文档库 最新最全的文档下载
当前位置:文档库 › 半桥式DC-DC变换器的系统

半桥式DC-DC变换器的系统

半桥式DC-DC变换器的系统
半桥式DC-DC变换器的系统

半桥式DC-DC变换器的系统设计

摘要

近年来,随着电力电子器件、控制理论的发展和人们对电源性能要求的提高,

电力电子技术引起了学者们的广泛关注。目前一些发达国家正逐渐把电力变换技术广

泛应用于民用工业领域,我国在这一领域的研究起步较晚,但随着国民经济的发展,

适合于不同要求的各种变换器越来越引起科研人员的关注。

本文通过对Buck变换器的电路结构和工作原理进行分析,设计出一种半桥式

DC-DC变换器,并采用闭环控制方法,将恒定的400V直流输入变为稳定5V的直流输

出,保证了系统的供电性能。最后利用Matlab工具对所设计的电路进行仿真,仿真结果

验证了所设计系统的有效性。半桥式DC-DC变换器由于电路结构简单,功率器件少且

功率管上受到的电压应力小,在中小功率场合得到了较为广泛的应用。本文为进一步

研究和开发相关产品提供借鉴。

关键词:Buck;半桥;DC-DC;MATLAB

目录

1 绪论 (1)

1.1 研究背景 (1)

1.2变换器简介 ............................................................................................ 错误!未定义书签。

1.3本文研究的内容 (2)

2半桥式DC-DC变换器的工作原理 (2)

2.1半桥式DC-DC变换器的基本电路图及工作原理 (2)

2.2B UCK变换器........................................................................................... 错误!未定义书签。

2.2.1线路组成 ............................................................................................. 错误!未定义书签。

2.2.2工作原理 ............................................................................................. 错误!未定义书签。

2.3带变压隔离器的DC-DC变换器拓扑 ................................................. 错误!未定义书签。3半桥式DC-DC变换器的系统设计. (6)

3.1电路参数的计算与选取 (6)

3.2闭环的控制方法与实现 (14)

3.2.1PWM的调制方法 (14)

3.2.2PID控制器 (15)

3.2.3PID控制器的参数整定 (17)

3.2.4闭环控制方法与实现 (17)

4 MATLAB/SIMULINK仿真 (19)

4.1MATLAB/SIMULINK (19)

4.2半桥DC-DC变换器系统仿真模型的建立 (19)

4.3.1开关管控制脉冲仿真模块的建立 (20)

4.3.2实际系统仿真模块的搭建 (26)

结束语 (30)

参考文献 (31)

致谢........................................................................................................... 错误!未定义书签。

1 绪论

1.1 研究背景

随着科技的发展,在人们的日常生活中,电力已成为与生产生活息息相关的一部分,在各个场合,人们都需要各式各样的电力来为其服务,然而并不是所有的电力都能在一开始就能满足需要,于是就要求有电力变换的过程。

直流-直流变换器(DC-DC)作为一种应用广泛变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。按额定功率的大小来划分,DC-DC可分为750W以上、750W~1W和1W以下3大类。进入20世纪90年代,DC-DC变换器在低功率范围内的增长率大幅度提高,其中6W~25W DC-DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC-DC变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC-DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC-DC变换器在远程和数字通讯领域有着广阔的应用前景。

DC-DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。

DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~1.22W/cm3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

电子产业的迅速发展极大地推动了开关电源的发展。高频小型化的开关电源及其技术已成为现代电子设备供电系统的主流。在电子设备领域中,通常将整流器称为一次电源,而将DC/DC变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标值为48V的直流电源。目前,在电子设备中用的一次电源中,传统的相控式

稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT实现高频工作,开关频率一般控制在50kHz~100kHz范围内,实现高效率和小型化。

因为电子设备中所用的集成电路的种类繁多,其电源电压也各不相同,在电子供电系统中,采用高功率密度的高频DC/DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,可以大大减小损耗、方便维护,且安装和增容非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因为电子设备容量的不断增加,其电源容量也将不断增加。

(4)半桥式变换器由两个电容器和两个开关管组成两个桥,桥的对角线接变压器的原边绕组,故称半桥变换器。半桥式变换器减小了原边开关管的电压应力,结构简单,功率器件少,所以在中小功率场合得到广泛应用。

本文设计电路将400V恒定直流输入变为5V稳定直流输出,输出功率较低,所以我们采用半桥式变压器。

1.3 本文研究的内容

本文研究的内容主要包括:

(1) 研究半桥式DC-DC电力变换电路的工作原理。

(2) 研究PWM调制方法的机理和半桥式DC-DC变换电路的控制方法。

(3) 设计从400V 到5V的半桥式DC-DC变换器。

(4) 采用MATLAB工具对所设计系统进行仿真研究。

2半桥式DC-DC变换器的工作原理

2.1半桥式DC-DC变换器的基本电路图及工作原理

半桥式DC-DC变换器是由Buck基本变换器串入半桥式变压隔离器派生而来的。因为减小了原边开关管的电压应力,且电路结构简单,在中小功率上得到广泛应用,所以半桥式变换器是离线开关电源较好的拓扑结构。下边就对半桥DC-DC变换器的工作原理进行分析。为了分析稳态特性,简化推导过程,首先

假定:

(1)开关晶体管、二极管均为理想元件。也就是可以瞬间的导通和截止,而且导通时的压降为零,截止时的漏电流为零。

(2)电感、电容是理想元件。电感工作在线性区而未饱和,寄生电阻为零,电容的等效串联电阻为零。

(3)输出电压中的纹波电压与输出电压的比值小到允许忽略。

基本电路图如下:

图2-1 半桥式DC-DC 变换器基本电路图

电容器1C 、2C 与开关晶体管1r T 、2r T 组成桥,桥的对角线接变压器T 原边绕组,故称半桥式变换器。 如果12C C ,某一开关晶体管导通时,绕组上电压只有电源电压的一半。

稳态条件下, 1C =2C ,当1r T 导通时,1C 上的12

s V 加在原边线圈上,1r T 流过负载电流p I 。电路通过开关管1r T 、原边绕组、电容2C 形成回路,此时原边绕组上下两端极性为上正下负,经过占空比所定的时间后,1r T 关断。由于原边绕组存在,p I 方向不变,值逐渐变小,此时B 点为负电位,4D 导通,反激能量再生,对2C 充电。B 点连接点的电压在阻尼电阻的作用下以振荡形式最后恢复到原来的中心值。1r T 关闭一段时间后,给2r T 一个触发脉冲,2r T 导通,原边绕组黑点端变负。电路通过电容1C 、原边绕组、开关管2r T 形成回路,重复以前过程。不同的是,p I 方向变反,2r T 关断时接点B 摆动到正,3D 导通,

