数器,画出实验电路图及其状态图,并陈述电路功能。

五、实验报告要求

整理实验数据,总结本次实验的收获与体会。

1

集成触发器及其应用电路设计

华中科技大学 电子线路设计、测试与实验》实验报告 实验名称:集成运算放大器的基本应用 院(系):自动化学院 地点:南一楼东306 实验成绩: 指导教师:汪小燕 2014 年6 月7 日

、实验目的 1)了解触发器的逻辑功能及相互转换的方法。 2)掌握集成JK 触发器逻辑功能的测试方法。 3)学习用JK 触发器构成简单时序逻辑电路的方法。 4)熟悉用双踪示波器测量多个波形的方法。 (5)学习用Verliog HDL描述简单时序逻辑电路的方法,以及EDA技术 、实验元器件及条件 双JK 触发器CC4027 2 片; 四2 输入与非门CC4011 2 片; 三3 输入与非门CC4023 1 片; 计算机、MAX+PLUSII 10.2集成开发环境、可编程器件实验板及专用电缆 三、预习要求 (1)复习触发器的基本类型及其逻辑功能。 (2)掌握D触发器和JK触发器的真值表及JK触发器转化成D触发器、T触发器、T 触发器的基本方法。 (3)按硬件电路实验内容(4)(5),分别设计同步3 分频电路和同步模4 可逆计数器电路。 四、硬件电路实验内容 (1)验证JK触发器的逻辑功能。 (2)将JK触发器转换成T触发器和D触发器,并验证其功能。 (3)将两个JK触发器连接起来,即第二个JK触发器的J、K端连接在一起, 接到第一个JK触发器的输出端Q两个JK触发器的时钟端CP接在一起,并输入1kHz 正方波,用示波器分别观察和记录CP Q、Q的波形(注意它们之间的时序关系),理解2分频、4分频的概念。 (4)根据给定的器件,设计一个同步3分频电路,其输出波形如图所示。然后组装电路,并用示波器观察和记录CP Q、Q的波形。 (5)根据给定器件,设计一个可逆的同步模4 计数器,其框图如图所示。图中,M为控制变量,当M=0时,进行递增计数,当M=1时,进行递减计数;Q、 Q为计数器的状态输出,Z为进位或借位信号。然后组装电路,并测试电路的输入、输出

触发器逻辑功能测试及应用

实验六触发器逻辑功能测试及应用 一、实验目的: 1、掌握基本RS、JK、D、T与T′触发器的逻辑功能; 2、学会验证集成触发器的逻辑功能及使用方法; 3、熟悉触发器之间相互转换的方法。 二、实验原理: 触发器:根据触发器的逻辑功能的不同,又可分为: 三、实验仪器与器件: 实验仪器设备:D2H+型数字电路实验箱。 集成块:74LS112 74LS74 74LS04 74LS08 74LS02 74LS86 四、实验内容与步骤: 1、基本RS触发器逻辑功能的测试: CP J K S-D R-D 下降沿0 0 1 1 0 0 下降沿0 1 1 1 0 0 下降沿 1 0 1 1 0 1 下降沿 1 1 1 1 1 0 3、D触发器逻辑功能测试: D CP S-D R-D Q X X 0 1 0 X X 1 0 1 (2)D触发器逻辑功能测试: CP J K D S D R Q ×××0 1 0 ××× 1 0 1

D CP S-D R-D 0 上升沿 1 1 1 0 1 上升沿 1 1 0 1 4、不同类型时钟触发器间的转换: JK转换为D触发器: J D K D Q D DQ Q Q D D Q Q K Q J Q n n n n n n n n = = + = + = = + = + + ; ) ( 1 1 D转换为JK 触发器: n n n n n n Q J Q K D D Q Q K Q J Q = = = + = + + 1 1 JK转换为T触发器: K J T Q T Q T Q n n n = = + = +1 T转换为JK触发器: JK转换为RS触发器:RS转换为JK触发器: 五、实验体会与要求: 1、根据实验结果,写出各个触发器的真值表。 2、试比较各个触发器有何不同? 3、写出不同类型时钟触发器间的转换过程。 1

触发器的功能测试及应用 建筑电气

实验七 触发器的功能测试及应用 一、实验目的 (1)通过实验验证J —K 触发器和D 触发器的逻辑功能,从而加深对触发器工作原理的理解; (2)掌握用触发器组成二进制加、减法计数器的方法。 二、预习要求 (1)复习J —K 触发器和D 触发器的工作原理; (2)熟悉CT74LS112双J —K 触发器和CT74LS74双D 触发器的逻辑功能、逻辑符号和外引线排列; (3)认清触发器的功能表,掌握上升沿和下降沿触发有什么不同; (4)复习用触发器组成异步二进制加减计数器的工作原理。 三、实验原理及参考电路 触发器是具有记忆功能的基本逻辑单元,其种类很多,本实验采用逻辑功能较全、用途 和置0端D R 都为低电平有效,且与CP 端状态无关,触发器处于工作状态时,D S 和D R 必须都接高电平。JK 触发器利用CP 的下降沿触发,D 触发器利用CP 的上升沿触发。

