文档库 最新最全的文档下载
当前位置:文档库 › 锅炉烟气氮氧化物控制技术

锅炉烟气氮氧化物控制技术

锅炉烟气氮氧化物控制技术
锅炉烟气氮氧化物控制技术

锅炉烟气氮氧化物控制技术

)是造成大气污染的主要污染物之一,随着经济发展,我摘要:氮氧化物(NO

X

国氮氧化物的排放量也在逐年增加,锅炉烟气氮氧化物控制技术研究近年来已经成为一个热门话题,本文主要介绍了锅炉烟气氮氧化物的产生途径以及近年来国内外应用和正在研究开发的一些锅炉烟气氮氧化物控制和脱除技术,指出了烟气脱氮的现状及发展方向。

关键字:氮氧化物;锅炉烟气;控制脱除;

1 前言

氮氧化物的排放量中70%来自于煤炭的直接燃烧,燃烧过程中产生的氮氧化

物主要是NO和NO

2

(被通称为NOx),在绝大多数燃烧方式中,产生的NO占9o%以

上,其余为NO

2

。总体上我国氮氧化物排放量随着火电行业的发展呈不断增长的

趋势,2007年我国火电NOx排放量为 838.3万吨,比2003年的597.3万吨增加近了40.3%,相对于我国火电的总装机容量和煤耗量而言,NOx排放量的增加速率还是小于我国火电总装机容量和煤耗量的增长率,但是按燃煤电厂目前的排放情况,如果只控制了SO2的排放,而不采取有效的烟气脱硝技术控制NOx 的排放,2010年以后的5-10年,NOx排放总量将会超过SO2,成为电力行业的第一大酸性气体污染排放物。

目前,控制氮氧化物排放的方法分为两大类:①低NOx燃烧技术--在燃烧过程中控制氮氧化物的生成;②烟气脱硝技术--使生成后的氮氧化物还原。

2 燃烧过程中NOX的主要生成途径

燃烧过程生成的NO

X

主要有热力型、燃料型及快速型3种,其中燃料型NO 占

总生成量的60%一80%,最高可达90%,热力型NO

X

在温度足够高时可

达20%,快速型NO

X

占的比例最小。

燃料型NO

X

是燃料中的含氮化合物在燃烧过程中热分解后氧化而成的。由于

煤中含氮有机化合物的C—N较空气中N≡N的键能小得多,更易形成NO。燃料中的

有机氮首先被热分解成HCN、NH

3

及CN等中间产物随挥发分一起析出,即所谓挥发分N,然后再被氧化成NO。在通常的燃烧温度1 200一l 350℃,燃料中70% 90%的氮成为挥发分N,由此形成的N0 占燃料型NO 的60%一80%。

热力型NO

X 是由空气中的氮气高温氧化而成。NO

X

的生成与氧原子的存在成正

比,反应速度随温度的升高而加速,当煤粉炉中的温度升至1 600℃时,热力型

NO

X 可占到炉内NO

X

总量的25%一30%,这就是液态排渣炉的NO

X

固态排渣炉高的

原因。对固态排渣炉,应尽可能地缩短烟气在高温区的停留时间,以抑制热力型NO

X

的生成。

3 影响NOx生成与排放的因素

燃烧过程中NO 的生成量和排放量与燃烧方式、燃烧条件密切相关,主要影响因素有:

(1)煤种的特性。如煤的含氮量、挥发分以及固定碳与挥发分的比例;

(2)燃烧温度:锅炉内温度低,NO

X

量少;

(3)过剩空气系数(a);

(4)反应区烟气的组成。即烟气中O

2、N

2

、NH

i

、CH

i

、CO及C的含量;

(5)燃料与燃烧产物在火焰高温区的停留时间,停留时间短,NO

X

量少。

其中燃烧温度和a是主要影响因素。4 燃烧过程中NO

X

的控制技术

4 低氮燃烧技术及其原理

4.1 空气分级燃烧

4.1.1 基本技术原理

空气分级燃烧是目前国内外普遍采用的、比较成熟的低NO

X

燃烧技术。不同制

造厂家所采用的空气分级燃烧锅炉结构形式多种多样,但它们的基本原理大致相

同,无论是前后墙布置还是切向燃烧锅炉,在进行了空气分级燃烧之后都可使NO

X 的排放浓度降低30%左右。空气分级燃烧的原理是将燃烧过程分阶段进行,首先将从主燃烧器供入炉膛的空气减少到总燃烧空气量的70%一75%,相当于理论空气量的80%,此时的a<1,使燃料先在缺氧条件下燃烧,在还原性气氛中降低

NO

X

生成速率。完全燃烧所需要的其余空气量则通过布置在主燃烧器上方的空气喷口“火上风”送人炉膛,与一级燃烧区所产生的烟气混合,最终在a>1的条件下完成全部燃烧过程。

空气分级燃烧弥补了简单的低过量空气燃烧所导致的未完全燃烧损失和飞灰含碳量增加的缺点,但是,若两级的空气比例分配不合理,或炉内的混合条件不好,则会增加不完全燃烧损失。同时,煤粉炉一级燃烧区内的还原性气氛将导致灰熔点降低而引起结渣和受热面腐蚀。