反激能量对1C 充电。

副边电路的工作如下:当1r T 导通时,副边绕组电压使1D 导通,电流通过二极管1D 、电感L 、负载R 构成回路,当1r T 关断,两个绕组电压变为零。2r T 导通时,2D 导通,负载上

的电流与电压方向没有发生改变,由此形成的方波电压,经过L 和3C 构成的滤波环节产

生稳定的输出电压o V 。如图2.2

图2-2 原边开关管电压及输出电压波形

当所选的C 能达到所需的输出滤波要求时,L 可以选的足够大,以便使开关变换器保持在连续的工作状态,但电容器本身没有完美的电气性能,所以其内部的等效串联电阻将消耗一些功率。另外等效串联电阻上的压降会产生输出纹波电压,欲要减小这些纹波电压,只能靠减小等效串联电阻的值和动态电流的值。选择电容的类型,经常有纹波电流的大小决定。截止频率c f 的高低,LC 的大小,都将影响输出纹波电压。在实际设计过程中,选择电感和电容时,要综合考虑其重量、尺寸及成本等因素。从改善动态特性看,可考虑选择小电感,大电容值。

在图2.7(a )所示的半桥式电路中,开关1S 和2S 交替地导通,当开关1S 导通时,2S 关断,然后反之。任何一个断开的开关其两端的电压等与源电压s V ,而流过任何一个

导通开关的峰值电流是平均源电流s I 的两倍(与图2.6所示电路同等输出功率相比)。

因为断开的开关两端电压比图2.6所示的电路减小了,所以较广泛采用。但是,当电源电压较低时,通常采用图2.6所示的并联连接方法,因为任何一个导通的原边开关只流过源电流s I 。值得指出,原边半桥式接法中,变压器的原边电压在理论上是输入电压s V 的一半。因此,对于给定s V 、o V 时,绕组p N 、s N 只需要较少的匝数。

图2-7半桥和全桥变压隔离器连接方式

图 2.6(a )所示的单端方案,有线路简单的突出优点,广泛应用在输出为低、中功率的变换器电路中。但它也有一些缺点,例如它的输入电流是脉动的,幅度由1S 的占空比和s I 的平均值决定。因此,常需用一种低通滤波输入装置来平滑这些电流脉动。

由上述可知,变压隔离器(有的文献称为直流变压器)实际上是一个由开关和高频变压器电路组成的,它是组件不是单一的原件。开关的占空比固定不变,电压增益靠高频变压器原副边的匝数比来确定。

实际上,变压隔离器并不单独使用,而是插入到各种基本变换器中,达到输入/输出隔离的效果。这时电压增益M ,不单靠开关占空比调节,也可以通过绕组变化调节,使晶体管占空比在更合理的范围工作(不大也不小)。插入到某合适的地方,串联的开

关可以简化为一个,电感L 可能成了电流源的原件,使输入电流近似为方波,消除因变压器漏电感造成的过电压。甚至有时移动后的晶体管驱动有了其他特点,如抗干扰性强,容易调试等。

3半桥式DC-DC 变换器的系统设计

3.1电路参数的计算与选取

3.1.1主要概念及公式

半桥式DC-DC 变换器是在Buck 变换器中插入半桥式变压隔离器派生而来的,所以它就具有Buck 基本变换器的本质特征。因此,下边我们对Buck 基本电路的参数方程分析,这些对半桥式DC-DC 变换器也是一样满足的。

(1) 电感电流连续与不连续

下面分析一下在Buck 基本电路中,开关闭合和断开的情况与输出电压的关系。在图3.1中,设开关S ,闭合时间为11ON s t t D T ==,开关S 关断时间212OFF s t t t D T =-=;

V S

a

b S i S V 1L V L

i L I 0

+-

R V 0

C +-

图3-1 Buck 变换器电路 11ON s

t D T =<,称1D 为接通时间占空比,体现了开关接通时间占周期的百分值,21D <,称2D 为断开时间的占空比,体现了开关断开时间占周期的百分值。根据假定(1)很明

显,121D D +=。

在输入输出不变的前提下,当开关S 在a 位时,波形如图3-210~t 所示,电感电流平均值o L o V I I R

==,电感电流线性上升增量为

(a )

(b ) 图3-2 Buck 变换器工作波形图

1

1110t s o s o s o L s V V V V V V i dt t DT L L L

---?===? (3.1) 式中 1L i ?-电流增量(A);

s V -输入电源电压(V);

o V -输出电压(V);

L -电感(H);

s T -开关周期(s);

1D -开关接通时间占空比。

当开关S 在b 位时,如图3.2(a )12~t t 时间段所示,L i 电流增量为

2

122112()()t o o o o L s s s t V V V V i dt t t T DT D T L L L L

?=-=--=--=-? (3.2) 由于稳态时这两个电流变化量相等,即12L L i i ?=?,所以

121(1)s o o o s s s V V V V DT D T D T L L L

-==-又因为121D D += 整理得 1o s V V D = (3.3) 式(3.3)表明,输出电压o V 随占空比1D 而变化,由于11D <,故o s V V <,

o s

V V 是电压增益,表示为M ,在本电路中 1o s

V M D V == (3.4) 如图所示,电压增益M 由开关接通时占空比1D 决定,即变换器有很好的控制特

性。

图3-3 Buck 1()M f D =关系图

当电感L 较小,负载电阻较大时,或者s T 较大时,将出现电感电流以下降到零,新的周期却尚未开始的情况;在新的周期,电感电流从零开始线性增加。这种工作方

式称电感电流不连续的模式,波形图如图3.2(b )所示。

图3-4 连续和不连续的状态下,Buck 变换器电压增益M 与占空比1D 的函数关系

(2)连续与不连续的临界条件

在连续与不连续状态之间有个临界状态,由图3.2(a )(b )所示L i 图形知

临界状态

12L o i I ?= (3.13) 考虑式(3.2)和式(3.6),

整理得

22s D L T R = (3.14) 式(3.14)为临界条件的L R

表达式。该L 即定义为临界电感,可表示为 2221(1)2222o o o c s s off o o o s

V V V D R L T D T t D I I P f ====- (3.15) 式中 o f f t -开关管r T 关断时间(s );s f -开关工作频率(Hz ),1s s f T =

; 240.250.0000550

22110c s D R L T H H μ?====??

取 1.2c L L = 得 1.260c L L H μ==

(3)纹波电压o V ?

流经电容的电流C i 是()L o i I -,C i 对电容充电产生的电压o V ?称为纹波电压,其波

形如图3.5所示。当C i 为t 的线性函数时

21111()2228t s L L o C s t T I I V i dt T C C C

???==??=? (3.16) 把式(3.2)代入式(3.16)得

2

2

21()88o

o

o s s V V D V t t T T LC LC ?=-=

3.17) 系统误差要求1%,纹波电压51%20.1o V V ?=??=

282

550.2

10208886100.1

o s o V D C T F L V μ--?==?=????