四、实验内容和步骤 1.验证JK 触发器的逻辑功能 将CT74LS112集成块插入实验箱的集成电路底座上,认清有关插线柱和电路外引线的对应关系。 将双JK 触发器中一个触发器的D S 、D R 、J 、K 输入端分别接实验箱的逻辑开关,CP 端接单次脉冲,Q 、Q 接发光二极管。检查无误后接通5V 直流电源,并按表2-7-1逐项验证JK 触发器的功能。 2.验证D 触发器的逻辑功能 将CT74LS74集成块插入实验箱的集成电路底座上,将其中一个触发器的D S 、D R 、D 输入端分别接实验箱的逻辑开关,CP 端接单次脉冲,Q 、Q 接发光二极管。检查无误后接通5V 直流电源,并按表2-7-2逐项验证D 触发器的功能。

8位移位寄存器的电路设计与版图实现

8位移位寄存器的电路设计与版图实现 摘要 电子设计自动化,缩写为EDA,主要是以计算机为主要工具,而Tanner EDA则是一种在计算机windows平台上完成集成电路设计的一种软件,基本包括S-Edit,T-Spice,W-Edit,L-Edit与LVS等子软件,其S-Edit以及L-Edit为常用软件,前者主要实现电路设计,后者主要针对的是已知电路的版图绘制,而T-Spice主要可实现电路图及版图的仿真,可以用Tanner EDA实现电路的设计布局以及版图实现等一系列完整过程。本文用Tanner EDA工具主要设计的是8位移位寄存器,移位寄存器主要是用来实现数据的并行和串行之间的转换以及对数据进行运算或专业处理的工具,主要结构构成是触发器,触发器是具有储存功能的,可以用来储存多进制代码,一般N 位寄存器就是由N个触发器构成,移位寄存器工作原理主要是数据在其脉冲的作用下实现左移或者右移的效果,输入输出的方式表现为串行及并行自由组合,本设计就是在Tanner EDA的软件平台上进行对8位移位寄存器的电路设计仿真,再根据电路图在专门的L-Edit 平台上完成此电路的版图实现,直至完成的结果和预期结果保持一致。 关键词:Tanner EDA;L-Edit;移位寄存器,S-Edit

8 bits shift register circuit design and layout Abstract Electronic design automation,referred to as EDA,it is based on computers as the main tool,and Tanner EDA is a kind of software that complete the integrated circuit design on Windows platforms.Its Sub-Softwares include S-Edit,T-Spice,W-Edit,L-Edit and LVS and so on.S-Edit and L-Edit are commonly used software,S-Edit is primarily designed to achieve circuit,the latter is aimed primarily known circuit layout drawing,T-Spice can achieve schematic and layout simulation.We can achieve layout of the circuit design and a series of complete process layout used Tanner EDA tools.In this paper, Tanner EDA tools are mainly designed an 8-bit shift register.The shift register is mainly used for data conversion between parallel and serial, and the data processing tool operation or professional,its main structure is the trigger composition,flip-flop is a storage function,it can be used to store more hexadecimal code,In general N-bits register is composed of N trigger.Working principle of the shift register data under the action of the pulse, mainly the effect of the shift to the left or right,input and output of the way of serial and parallel free combination.This design is in Tanner on the EDA software platform to 8 bits shift register circuit design and simulation,then according to the circuit diagram on special L - Edit platform to complete the circuit layout implementation,until the finish is consistent with the results and expected results. Keywords:Tanner EDA;L-Edit;Shift register,S-Edit

数电实验触发器及其应用

数电实验触发器及其应用 数字电子技术实验报告 实验三: 触发器及其应用 一、实验目的: 1、熟悉基本RS触发器,D触发器的功能测试。 2、了解触发器的两种触发方式(脉冲电平触发和脉冲边沿触发)及触发特点 3、熟悉触发器的实际应用。 二、实验设备: 1 、数字电路实验箱; 2、数字双综示波器; 3、指示灯; 4、74LS00、74LS74。 三、实验原理: 1、触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序 电路的最基本逻辑单元,也是数字逻辑电路中一种重要的单元电路。在数字系统和计算机中有着广泛的应用。触发器具有两个稳定状态,即“0”和“ 1 ”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。触发器有集成触发器和门电路(主要是“与非门” )组成的触发器。 按其功能可分为有RS触发器、JK触发器、D触发器、T功能等触发器。触发方式有电平触发和边沿触发两种。 2、基本RS触发器是最基本的触发器,可由两个与非门交叉耦合构成。 基本RS触发器具有置“ 0”、置“ 1”和“保持”三种功能。基本RS触发器