式中2D 为关断时间占空比

1

21

211s s s

T t t t D D T T --===-

图3-5电容电压和电流波形

由式(3.15)知,对于c L 和2D 为固定值时,降压变压器的电流连续与否是由R 确定的。当R 的欧姆值增大时,工作状态将从连续转化为不连续。另一方面,如果R 和2s D T 是固定的,则电感器的c L L <时,其工作状态由连续转化为不连续。当s f 增大时,即s T 减小,则保持开关变换器在连续工作状态的c L 降低。

仔细地观察图3-2(a )和(b )的波形,可以推出Buck 变换器的一些性质特点。 o V 是1V 在s T 内的平均值。1V 时有时无;o V 则是平直的。因此,变换器可以简单地看成是一个有低通滤波器的电压斩波器[7]。低通滤波器的作用就是滤去1V 中随时间而变化的交流分量。所以低通滤波器的频率c f 比开关频率s f 要低得多。由于o V 是1V 的平均值,而1V 的峰值为直流电源电压s V ,所以o V 总是比s V 小。

注意,1V 的波形在两种不同的工作状态下其形状是不同的。连续状态时,在1t 期间,1s V V =,在21~t t 期间,10V =。1V 的平均值是由1D 决定的,而且在理想情况下,在这

个线路模型中,o V 与R 无关。然而,在不连续的状态中,在2t 期间,有部分时间1V 为零,部分时间1o V V =。10V =所持续的时间由R 决定,所以不连续,o V 由R 和1D 决定的。由于不连续时,2t 中存在1o V V =的台阶,所以,在s V 和1D 的值相同时,不连续状态中

的o V 较连续时的o V 大。

输入电流s i 是脉动的,与降压变换器的连续与否状态无关。这个脉动电流,在实际

应用中应受到限制,以免影响其他电器正常工作。通常,电源s V 和变换器的输入端之

间会加上一些输入滤波器,这种滤波器必须在开关变换器设计的早期阶段和建立模型过程就要预先进行考虑[3]。否则,在开关变换器与输入滤波器联接时,可能会引起意外的自激振荡。

o V 和R 两个值决定s i 的平均值s I 。对没有功率损耗的理想Buck 变换器中,电源变

换效率为100%,因此有2o s s V V I R

=。因为o V 是一个输出恒定电压常数k ,故可得 2

s s k I V R

= (3.18) 式(3.18)说明s I 与s V 、R 两个值的乘积成反比例。瞬时值s i 的上升部分与L i 相同。

当s V 变化时,应使1D 变化,以便使o V 保持恒定制。s i 的幅值是变化的,但其最大幅值b I 在s V 一定时则不变。在一定的输入功率下,如变换器工作在不连续状态模型时,b I 是很大的。这意味着变换器的功率晶体管r T 和续流二极管1D 必须具有较高的峰值电压和电流。由于这个和其他重要的原因,在高功率应用中,变换器应避免不连续工作状态(即使电感较大和由此引起的成本提高)。在负载变动较大的场合,也可使用变值扼流器,他的电感数值随着通过它本身的电流而变化[19]。

当小电流通过时,电感值大,但随电流增大,电感值却逐渐变小。这一方法非常有用,但这一个“变值”电感将由开关变换器附加滤波器的截至频率c f 变动,使设计问题复杂化,即往往使得闭环控制的稳定变得很困难。

输出滤波器的截止频率c f 定义式为

12c f LC

π= (3.19) 当所选的C 能达到所需的输出滤波要求时,L 可以选的足够大,以便使开关变换器保持在连续的工作状态,但电容器本身没有完美的电气性能,所以其内部的等效串联电阻将消耗一些功率。另外等效串联电阻上的压降会产生输出纹波电压,欲要减小这些纹波电压,只能靠减小等效串联电阻的值和动态电流的值。选择电容的类型,经常有纹波电流的大小决定。截止频率c f 的高低,LC 的大小,都将影响输出纹波电压。在实际设计过程中,选择电感和电容时,要综合考虑其重量、尺寸及成本等因素。从改善动态特性看,可考虑选择小电感,大电容值。

(4)变压器设计

122s s on o s p s

V D V t V N n N T ??== (3.20) 式中

s V --原边绕组电压(V)

p N --原边绕组匝数(匝)

s N --副边绕组匝数(匝)

D --其中一管导通的占空比on on s on off t t T t t =

=+ s T --工作周期(s)

120.8D D +=,所以由122s s on o s p s

V D V t V N n N T ??== 电路的输入电压400S V V =,输出电压5O V V =,且电路工作在连续模式,故得

321

p

s N N =

取原边线圈匝数3200匝 副边两个绕组各取100匝。

图3-6半桥式DC-DC 变换器的基本电路图

(5)其它参数的选取

在这个小功率变换器中,为了有利于控制性能,而又不引起太多损耗,在原边回路中串联一个电阻51110R -=?Ω,取12470C C F μ==。

3.2 闭环的控制方法与实现

3.2.1 PWM 的调制方法

PWM 控制技术,是利用逆变器装置中半导体开关的开通和关断,把直流

电压转化变成一定规律的电压脉冲序列,以实现调频、调压和消除谐波三个目的的技术。 本章利用的就是等脉宽PWM 法,利用直线与三角波进行比较,下图就是我们所需要的开关触发脉冲,

图3-7 原边开关管的电压和触发脉冲波形

3.2.2 PID控制器

PID控制器是最早发展起来的控制策略之一。因为PID控制器所涉及的设计算法和控制结构都是很简单的,并且十分适用于工程应用背景,此外PID控制方案并不要求精确的控制对象的数学模型,且采用PID控制的控制效果一般是比较令人满意的,所以工业界实际应用中PID控制器是应用最广泛的一种控制策略,且都是比较成功的。

连续PID控制器是如图3.8所示的串联控制器的一种常用类型。在实际生活中,PID控制器计算出来的控制信号还应该经过一个驱动器后去控制受控对象,而驱动器一般可以近似为一个饱和非线性环节,这是PID控制系统结构如图3-1所示。在控制系统中可能存在各种各样的扰动信号。另外,在实际控制中,用于检测输出信号的仪器也难以避免得存在噪声扰动信号,可以理解成高频率噪声信号,定义成量测噪声。

图3-8 PID 类控制器的基本结构

连续PID 控制器的最一般形式为

()()()()0t p i d

de t u t K e t K e d K dt

ττ=++? 其中p K ,i K 和d K 分别是对系统误差信号及其积分与微分量的加权,控制器通过这样的加权就可以计算出控制信号,驱动受控对象模型。如果控制器设计得当,控制信号将能使误差按减小的方向变化,达到控制要求。

PID 控制的结构简单,另外,这三个加权系数p K ,i K 和d K 都有明显的物理意义:比例控制器直接影响应于当前的误差信号,一旦发生误差信号,则控制器应立即发生作用,以减少偏差。