也可以用二个“或非门”组成,此时为高电平触发有效。 3、D触发器在CP的前沿发生翻转,触发器的次态取决于CP脉冲上升沿n+1来到之前D端的状态,即Q = D。因此,它具有置“ 0”和“T两种功能。由于在CP=1期间电路具有阻塞作用,在CP=1期间,D端数据结构变RS化,不会影响触发器的输出状态。和分别是置“ 0”端和置“ 1” DD 端,不需要强迫置“ 0”和置“ 1”时,都应是高电平。74LS74(CC4013, 74LS74(CC4042均为上升沿触发器。以下为74LS74的引脚图和逻辑图。 馬LD 1CP 1云IQ LQ GM) 四、实验原理图和实验结果: 设计实验: 1、一个水塔液位显示控制示意图,虚线表示水位。传感器A、B被水浸沿时

EDA课程设计——移位寄存器的设计与实现

河南科技大学 课程设计说明书 课程名称 EDA技术与应用 题目移位寄存器的设计与实现 学院 班级 学生姓名 指导教师 日期

EDA技术课程设计任务书 班级:姓名:学号: 设计题目:移位寄存器的设计与实现 一、设计目的 进一步巩固理论知识,培养所学理论知识在实际中的应用能力;掌握EDA设计的一般方法;熟悉一种EDA软件,掌握一般EDA系统的调试方法;利用EDA软件设计一个电子技术综合问题,培养VHDL编程、书写技术报告的能力。为以后进行工程实际问题的研究打下设计基础。 二、设计任务 根据计算机组成原理中移位寄存器的相关知识,利用VHDL语言设计了三种不同的寄存器:双向移位寄存器、串入串出(SISO)移位寄存器、串入并出(SIPO)移位寄存器。 三、设计要求 (1)通过对相应文献的收集、分析以及总结,给出相应课题的背景、意义及现状研究分析。 (2)通过课题设计,掌握计算机组成原理的分析方法和设计方法。 (3)学习按要求编写课程设计报告书,能正确阐述设计和实验结果。 (4)学生应抱着严谨认真的态度积极投入到课程设计过程中,认真查阅相应文献以及实现,给出个人分析、设计以及实现。 四、设计时间安排 查找相关资料(1天)、设计并绘制系统原理图(2天)、编写VHDL程序(2天)、调试(2天)、编写设计报告(2天)和答辩(1天)。 五、主要参考文献 [1] 江国强编著. EDA技术与实用(第三版). 北京:电子工业出版社,2011. [2] 曹昕燕,周凤臣.EDA技术实验与课程设计.北京:清华大学出版社,2006.5 [3] 阎石主编.数字电子技术基础.北京:高等教育出版社,2003. [4] Mark Zwolinski. Digital System Design with VHDL.北京:电子工业出版社,2008 [5] Alan B. Marcovitz Introduction to logic Design.北京:电子工业出版社,2003 指导教师签字:年月日

实验十七、移位寄存器74164的逻辑功能测 试

实验十七、移位寄存器74164的逻辑功能测 试 一、实验目的 1、掌握中规模8位移位寄存器逻辑功能。 2、认识74LS164及其引脚封装。 二、实验预习要求 1、复习有关寄存器的内容。 2、查阅74LS164及逻辑电路,熟悉其逻辑功能及引脚排 列。 三、实验设备 1、+5V直流电源 2、单次脉冲源 3、逻辑电平开关 4、DM74LS164 四、实验原理 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中锁存的代码能够在移位脉冲的作用下一次左移和右移。既能左移又能右移称为双向移位寄存器,只需要改变左、右移的控制信号可实现双向移位要求。根据移位寄存器取存信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的8位移位寄存器,型号可为74LS164,其逻辑符号及引脚排列如图所示。 其中A、B为串行输入端;

CLR为异步清零端; QH—QA为输入端; CLK为移位脉冲输入端; 74164是一种串行输入、并行输出的器件,时钟高电平有效,没有时钟使能端,该器件用低电平复位 图1 74LS164的逻辑符号及引脚功能表其中QAO、QBO、QHO为在暂稳态输入条件建立之前QA、QB和QH相应的电平;QAN、QGN为在最近的时钟上升沿转换前QA或QG的电平,表示移一位。 移位寄存器应用很广,可构成移位寄存器型计数器;属虚脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换位并行数据,或把并行数据转换位串行数据等。 五、实验内容 1、测试74LS164的逻辑功能 按图所示接线,A、B、CLK分别接至逻辑电平显示输入端。QA—QH分别接至逻辑电平显示输出端。14脚接+5V电源、7脚接地。

触发器及其应用实验报告 - 图文-

实验报告 一、实验目的和任务 1. 掌握基本RS、JK、T和D触发器的逻辑功能。 2. 掌握集成触发器的功能和使用方法。 3. 熟悉触发器之间相互转换的方法。 二、实验原理介绍 触发器是能够存储1位二进制码的逻辑电路,它有两个互补输出端,其输出状态不仅与输入有关,而且还与原先的输出状态有关。触发器有两个稳定状态,用以表示逻辑状态"1"和"0飞在二定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存储器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 图14-1为由两个与非门交叉祸合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。 基本RS触发器具有置"0"、置"1"和保持三种功能。通常称s为置"1"端,因为 s=0时触发器被置"1"; R为置"0"端,因为R=0时触发器被置"0"。当S=R=1时状态保持,当S=R=0时为不定状态,应当避免这种状态。

基本RS触发器也可以用两个"或非门"组成,此时为高电平有效。 S Q S Q Q 卫R Q (a(b 图14-1 二与非门组成的基本RS触发器 (a逻辑图(b逻辑符号 基本RS触发器的逻辑符号见图14-1(b,二输入端的边框外侧都画有小圆圈,这是因为置1与置。都是低电平有效。 2、JK触发器 在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。引脚逻辑图如图14-2所示;JK触发器的状态方程为: Q,,+1=J Q"+K Q 3 5

J Q CLK K B Q 图14-2JK触发器的引脚逻辑图 其中,J和IK是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成"与"的关系。Q和Q为两个互补输入端。通常把Q=O、Q=1的状态定为触发器"0"状态;而把Q=l,Q=0 定为"}"状态。 JK触发器常被用作缓冲存储器,移位寄存器和计数器。 CC4027是CMOS双JK触发器,其功能与74LS112相同,但采用上升沿触发,R、S端为高电平

数字电路 触发器的功能测试实验报告

肇 庆 学 院 电子信息与机电工程 学院 数字电路 课 实验报告 12电气(1) 班 姓名 李俊杰 学号 201224122119 实验日期2014年5 月19 日 实验合作者:王圆圆 老师评定 实验题目:触发器的功能测试 一、实验目的 (一)掌握基本RS 触发器的功能测试。 (二)掌握集成触发器的电路组成形式及其功能。 (三)熟悉时钟触发器不同逻辑功能之间的相互转换。 (四)认识触发器构成的脉冲分频电路。 二、实验仪器: DZX-1型电子学综合实验装置 UT52万用表 GDS-806S 双踪示波器 74LS00 74LS74 74LS76 三、实验内容&数据分析 触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一种具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。第一步,将触发器74LS74、74LS76引出端排列图和状态表画在实验报告上。(注:此项内容必须在进实验室前完成。) (一)测试基本RS 触发器的逻辑功能 用两个与非门组成基本RS 触发器如图4-1,输入端R ,S 接逻辑电平开关输出插口,输出端Q 、Q 接逻辑电平显示插口,按表4-1要求测试。 表4-1 基本RS 触发器特性表(输入低电平有效) 图4-1 由74ls00连接成的基本RS 触发器 测试集成双JK 触发器74LS76的逻辑功能 1、测试D R 、 D S 端的复位、置位功能

74LS76逻辑符号如图4-2,对照其插脚(查阅附录B )取其中一JK 触发器,D R 、 D S 、J 、K 端分别接逻辑电平开关输出插口,CP 接单次脉冲源(正脉冲),Q 、Q 接至逻辑电平显示输入插口。要求在D R =0, D S =1以及 D S =0,D R =1时任意改变J 、K 及CP 的状态用“ⅹ”符 号表示,观测Q 、Q 状态。 图4-2 74LS76管脚排列 2、测试触发器的逻辑功能 按表4-2的要求改变J 、K 、CP 端状态,记录Q 的状态变化,观察触发器状态的更新发生在CP 脉冲(单脉冲)的上降沿还是下降沿?(注意D R 、D S 端的电平接法) 表4-3 集成双JK 触发器74LS76特性表2 图4-2 JK 触发器逻辑符号 3、JK 触发器的J 、K 端连在一起,构成T ’触发器。 在CP 端输入1MHZ 连续脉冲,用双踪示波器观察CP 、Q 端的波形,注意相位与时间的关系。

(整理)实验-寄存器.