一般情况下,p K 的值大则偏差将变小,且减小对控制中的负载扰动的敏感度,但也将对测量噪声更敏感。考虑根轨迹分析,p K 无限制的增大闭环系统不稳定;积分控制器对以往的误差信号发生作用,引入积分控制能消除控制中的静态误差,但i K 的值增大可能增加系统的超调量、导致系统振荡,而i K 小则会使得系统响应趋于稳定值的速度减慢;微分控制器对误差的导数,亦即误差的变化率发生作用,又一定的预报功能,能在误差有大的变化趋势时施加合适的控制。d K 的值增大能加快系统的响应速度,减小调节时间,过大时会因系统噪声或受控对象的大时间延迟出现问题。

3.2.3 PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作

(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期

(3)在一定的控制度下通过公式计算得到PID控制器的参数

在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。

工程整定方法的具体步骤:参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢,微分时间应加长;理想曲线两个波,前高后低4比1;一看二调多分析,调节质量不会低。

3.2.4 闭环控制方法与实现

为了将输出电压稳定控制在5V,我们对系统采用闭环控制。当输出电压波动时,通过调整开关管的导通占空比来调节输出电压。闭环控制系统的结构如图3.9所示,由给定环节、比较环节、校正环节、放大环节、执行机构、被控对象和检测装置组成。给定环节定义为输出电压5V;检测环节将实际输出的电压检测出来;比较环节将要求的输出电压5V与实际输出电压作比较求取偏差;校正环节将根据偏差的极性、大小调整开关管的通断时间;放大环节将校正环节的输出调整为适当的比例。

图3-9 控制系统结构图

设计闭环控制回路如图3.10所示,控制回路由PID控制器,限幅元件,比例环节组成。将输出电压取为反馈,极性取负;要求的稳态输出电压5V作为给定,极性取正。将输出电压与给定电压作比较,经过PID调节、限幅后,与给定电压5V相加,再经过比例缩小,作为PWM调制中的比较电压。其中,PID控制器起到放大偏差、消除误差的作用,为了避免积分环节将偏差无限积分、放大,可能烧坏元件,所以必须引入限幅环节。将调节过的偏差信号与给定电压相减作为比较电压。比例环节参数的设定:当系统输出电压等于5V时,偏差信号为零,经限幅环节后依然为零,再与要求的输出值5V相加,经过比较器后,此时占空比应恰好为0.8,所以比例环节的参数应选为0.04。

图3-10 PID控制回路

分析全桥ZVS-PWM变换器的分析与设计

上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。后然经过发展,越来越多在各个领域当中应用。但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。 1 电路原理和各工作模态分析 1.1 电路原理 图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。Vin为输入直流电压。Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。Lf和Cf构成倒L型低通滤波电路。 图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设: (1)所有功率开关管均为理想,忽视正向压降电压和开关时时间; (2)4个开关管的输出结电容相等,即Ci=Cs,i=1,2,3,4,Cs为常数; (3)忽略变压器绕组及线路中的寄生电阻; (4)滤波电感足够大。

1.2 各工作模态分析 (1)原边电流正半周功率输出过程。在t0之前,Sl和S4已导通,在(t0一t1)内维持S1和S4导通,S2和S3截止。电容C2和C3被输入电源充电。变压器原边电压为Vin,功率由变压器原边传送到负载。在功率输出过程中,软开关移相控制全桥电路的工作状态和普通PWM硬开关电路相同。 (2)(t1一t1′):超前臂在死区时间内的谐振过程。加到S1上的驱动脉冲变为低电平,S1由导通变为截止。电容C1和C3迅速分别充放电,与等效电感(Lr+n2Lf)串联谐振,在谐振结束前(t2之前),使前臂中心电压快速降低到一0.7V,使D3立即导通,为S3的零电压导通作好准备。 (3)(t1′一t3):原边电流止半周箝位续流过程。S3在驱动脉冲变为高电平后实现了零电压导通,由于D3已提前提供了原边电流的左臂续流回路,虽然两臂中点电压为零,但原边电流仍按原方向继续流动,逐步衰减。 (4)(t3-t4):S4关断后滞后臂谐振过程,t3时加到S4的驱动脉冲电压变为低电平,S4由导通变为截止,原边电流失去主要通道。原边电流以最大变化率从正峰值急速下降。 (5)(t4一t5):电感储能回送电网期。t4时刻D2已导通续流,下冲的电流经D2返回到电源EC,补偿了电网在全桥电路上的功耗。滞后臂死区时间应该在该时间段内结束。原边电流下冲到零点。 (6)(t5一t6):原边电流下冲过零后开始负向增大。S2和S3都已导通,形成新的电流回路,开始新的功率输出过程。副边电压被箝位在低电平,出现占空比丢失过程。因此滞后臂死区时间设计是关键。

DCDC变换器的发展及应用

DC/DC变换器的发展与应用 周志敏 (莱芜钢铁集团公司动力部,山东莱芜271104) 摘要:介绍电压调整模块(VRM)技术、软开关技术和高频磁技术在DC/DC变换器中的应用,分析DC/DC变换器发展的关键技术,并探讨其发展的趋势。 关键词:电压调整模块;软开关;高频磁技术 1引言 直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。按额定功率的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。进入20世纪90年代,DC/DC变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC/DC 变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC变换器在远程和数字通讯领域有着广阔的应用前景。 DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被 广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。 DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~1.22W/cm3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密

DC-DC变换器的设计方案

一种模块化高效DC-DC变换器的开发与研制 设计方案 一、设计任务:设计一个将220VDC升高到600VDC的DC-DC变换器。在电阻负载下,要求如下: 1、输入电压=220VDC,输出电压=600VDC。 2、输出额定电流=2.5A,最大输出电流=3A。 3、当输入在小范围内变化时,电压调整率SV≤2%(在=2.5A时)。 4、当在小范围你变化时,负载调整率SI≤5%(在=220VDC时)。 5、要求该变换器的在满载时的效率η≥90%。 6、输出噪声纹波电压峰-峰值≤1V(在=220VDC,=600VDC,=2.5A条件下)。 7、要求该变换器具有过流保护功能,动作电流设定在3A。 8、设计相关均流电路,实现多个模块之间的并联输出。 二、设计方案分析 1、DC-DC升压变换器的整体设计方案 图1 DC-DC变换器整体电路图

如图1升压式DC-DC变换器整体电路所示,该DC/DC电压变换器由主电路、采样电路、控制电路、驱动电路组成;开关电源的主电路单元、样电路单元采、控制电路单元、驱动电路单元组成闭环控制系统,是相对输出电压的自动调整。控制电路单元以SG3525为核心,精确控制驱动电路,改变驱动电路的驱动信号,达到稳压的目的。 2、DC-DC升压变换器主电路的工作原理 DC-DC功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。下面主要讨论非隔离型升压式DC-DC变换器的工作原理。 图2(a)DC-DC变换器主电路 图2(b)DC-DC变换器主电路 图2(a)是升压式DC-DC变换器的主电路,它主要由开关变换电路、高频变压电路、整流电路、输出滤波电路四大部分组成;图1(b)是用matlab模拟出的升压式DC-DC变换器的主电路图。其中开关变换电路主要由绝缘栅双极型晶体管IGBT、储能电容C和RC 放电电路组成;高频变压器电路由一个工作频率为20KHz的升压变压器和一个隔直电容组成;整流电路部分采用桥式整流的设计方案,由四个快速恢复二极管构成,实现将逆变产生