实验十一移位寄存器及其应用 一、实验目的: 1、熟悉中规模4位双向移位寄存器的逻辑功能并掌握其使用方法; 2、熟悉移位寄存器的应用典例一——构成串行累加器和环形计数器。 二、实验原理: 1、移位寄存器是一种具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的移位寄存器称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位。根据存取信息的方式不同移位寄存器可分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为74LS194或CC40194,两者功能相同, S L为左移串行输入端;S1、S0为操作模式控制端;CR为异步清零端;CP为时钟脉冲输入端。 74LS194有5种不同操作模式:并行送数寄存,右移(方向由Q3至Q0),左移(方向由Q0至Q3),保持及清零。S1、S0和CR 端的控制作用如表11-1所示。表11-1

2、移位寄存器的应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验主要研究移位寄存器用作环形计数器和串行累加器的线路连接及其原理。 (1)环形计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图11-2所示,把输出端Q3和右移串行输入端S R相连接,设初始状态Q3Q2Q1Q0=1000,则在时钟脉冲的作用下Q3Q2Q1Q0将依次变为0100、0010、0001、1000-----,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图11-2电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。 (2)串行累加器 累加器是由移位寄存器和全加器组成的一种求和电路,它的功能是将本身寄存的数和另一个输入的数相加,并存放在累加器中。 图11-2 图11-3是由两个右向移位寄存器、一个全加器和一个进位触发器组成的串行累加器。 设开始时,被加数A=A N-1.....A O和加数B=B N-1......B O已分别存入N+1位累加数移位寄存器和加数移位寄存器。再设进位触发器D已被清零。 在第一个CP脉冲到来之前,全加器各输入、输出端的情况为:A N=A0,B N=B0,C N-1=0,S N=A0+B0+0=S0,C N=C0。 当第一个CP脉冲到来后,S0存入累加和移位寄存器的最高位,C0存入进位触发器D端,且两个移位寄存器中的内容都向右移动一位。全加器输出为S N=A1+B1+C0=S1,C N=C1。

基本触发器功能验证实验

基本触发器功能验证实验预习参考 (注意:所有表格均可用状态方程提前填好) 1、 R S 触发器 图1-5-1基本RS 触发器的原理图,公式(1-5-1)是RS 触发器的状态方程。 n n n n RQ Q Q S Q ==++1 1 (1-5-1 ) 图1-3-3基本RS 触发器 表1-5-1 R S Q (V ) Q (V ) 触发器状态 0 1 1 0 1 1 0 0 1 1

图1-3-4基本RS 触发器实验连线图 2、D 触发器 图1-5-2基本RS 触发器的原理图,公式(1-5-2)是D 触发器的状态方程。 D Q n =+1 (1-4-2) (CP 上升沿有效) 图1-3-5 D 触发器IC 引脚图 表1-5-2 测试D 触发器置位、复位功能 CP D D R D S 1+n Q (V ) 1+n Q (V ) Q 状态 ф ф 1 ф ф 1 0

表1-5-3 D触发器同步功能测试 Qn 0 0 1 1 D 0 1 0 1 CP 0 ?0 ?0 ?0 ?Qn+1 图1-3-6 D触发器实验测试图

图1-3-7 D触发器实验测试图 3、JK触发器 图1-5-3JK触发器的原理图,公式(1-4-3)是JK触发器的状态方程。 +1(1-5-3) n Q n n = Q+ Q K J (CP下降沿有效) 图1-3-8 JK触发器的原理图

表1-5-4测试JK触发器逻辑功能 CP ? ? ? ?J 0 0 0 0 1 1 1 1 K 0 0 1 1 0 0 1 1 Qn 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Qn+1 图1-3-9 JK触发器原理测试图

实验七移位寄存器及其应用

实验七移位寄存器及其应用 一、实验目的 1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。 2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。 二、实验原理 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图7-1所示。 图7-1 CC40194的逻辑符号及引脚功能 其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串 C为直接无条件清零端;行输入端,S L为左移串行输入端;S1、S0为操作模式控制端;R CP为时钟脉冲输入端。 CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0→Q3),左移(方向由Q3→Q0),保持及清零。 S1、S0和R C端的控制作用如表7-1。

2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。 (1)环形计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位, 如图7-2所示,把输出端Q3和右移串行输入端S R 相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲作用下Q0Q1Q2Q3将依次变为0100→0010→0001→1000→……,如表7-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图7-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。 图7-2 环形计数器 如果将输出Q O与左移串行输入端S L相连接,即可达左移循环移位。 (2)实现数据串、并行转换 ①串行/并行转换器 串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。 图7-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数据转换电路。