DC-DC变换器设计毕业设计

绪论 一.开关电源概述 开关电源(Switch Mode Paver Supply,即SMPS)被誉为高效节能型电源,它代表着稳压电源的主流产品。半个世纪以来,开关电源大致经历了四个阶段。 早期的开关电源全部有分立元件构成,不仅开关频率低,效率高,而且电路复杂,不宜调试。在20世纪70年代研制出的脉宽调制器集成电路,仅对开关电源中的控制电路实现了集成化;80年代问世的单片开关稳压器,从本质上讲仍DC/DC电源变换器。随着各种类型单片开关电源集成电路的问世,AC/DC电源变换器的集成化才变为现实。 稳压电源是各种电子的动力源,被人称为电路的心脏,所有用电设备,包括电子仪器仪表,家用电器。等对供电电压都有一定的要求。至于精密的电子仪器,对供电电压的要求更为严格。所谓的DC——DC直流稳压是指电压或电流的变化小到可允许的程度,并不是绝对的不变。 目前,随着单片开关电源集成电源的应用,开关电源正朝着短、小、轻、薄的方向发展。单片开关电源自20世纪90年代中期问世以来便显示出来强大的生命力,它作为一项颇具发展和影响力的新产品,引起了国内外电源界的普遍重视。 尤其是最近两年来,国外一些著名的芯片厂家又竞相推出了一大批单片开关电源集成电路,更为新型开关电源的推广及奠定了良好的基础。单片开关电源具有集成度高、高性价化、最简外围电路,最佳性能等指标,现已成为开发中小功率开关电源、精密开关电源及电源模块的优选集成电路。 二. 开关电源的技术追求 1.小型化、薄型化、轻量化、高频化——开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小储能元件的体积。在一定范围内,开关频率的提高,不仅能有效地减小电容、电感和变压器的尺寸,而且还能抑制干扰,改善系统的动态性能。因此高频化是开关电源的主要发展方向。 2.高可能性——开关电源使用的元器件比连续工作电源少数十倍,因此提高了可靠性。从寿命角度出发,电解电容、光电偶合器及排风扇等器件的寿命决定着电

IR2181S驱动芯片在全桥电路中应用设计和注意事项

IR2181S驱动芯片在全桥电路中应用设计和注意事项 摘要:三相全桥技术具有应用广泛,控制方便,电路简单等特点,因此,广泛应用于逆变电源,变频技术,电力电子等相关领域,但其功率MOSFET以及相关的驱动电路的设计直接与电路的可靠性紧密相关,如MOSFET的驱动电路设计不当,MOSFET很容易损坏,因此本文主要分析和研究了成熟驱动控制芯片IR2181S组成的电路,并设计了具体的电路,为提高MOSFET 的可靠性作一些研究,以便能够为设计人员在设计产品时作一些参考。关键 词:IR2181S驱动芯片;MOSFET;全桥电路;自举电路设计;吸收电路IR2181S的结构和驱动电路设计IR2181S是IR公司研发的一款专用驱动芯片电其内部结构参考图1:主要由:低端功率晶体驱动管,高端功率晶体驱动管,电平转换器,输入逻辑电路等组成。IR2181S优点是可靠性高,外围电路简单。它驱动的MOSFET高压侧电压可以达到600V,最大输出电流可达到1.9A(高端)2.3A(低端)。具体设计电路时如将MOSFET或IGBT 作为高压侧开关(漏极直接接在高压母线上)需在应用的时候需要注意以下几点: (1)栅极电压一定要比漏极电压高10-15V,作为高压侧开关时,栅极电压是系统中电压最高的。(2)栅极电压从逻辑上看必须是可控制的,低压侧一般是以地为参考点的,但在高端是就必须转换成高压侧的源极电位,相当于将栅极驱动的地悬浮在源极上,所以在实际应用中栅极控制电压是在母线电压之间浮动的。(3)栅极驱动电路吸收的功率不会显著影响整个电路的效率。图2是以IR2181S驱动芯片设计的三相全桥电路: 图2中应用到三个IR2181S驱动芯片每路驱动一组桥臂,提供高端和低端两路驱动信号(HO*,LO*),以第一路桥臂为例(其它同理):IR2181S输入是由DSP或其他专用驱动信号发生芯片产生的高端和低端两路驱动信号,经过2181输出同样也为两路,但经过2181内部处理后输出的信号和输入控制信号完全隔离,输出电流可以达到2A,上图中IR218S低端输出(LO1)驱动下管的信号是以直流母线侧负端为参考点,输出信号幅值大概在15V左右满足MOSFET开通要求。高端输出是以U1为参考基准,电位浮在母线上,当上端开通时IR2181S通过自举电路 (C4,C5)将电压举升到栅极开启电压值。其电压值约为: UG=U母线 15V 上述电路中(以Q2为例)电容C4,C5和自举二极管组成的泵电路,其中自举电容和自举二极管等参数都是要经过精密计算的,其工作原理和计算方法如下: (1)工作原理:当电路工作时Vs被拉倒地(输出接负载) 15V通过二极管给自举电容C4,C5充电也因此给Vs一个工作电压满足了电路工作。(2)参数设计:计算电容参数时应考虑到以下几点, ①MGT栅极电荷; ②高压侧栅极静态电流; ③2181内部电平转换电路电流; ④MGT G和S 之间的电流。(备注:因自举电路一般选择非电解电容设计时电容漏电流可以忽略。) 此公式给出了对自举电容电荷的最小要求; Q=2Qg Iqbs/f Qls Icbs/f 注:Qg为高端MOSFET栅极电荷。 f为系统工作频率。 Icbs为自举电容漏电流(本电路为非电解电容可忽略不计)。Qls为每个周期内电平转换电路对电荷的要求。(500/600V IC 为5nc 1200V IC为20nc)。Iqbs为高端驱动电路静态电流。上述计算的电荷量是保证芯片正常工作的前提条件,只有保证自举电容能提供足够的电荷和稳定的电压才不