触发器实验报告

触发器实验报告 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验报告 课程名称:数字电子技术基础实验 指导老师: 周箭 成绩:__________________ 实验名称:集成触发器应用 实验类型: 同组学生姓名:__邓江毅_____ 一、实验目的和要求(必填) 二、实验内容和原 理(必填) 三、主要仪器设备(必填) 四、操作方法和实 验步骤 五、实验数据记录和处理 六、实验结果与分 析(必填) 七、讨论、心得 实验内容和原理 1、D →J-K 的转换实验 设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1+n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:n n Q Q J =D K +。 实验结果: J K Qn-1 Qn 功能 0 0 0 0 保持 1 1 0 1 0 0 置0 1 0 1 1 0 1 翻转 1 0 1 0 1 置1 1 1 实验截图: 专业:电卓1501 姓名:卢倚平 学号: 日期:地点:东三404

(上:Qn ,下:CP ,J 为高电平时) 2、D 触发器转换为T ’触发器实验 设计过程:D 触发器和T ’触发器的次态方程如下: D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n 若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。 实验截图: (上:Qn ,下:!Qn )CP 为1024Hz 的脉冲。 3、J-K →D 的转换实验。 ①设计过程: J-K 触发器:n n 1+n Q Q J =Q K , D 触发器:Qn+1=D 若将J-K 触发器转换为D 触发器,则二者的次态方程须相等,因此有:J=D ,K=!D 。 实验截图:

计数器和移位寄存器设计仿真实验报告

实验四典型时序电路的功能测试与综合仿真报告 张智博 一.74LS290构成的24位计数器 方法:第一片74290的Q3与第二片的INB相连,R01,R02相连,INA,R91,R92悬空构成24位计数器。50Hz,5v方波电压源提供时钟信号,用白炽灯显示输出信号。 实验电路: 实验现象:

输出由000000变为000001,000010,000011,000100,001000,001001,001010,001011,001100,010001,010000,010010,010011,010100,011000,011001,011010,011011,011100,100000,100001,100010,100011,100100,最终又回到000000,实现一次进位。 二.74LS161构成的24位计数器 方法:运用多次置零法 用两片74LS161构成了24位计数器,两片计数器的时钟信号都由方波电压源提供,第一片芯片的Q3和第二片芯片的Q0通过与非门,构成两个74LS161的LOAD信号,第一片的CO接第二片的ENT,其他ENT和ENP接Vcc(5v)。输出接白炽灯。 电路图:

实验现象:以下为1—24的计数过程

三.74LS194构成的8位双向移位寄存器 方法:通过两片194级联,控制MA,MB 的值,来控制左右移动 实验电路由两片74LS194芯片构成。两个Ma 接在一起,两个Mb 接在一起,第一片的

Dr,第二片的Dl,分别通过开关接到Vcc(5v)上。第一片的Q3接到第二片的Dr,第二片的Q0接到第一片的Dl。8个输出端分别接白炽灯。 实验电路: 实验现象: 右移: 接通Ma,Dr后,D0到D7全部为0,白炽灯从00000000变为,,,,,,,,实现右移功能。

D触发器及其应用实验报告

实验五D触发器及其应用 实验人员:班号:学号: 一、实验目的 1、熟悉D触发器的逻辑功能; 2、掌握用D触发器构成分频器的方法; 3、掌握简单时序逻辑电路的设计 二、实验设备 74LS00 ,74LS74,数字电路实验箱,数字双踪示波器,函数信号发生器 三、实验内容 1、用74LS74(1片)构成二分频器、四分频器,并用示波器观察波形; 74LS74是双D触发器(上升沿触发的边沿D触发器),其管脚图如下: 其功能表如下: ○1构成二分频器:用一片74LS74即可构成二分频器。实验电路图如下:

○2构成四分频器:需要用到两片74LS74。实验电路图如下: 2、实现如图所示时序脉冲(用74LS74和74LS00各1片来实现) 将欲实现功能列出真值表如下:

Q 1n+1=Q 0n =D 1 Q 0n+1=Q 1n ????=D 0 F ′=Q 1n Q 0n ???? F =F ′?CP 连接电路图如下: 四、实验结果 1、用74LS74(1片)构成二分频器、四分频器。示波器显示波形如下: ○ 1二分频器: ○ 2四分频器:

2、实现时序脉冲。示波器显示波形如下: 五、故障排除 在做“用74LS74(1片)构成二分频器、四分频器”时,连接上示波器后,发现通道二总显示的是类似于电容放电的波形,但表现出了二分频。反复排查问题均没有发现原因。最后换了一根连接示波器的线,便得到了理想的结果。 在示波器使用时想要用U盘保存电路波形,不会操作。后来在询问了同学之后才知道只需要按“print”就好。 六、心得体会 通过此次实验,我更深入地领悟了触发器的原理和用法,还复习了示波器的用法,还学会了如何保存示波器波形。