全桥变换器主电路分析

全桥变换器主电路分析 王振存 2006.04 1.电源概述 本电源,额定电流1000A。主电路采用全桥拓扑结构,两路并联的供电方式。主电路原理框图如图1所示。 2. 输入整流滤波电路的设计 电源交流输入采用三相三线输入方式,经三相桥式整流器输出脉动直流,经直流母线滤波供给后级功率变换电路。输入整流电路如图2所示。 图 1 对图中元件说明如下: D1-D6:三相整流桥,PE:输入端保护熔断器,PV压敏电阻; R56缓起电阻,C5、C6、C7:共模滤波电容; KA:接触器,C8直流母线滤波电容: 为限制刚开始投入时电解电容充电产生的电流浪涌,在输入整流电路增加了缓起电路。具体工作原理是,电源经外部加电,此时A、C线电压经R56、R55、D1、D2、D5、D6给电容充电,直流母线电压慢慢上升,上升到辅助电源启动电压时,辅助电源工作控制板得电将接触器闭合,将R56、R55短路,缓起动过程结束。 输入滤波电容的选择过程如下:取整流滤波后的直流电压的最大脉动值为低

交流峰值电压的10%,按照下面步骤计算电容的容量: ● 输入电压的有效值%10380±V 即342V ~418V; ● 输入交流电压峰值:482V ~591V ; ● 整流滤波后直流电压的最大脉动值:V V 2.4810482%=?; ● 整流后直流电压的范围:433.8V ~542.8V ; ● 电源总功率按50KW 计算则等效电阻为Ω== 76.350000 8.4332 L R ; ● 一般取放电时间常数τ=R L C=(3~5)T/6故最小电容F C μ265076 .301.0== ; 3. 全桥逆变电路工作状况分析 3.1 工作模态分析 电源由全桥逆变器和输出整流滤波电路构成。全桥逆变器的主电路如图2所示,由四功率管Q1~Q4及其反并二级管D1~D4,和输出变压器(L LK 为主变压器漏感),吸收电路,隔直电容等组成。 LD R V 图2 在一个开关周期中,电流连续的情况下,全桥变换器共有有4种开关模态。 在t0时刻,对应于图3(a )。Q1、Q4导通。电压经Q1、Q4、C3、加到变压

选择最佳DCDC变换器的要点及途径

一、元器件的选择 1.DC-DC电源变换器的三个元器件 1)开关:无论哪一种DC/DC变换器主回路使用的元件只是电子开关、电感、电容。电子开关只有快速地开通、快速地关断这两种状态。只有快速状态转换引起的损耗才小,目前使用的电子开关多是双极型晶体管、功率场效应管,逐步普及的有IGBT管,还有各种特性较好的新式的大功率开关元件。 2)电感:电感是开关电源中常用的元件,由于它的电流,电压相位不同,因 此理论损耗为零。电感常为储能元件,也常与电容公用在输入滤波器和输出滤波器上,用于平滑电流,也称它为扼流圈。其特点是流过它上的电流有“很大的惯性”.换句话说,由于“磁通连续性”,电感上的电流必须是连续的,否则将会产生很大的电压尖峰波。电感为磁性元件,自然有磁饱和的问题,多数情况下,电感工作在线性区,此时电感值为一常数,不随端电压与流过的电流而变化。但是,在开关电源中有一个不可忽视的问题,就是电感的绕线所引起的两个分布参数(或称寄生参数)的 现象。其一是绕线电阻,这是不可避免的;其二是分布式杂散电容,随绕线工艺、材料而定。杂散电容在低频时影响不大,随频率提高而渐显出来,到一频率以上时,电感也许变成电容的特性了。如果将杂散电容集成为一个,则从电感的等效电路可看出在一角频率后的电容性。 3)电容:电容是开关电源中常用的元件,它与电感一样也是储存电能和传递 电能的元件。但对频率的特性却刚好相反。应用上,主要是“吸收”纹波,具平滑电 压波形的作用。实际上的电容并不是理想的元件。电容器由于有介质、接点与引线,形成一个等效串联内电阻ESR.这种等效串联内电阻在开关电源中小信号控制上,以及输出纹波抑制的设计上,起着不可忽视的作用。另外电容等效电路上有一个串联的电感,它在分析电路器滤波效果时非常重要。有时加大电容值并不能使电压波形平直,就是因为这个串联寄生电感起着副作用。电容的串联电阻与接点和引出线 有关,也与电解液有关。常见铝电解电容的成分为AL2O3,导电率比空气的大七倍,为了能提高电容量,把铝箔表面做成有规律的凸凹不平状,使氧化膜表面积加大,加入的电解液可在凸凹面上流动。普通的铝电解电容在高频脉动电流大幅度增加下,高频阻抗温度上升较大,成了开关电源长寿命的瓶颈。所谓好电容耐反波电流, 耐温升,ESR值小。电容电解液受温度影响,温度升高,电阻减小,即电容串联电阻减小,则是理想的。温度升高,等效串联电阻加大,导致电容寿命减短,这是 普通铝电解电容的缺点。为改善这一缺点,将电解液覆盖在氧化膜表面后将其干 燥形成固体式电解质电容,即“钽电容”. 2.器件选择要点 只如果外接开关管,最好选择开关三极管或功率MOS 管,注意耐压和功耗。如果开关频率很高,电感可选用多线并绕的,以降低趋肤效应的影响。续流二极管一般选恢复时间短、正向导通电压小的肖特基二极管,但要注意耐压。如果输出电压很小(零点几伏),就必须使用MOS管续流。输出滤波电容一般使用高频电容, 可减小输出纹波同时降低电容的温升。在取样电路的上臂电阻并一个0.1~1μf电容,可以改善瞬态响应。电源设计的器件选择需要注意以下几点:

六种基本DCDC变换器拓扑结构总结

六种基本DC/DC变换器拓扑,依次为buck,boost,buck-boost,cuk,zeta,sepic变换器 半桥变换器也是双端变换器,以上是两种拓扑。 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。 正激变换器 绕组复位正激变换器 LCD复位正激变换器

RCD复位正激变换器 有源钳位正激变换器 双管正激

吸收双正激 有源钳位双正激 原边钳位双正激

软开关双正激 推挽变换器 无损吸收推挽变换器

推挽变换器:推挽变换器是双端变换器.其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管.但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合.而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免. 如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激.其管子电压应力下降为输入电压.其他等同. 推挽正激是最近出现的一种新拓扑,通过一个电容来解决变换器漏感尖峰,偏磁等问题.在VRM中有应用.