基本RS触发器逻辑功能测试

实训九基本R-S触发器功能测试 一、实训目的 1.通过实训熟悉基本RS触发器的逻辑功能与特点; 2.通过实训掌握基本RS触发器的测试方法; 3.通过实训熟悉异步输入信号RD、SD、RD、SD的作用; 4.通过实训掌握基本RS触发器的典型应用; 二、实训原理 基本RS触发器就是由两个与非门交叉耦合组成,它就是最基本的触发器,也就是构成其它复杂触发器电路的一个组成部分。当R D=S D=1时,两个与非门的工作都尤如非门,Q接至与非门G2的输入,使G2输出为Q;Q接至与非门G1的输入,使G1的输出为Q。从而使触发器维持输出状态不变。 三、实训仪器与设备 S303-4型(或其它型号)数字电路实训箱一只; SR8(或其它型号)双踪示波器一只; 直流稳压电源一台; 74LS00 二输入四与非门1片。 四、实训内容与步骤 1.两个TTL与非门首尾相接构成的基本R-S触发器的电路如图7-2-1所示逻辑电路。为 图9-1 基本R-S触发器功能测试 2.按表9-1所示的顺序在Sd、Rd两端信号,观察并记录R-S触发器Q端的状态,并将结果填入表9-1中 表9-1 3.Sd 4.Sd端接高电平,Rd端加脉冲。

5.令Sd=Rd,在Sd端加脉冲。 6.记录并观察2、3、4三种情况下,Q,Q n+1端的状态。从中总结基本R-S触发器的Q端的状态改变与输入端的关系。 五、实训思考题 试根据基本R-S触发器给定的输入信号波形画出与之对应的输出端的波形; 试写出基本R-S触发器的约束方程,并说明哪个就是复位端、哪个就是置位端? 六、训注意事项 接线时要注意电路图中各引脚的编号,连接时不要接错; 手动施加0、1输入电平时要注意开关动作的稳定性与可靠性,要避免开关的抖动; 用双踪示波器观察输出波形时,要注意选择一个较为合适的输入信号的频率。 实训十、计数器的功能测试 一、实训目的 1.掌握计数器的工作原理; 2.通过实训熟悉计数器的功能特点与典型应用; 3.通过实训掌握如何利用现有集成计数器来构成N进制计数器的方法。 二、实训原理 计数器就是一种含有若干个触发器、并按预定顺序改变各触发器的状态来累计输入脉冲个数的数字电路,被广泛应用于定时、分频及各种数字电路中。用JK触发器设计一个四位异步二进制加法器。CP接低频连续脉冲,输出接指示灯。观察指示灯的变化规律,写出状态图。 三、实训仪器与设备 1.S303-4型(或其它型号)数字电路实训箱一只; 2.SR8(或其它型号)双踪示波器一只; 3.直流稳压电源一台; 4.74LS00 二输入四与非门1片; 5.74LS160 十进制计数器1片; 6.74LS74 双D触发器2片; 7.74LS49 4线-七段译码器1片。 四、实训内容与步骤 六进制计数器,图10-1就是用74LS160实现六进制计数器的参考电路。当 Q3Q2Q1Q0=0111时,经过与非门所产生的零脉冲迅速使计数器清零,之后在输入CP脉冲的作用下,依次输出0000→0001→0010→0011→0100→0101→0000。输入低频连续脉冲,观察数码管的显示结果。

最新实验6-移位寄存器功能测试及应用-(实验报告要求)

实验六 移位寄存器功能测试及应用 --实验报告要求 一. 实验目的(0.5分) 1. 熟悉寄存器、移位寄存器的电路结构和工作原理。 2. 掌握中规模4位双向移位寄存器逻辑功能及使用方法。 3. 熟悉移位寄存器的应用。 二. 实验电路 D0、D1 、D2 、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;SR 为右移串行输入端,SL 为左移串行输入端;S1、S0 为操作模式控制端;R C 为直接无条件清零端;CP 为时钟脉冲输入端。 三 图2 CC40194/74LS194 逻辑功能测试 图1 CC40194/74LS194的逻辑符号及引脚功能 图3 环形计数器

四. 实验原理(0.5分) 1.移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用。 74LS194有5种不同操作模式:即并行送数寄存,右移(方向由Q0-->Q3),左移(方向由Q3→Q0),保持及清零。 2.移位寄存器应用很广,可构成移位寄存器型计数器:顺序脉冲发生器;串行累加器;可用数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。 (1)环行计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位。 (2)实现数据、并行转换器 a)串行∕并行转换器 串行∕并行转换器是指串行输入的数码,经转换电路之后变换成并行输出。 b)并行∕串行转换器 并行∕串行转换器是指并行输入的数码经转换电路之后,换成串行输出。 五. 实验内容与步骤(共1分) 1. 2.测试74LS194的逻辑功能(0.5分) (1)在实验箱上选取一个16P插座,按定位标记插好74LS194集成块。 (2)将实验挂箱上+5V直流电源接40194的16脚,地接8脚。S1、S0、SL、SR、D0、D1、D2、D3分别接至逻辑电平开关的输出插口;Q0、Q1、Q2、Q3接至发光二极管。CP端接单次脉冲源。 (3)改变不同的输入状态,逐个送入单次脉冲,观察寄存器输出状态,记录之。 a)清除:令=0,其它输入均为任意态,这时寄存器输出Q0、 Q1、 Q2 、Q3应均为0。清除后,至=1。 b)送数:令=S1=S0=1 ,送入任意4位二进制数,如D0、D1、D2、D3=1010,加CP脉冲,观察CP=0、CP由1→0、CP=1三种情况下寄存器输出状态的变化,观察寄存输出状态变化是否发生在CP脉冲的上升沿。 (c)右移:清零后,令=1, S1=0 S0=1,由右移输入端S R送入二进制数码如0100,由CP端连续加4个脉冲,观察输出情况,记录之。 (d)左移:先清零或予至,再令=1 S1=1,S0=0,由左移输入端S L送入二进制数码

移位寄存器功能测试及应用

实验八移位寄存器功能测试及应用 一、实验目的: 1.掌握中规模4位双向寄存器逻辑功能及使用方法。 2.熟悉移位寄存器的应用,实现数据的串行、并行转换和构成环形计数器 二、实验仪器及材料 a) TDS-4数电实验箱、双踪示波器、数字万用表。 b) 参考元件:74LS194一片。 三、预习要求及思考题 1.预习要求: 1) 复习有关寄存器有关内容。 2)熟悉74LS194逻辑功能及引脚排列。 3)用multisim软件对实验进行仿真并分析实验是否成功。 2.思考题: 1) 使寄存器清零,除采用输入低电平外,可否采用右移或左移的方法?可否使用 并行送数法?若可行,如何进行操作? 2) 环行计数器的最大优点和缺点是什么? 四、实验原理 1.位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相 同,可互换使用,其逻辑符号及引脚图如图8-1所示。 图8-1 74LS194的逻辑符号图及引脚功能图. 其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串行输入端;S L为左移串行输入端;S0、S1为操作模式控制端;C R为直接无条件清零端;CP为时钟脉冲输入端。 74LS194有5种不同操作模式:即并行送数寄存,右移(方向由Q0-->Q3),左移(方向由Q3→Q0),保持及清零。 S1、S0和C R端的控制作用如表8-1

触发器功能测试实验报告 031210434

触发器功能测试 031210425 刘思何 一.实验目的 1.了解时钟脉冲的触发作用 2.掌握基本RS、JK、D触发器的逻辑功能、编写和使用 3.理解触发器所实现的状态转换功能 二.实验器件 开发板、计算机、vivado软件 三.实验内容 1.基本RS触发器的编写,验证并且生成IP核。连接电路图,在R,S两引脚输入不同的电平,测试输出端电平。 module rs_ff10( input s_n, input r_n, output q ); reg q; always@* begin case({s_n,r_n}) 2'b00 : q=1'bx; 2'b01 : q=1'b1; 2'b10 : q=1'b0; 2'b11 : q=q; endcase end endmodule 2.JK触发器的编写,验证并且生成IP 核。 module jk_ff10( input clk, output q, output q_n, input j, input k ); reg q; always@(posedge clk) begin case({j,k}) 2'b00 : q<=q; 2'b01 : q<=1'b0; 2'b10 : q<=1'b1; 2'b11 : q<=~q; default : q<=1'bx; endcase end assign q_n=~q; endmodule

先将s_n、r_n置于10或01状态,然后将其置于11状态,给j、k一个初始激励信号,随后一上一下拨动s_n、r_n的开关,输入一个时钟信号,观察q、q_n灯的亮灭情况。 3.D触发器的编写,验证 如JK触发器一样进行验证。 四.实验数据及分析 R触发器 V16 (s_n)V17 (r_n) U16 0 0 不定 0 1 暗 1 0 亮 1 1 保持上个状态

相关文档
相关文档 最新文档