半桥变换器也是双端变换器,以上是两种拓扑. 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决. 半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制. 全桥变换器

ZVS移相全桥变换器设计

电气工程学院课程设计说明书 设计题目: 系别: 年级专业: 学生姓名: 指导教师:

电气工程学院《课程设计》任务书 课程名称:电力电子与电源综合课程设计 基层教学单位:电气工程及自动化系指导教师:朱艳萍 说明:1、此表一式三份,系、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

电力电子与电源课程设计组内自评表

摘要 首先,本文阐述PWM DC/DC变换器的软开关技术,且根据移相控制PWM全桥变换器的主电路拓扑结构,选定适合于本论文的零电压开关软开关技术的电路拓扑,并对其基本工作原理进行阐述,同时给出ZVS软开关的实现策略。 其次,对选定的主电路拓扑结构进行电路设计,给出主电路中各参量的设计及参数的计算方法,包括输入、输出整流桥及逆变桥的器件的选型,输入整流滤波电路的参数设计、高频变压器及谐振电感的参数设计以及输出整流滤波电路的参数设计。 然后,论述移相控制电路的形成,对移相控制芯片进行选择,同时对移相控制芯片UC3875进行详细的分析和设计。对主功率管MOSFET的驱动电路进 最后,基于理论计算,对系统主电路进行仿真,研究其各部分设计的参数是否合乎实际电路。搭建移相控制ZVS DC/DC全桥变换器的实验平台,在系统实验平台上做了大量的实验。 实验结果表明,本文所设计的DC/DC变换器能很好的实现软开关,提高效率,使输出电压得到稳定控制,最后通过调整移相控制电路,可实现直流输出的宽范围调整,具有很好的工程实用价值。行分析和设计。 关键词开关电源;高频变压器;移相控制;零电压开关;UC3875

DC-DC变换器学习手册

Maxim > Design Support > Technical Documents > Tutorials > Power-Supply Circuits > APP 2031 Keywords: DC to DC, buck, boost, flyback, inverter, PWM, quick-PWM, voltage mode, current mode skip, synchronous rectifier, switching regulator, linear regulator TUTORIAL 2031 DC-DC Converter Tutorial Nov 29, 2001 Abstract:Switching power supplies offer higher efficiency than traditional linear power supplies. They can step-up, step-down, and invert. Some designs can isolate output voltage from the input. This article outlines the different types of switching regulators used in DC-DC conversion. It also reviews and compares the various control techniques for these converters. Introduction The power switch was the key to practical switching regulators. Prior to the invention of the Vertical Metal Oxide Semiconductor (VMOS) power switch, switching supplies were generally not practical. The inductor's main function is to limit the current slew rate through the power switch. This action limits the otherwise high-peak current that would be limited by the switch resistance alone. The key advantage for using an inductor in switching regulators is that an inductor stores energy. This energy can be expressed in Joules as a function of the current by: E = ? × L × I2 A linear regulator uses a resistive voltage drop to regulate the voltage, losing power (voltage drop times the current) in the form of heat. A switching regulator's inductor does have a voltage drop and an associated current but the current is 90 degrees out of phase with the voltage. Because of this, the energy is stored and can be recovered in the discharge phase of the switching cycle. This results in a much higher efficiency and much less heat. What is a Switching Regulator? A switching regulator is a circuit that uses a power switch, an inductor, and a diode to transfer energy from input to output. The basic components of the switching circuit can be rearranged to form a step-down (buck)converter, a step-up (boost) converter, or an inverter (flyback). These designs are shown in Figures 1,2,3, and 4 respectively, where Figures 3 and 4 are the same except for the transformer and the diode polarity. Feedback and control circuitry can be carefully nested around these circuits to regulate the energy transfer and maintain a constant output within normal operating conditions.

DCDC变换器的发展与应用.

DC/DC变换器的发展与应用 1引言 直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。按额定功率 的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。进入20世纪90年代,DC/DC 变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC/DC 变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC 变换器在远程和数字通讯领域有着广阔的应用前景。 DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。 DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为 0.31W/cm3~1.22W/cm3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。 电子产业的迅速发展极大地推动了开关电源的发展。高频小型化的开关电源及其技术已成为现代电子设备供电系统的主流。在电子设备领域中,通常将整流器称为一次电源,而将DC/DC变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前,在电子设备中用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT实现高频工作,开关频率一般控制在50kHz~100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。 因为电子设备中所用的集成电路的种类繁多,其电源电压也各不相同,在电子供电系统中,采用高功率密度的高频DC/DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,可以大大减小损耗、方便维护,且安装和增容非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因为电子设备容量的不断增加,其电源容量也将不断增加。 2电力电子器件 功率变换技术高速发展的基础是电力电子器件和控制技术的高速发展,在21世纪,电力电子器件将进入第4代即智能化时代,具有如下显著的特征。 2.1高性能化 高性能化主要包括高电压、大容量、降低导通电压低损耗、高速度和高可靠性等4个方面。如IGBT 的电流可达2kA~3kA、电压达到4kV~6kV,降低损耗是所有复合器件的发展目标。预计在21世纪IGBT、

DC-DC变换器原理

DC-DC变换器原理 DC/DC Converter Principle 太阳电池输出的是直流电,是不是可直接作为直流电源使用呢,对于对电压没有准确要求的微、小型用电设备是可以的,如计算器、玩具等。太阳电池输出电压取决于光伏器件的连接方式与数量,并与负载大小与光照强度直接有关,不能直接作为正规电源使用。通过DC-DC变换器可以把太阳电池输出的直流电转换成稳定的不同电压的直流电输出。DC-DC变换器就是直流——直流变换器,是太阳能光伏发电系统的重要组成部分,下面就其原理作简单介绍。 DC-DC变换基本原理 直流变换电路主要工作方式是脉宽调制(PWM)工作方式,基本原理是通过开关管把直流电斩成方波(脉冲波),通过调节方波的占空比(脉冲宽度与脉冲周期之比)来改变电压。 降压斩波电路 直流斩波电路简单,是使用广泛的直流变换电路。图1左上部是一个斩波基本电路,Ud是输入的直流电压,V是开关管,UR是负载R上的电压,开关管V把输入的Ud斩成方波输出到R

上,图1右上部绿线为斩波后的输出波形,方波的周期为T,在V导通时输出电压等于Ud,导通时间为ton,在V关断时输出电压等于0,关断时间为toff,占空比D=ton/T,方波电压的平均值与占空比成正比。图1下部绿线为连续输出波形,其平均电压如红线所示。改变脉冲宽度即可改变输出电压,在时间t1 前脉冲较宽、间隔窄,平均电压(UR1)较高;在时间t1 后脉冲变窄,平均电压(UR2)降低。固定方波周期T不变,改变占空比调节输出电压就是(PWM)法,也称为定频调宽法。由于输出电压比输入电压低,称之为降压斩波电路或Buck变换器。

移相全桥ZVS变换器的原理与设计

移相全桥ZVS变换器的原理与设计 移相全桥ZVS变换器的原理与设计 摘要:介绍移相全桥ZVS变换器的原理,并用UC3875控制器研制成功3kW 移相全桥零电压高频通信开关电源。 1引言 传统的全桥PWM变换器适用于输出低电压(例如5V)、大功率(例如1kW) 的情况,以及电源电压和负载电流变化大的场合。其特点是开关频率固定,便于控制。为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开 关频率提高到1MHz级水平。为避免开关过程中的损耗随频率增加而急剧上升,在移相控制技术的基础上,利用功率MOS管的输出电容和输出变压器的漏电感作为谐振元件,使全桥PWM变换器四个开关管依次在零电压下导通,实现恒频软开关,这种技术称为ZVS零电压准谐振技术。由于减少了开关过程损耗,可保证整个变换器总体效率达90%以上,我们以Unitrode公司UC3875为控制 芯片研制了零电压准谐振高频开关电源样机。本文就研制过程,研制中出现的问题及其改进进行论述。 2准谐振开关电源的组成 ZVS准谐振高频开关电源是一个完整的闭环系统,它包括主电路、控制电路及CPU通讯和保护电路,。 从图1可以看出准谐振开关电源的组成与传统PWM开关电源的结构极其相似,不同的是它在DC/DC变换电路中采用了软开关技术,即准谐振变换器(QRC)。它是在PWM型开关变换器基础上适当地加上谐振电感和谐振电容而形成的,由于运行中,工作在谐振状态的时间只占开关周期的一部分,其余时间都是运行在非谐振状态,所以称为“准谐振”变换器。准揩振变换器又分为两种,一种是零电流开关(ZCS),一种是零电压开关(ZVS),零电流

移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解 2014-09-11 11:10 来源:电源网作者:铃铛 移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下:

当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。 当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。 关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。 VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2。由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3。Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预

DC-DC变换器总结

DC-DC电路总结 首录:名词解释 IGBT:(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。 GTR:(Giant Transistor)电力晶体管也称巨型晶体管,是一种电流控制的双极双结大功率、高反压电力电子器件,具有自关断能力。它既具备晶体管饱和压降低、开关时间短和安全工作区宽等固有特性,又增大了功率容量,因此,由它所组成的电路灵活、成熟、开关损耗小、开关时间短,在电源、电机控制、通用逆变器等中等容量、中等频率的电路中应用广泛。GTR的缺点是驱动电流较大、耐浪涌电流能力差、易受二次击穿而损坏。在开关电源和UPS内,GTR正逐步被功率MOSFET和IGBT所代替。 SCR:(Silicon Controlled Rectifier)是可控硅整流器的简称。可控硅有单向、双向、可关断和光控几种类型。它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。 GTO:(gate turn-off thyristor)门极可断晶闸管,是一种具有自断能力的晶闸管。处于断态时,如果有阳极正向电压,在其门极加上正向触发脉冲电流后,GTO 可由断态转入通态,已处于通态时,门极加上足够大的反向脉冲电流,GTO由通态转入断态。由于不需用外部电路强迫阳极电流为0而使之关断,仅由门极加脉冲电流去关断它;所以在直流电源供电的DC—DC,DC—AC变换电路中应用时不必设置强迫关断电路。这就简化了电力变换主电路,提高了工作的可靠性,减少了关断损耗,与SCR相比还可以提高电力电子变换的最高工作频率。因此,GTO 是一种比较理想的大功率开关器件。 MOSFET:(Metal-Oxide-Semiconductor Field-Effect Transistor)简称金氧半场效晶体管,是一种可以广泛使用在模拟电路与数字电路的场效晶体管。金属氧化物半导体场效应管依照其“沟道”极性的不同,可分为电子占多数的N沟道型与空穴占多数的P沟道型,通常被称为N型金氧半场效晶体管(NMOSFET)与P 型金氧半场效晶体管(PMOSFET)。它的三个极分别是源极(S)、漏极(D)和栅极(G)。主要优点:热稳定性好、安全工作区大。缺点:击穿电压低,工作电流小。 LPF:(Lowest Possible Frequency)低通滤波器,顾名思义,就是让低频信号通过,阻止高频信号通过。低通滤波器一般用于去掉输入信号中不必要的高频成分,去除高频干扰。

SPWM全桥逆变器主功率电路设计说明

SPWM全桥逆变器主功率电路设计 一.设计目的 通过电力电子技术的学习,熟悉无源逆变概念;采用全桥拓扑并用全控器件MOSFET形成主电路拓扑,设计逆变器硬件电路,并能开环工作。熟悉全桥逆变器拓扑,掌握逆变原理,实现正弦波输出要素,设计SPWM逆变器控制信号发生电路。 参数指标: 输入:48Vdc, 输出:40Vac/400Hz 二.设计任务 (1) 熟悉交流电路中功率因数的意义; (2) 掌握全桥逆变概念,分析全桥逆变器中每个元件的作用; (3) 分析正弦脉宽调制(SPWM)原理,及硬件电路实现形式: (4) 应用protel制作SPWM逆变器线路图; (5) 根据原理图制作硬件,并调试; 三. 设计总体框图 图1设计总体框图 四.设计原理分析 SPWM脉宽调制原理

PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。当采用正弦波作为调制信号来控制输出PWM脉冲的宽度,使其按照正弦波的规律变化,这种脉冲宽度调制控制策略就称为正弦脉冲宽度调制(Sine pulse width modulation,SPWM),产生SPWM脉冲,采用最多的载波是等腰三角波;因为等腰三角波上任一点的水平宽度和高度成线性关系且左右对称,当它与任何一个平缓变化的调制信号波相交时,如果在交点时刻对电路中开关器件的通断进行控制,就可以得到宽度正比于信号波幅值的脉冲。在调制信号波为正弦波时,所得到的就是SPWM波形。 SPWM波形的产生(如图2) 图2 SPWM波形的产生 1).全桥倍增SPWM控制 主电路和其他全桥逆变电路完全一致,控制脉冲的发生类似双极性SPWM 的模式,所不同的是,其桥臂之一所使用的互补控制脉冲由正弦调制波和三角载波比较产生,而另一个桥臂脉冲由同一正弦波和反相的三角载波比较产生(或者是反相三角载波和同一正弦波比较产生)。这种调制输出谐波性能等效于2倍载

关于DCDC变换器的工作原理

改进型四开关DC-DC变换器控制方式 传统的四开关BUCK/B00ST变换器功率损耗较大。这里对传统变换器的控制方法进行了改进。通过输入输出电压的不同关系采用不同的工作模式以减少同时工作的开关数量。 (l)当输入远远小于输出时,开关A恒定导通,开关B恒定断开。开关C、D 通过脉宽调制进行控制,此时四开关结构简化为Boost拓扑结构。 (2)当输入输出电压基本相等时,使用上面介绍的四开关工作的拓扑结构。 (3)当输入远远大于输出时,开关D恒定导通,开关C恒定断开。开关A、B 通过脉宽调制进行控制,此时四开关结构简化为Buck拓扑结构。改进的结构实际上是改变四个开关的控制逻辑,通过输入电压的不同选用不同的结构,这样在Boost或者Buck区域同时工作的开关数量减半。虽然在过渡区同样是采用四开关控制,四个开关都是处于工作状态,但是该区域是非常小的。总的来说可以大大减小开关的驱动功耗。

如图2-11所示,当Vin

相关文档
相关文档 最新文档