4.1.2 影响因素及其范围

(1)一级燃烧区过剩空气系数(a1)的影响

为了有效控制NO

X 的生成量,应正确选择a

1

,当a

1

为0.8时,NO

X

的生成量

较a

1为1.2左右时降低50%,而且此时的燃烧工况也稳定。当a

1

下降至0.8以

下,虽然可进一步减少NO

x 的生成,但烟气中HCN、NH

3

和煤中的焦炭N的含量也

会随之增加,继而在二级燃烧区(燃尽区)氧化成NO,使总的NO

X

排放量增加。因

此,a

1

一般不低于0.7。对于具体的燃烧设备和煤种,a值应通过试验确定。

(2)温度的影响

有人通过实验得到了挥发分为32.4%、含氮1.4%固定碳与挥发分比例为1.78

的烟煤在停留时间为3秒时,不同燃烧温度下产生的NO

X 随a

1

的变化曲线,如图

1所示。

图1 不同温度下NO X质量浓度与a的关系

图中曲线表面,a

1<1时,温度越高,NO

X

的降低幅度越大。但在a

1

>1的氧

化性条件下,NO

X

的排放量随温度的升高而增加。在燃烧褐煤时也得到了同样结

论。因此,在组织空气分级燃烧时,需根据煤种特性,将一级燃烧区的温度控制

在最有利于减少NO

X

排放的范围内。

(3)停留时间的影响

停留时间也是影响NO

X

的排放浓度的一个重要因素,实验表明,当停留时间

从1s增加到4s,NO

X

的的浓度明显减少,降低幅度可达60%,但若在4s以后继续延长停留时间,则效果不明显。

烟气在一级燃烧区的停留时间取决于“火上风”喷口距主燃烧器的距离。如果停留时间足够长,可使一级燃烧区出口烟气中的燃料N基本反应完全,否则,

在燃尽区还会生成一定量的NO

X

。因此“火上风”喷口的位置和过剩空气系数共

同决定了一级燃烧区内NO

X 能够降低的程度。“火上风”喷口的位置不仅与NO

X

排放值有关,还直接关系到燃尽区内燃料的完全燃烧与炉膛出口的烟气温度。

(4)煤种和煤粉细度的影响

空气分级燃烧降低NO

X

的原理就是尽量减少煤中的挥发分N向NO转化,所以,

煤种的挥发分越高,对NO

X 的降低效果就越明显,对减少NO

x

排放的效果更显著。

在未采取分级燃烧时,细煤粉的NO

X

排放高于粗煤粉,在采用空气分级燃烧

技术后,当a

1<1时,细煤粉NO

X

的排放值明显低于粗煤粉,而且,烟煤粒度的降

低对抑制NO

X

的生成效果优于贫煤。

4.2 烟气再循环

4.2.1 技术原理

烟气再循环是目前使用较多的低氮燃烧技术。它是在锅炉的空气预热器前抽

取一部分烟气返回炉内,利用惰性气体的吸热和氧浓度的减少,使火焰温度降低,

抑制燃烧速度,减少热力型NO

X

。抽取的烟气可以直接送人炉内,也可以与一次

风或二次风混合后送人炉内,当烟气再循环率为15%~20%时,煤粉炉的NO

X 排放浓度可降低25%左右。锅炉烟气再循环系统如图3。

图2 锅炉烟气循环系统示意图

4.2.2 烟气再循环率

再循环的烟气量与未循环时的锅炉烟气量之比称为烟气再循环率。在采用烟气再循环法时,由于烟气量的增加,将引起燃烧状态不稳定,从而增加未完全燃烧热损失。因此,电站锅炉的烟气再循环率一般不超过20%。

4.2.3 使用条件与范围

烟气再循环技术既可以单独使用,也可以和其他低氮燃烧技术配合使用。在与燃料分级技术联合使用时可用来输送二次燃料。

采用烟气再循环技术需要安装再循环风机、循环烟道,这些都需要场地,从而在现有电站进行改造时,对锅炉附近的场地条件有一定的要求。

4.3 燃料分级燃烧

4.3.1 基本原理与技术

由NO

X 的还原机理可知,已生成的NO在遇到烃基CH

i

和未完全燃烧产物C0、

H 2、C及C

n

H

m

时,会还原成N

2

利用这一原理,将80%~85%的燃料(一次燃料)送人一级燃烧区,在

a>1的条件下燃烧并生成NO

X

,其余15%~20%的燃料(一次燃料)则在主燃烧器的上部送人二级燃烧区(再燃区),在a<1的条件下形成很强的还原性气氛,

将一级燃烧区中生成的NO

X 还原成N

2

。再燃区不仅使得已生成的NO

X

得到还原,

而且还抑制了新的NO

X 的生成,可使NO

X

的排放浓度进一步降低。一般情况下,

该法可使NO

X

的排放浓度降低50%左右。在再燃区的上部还需布置“火上风”喷口,形成三级燃烧区(燃尽区),以保证再燃区未完全燃烧的产物燃尽。燃料分级低氮燃烧原理见图3。

图3 燃料分级燃烧原理示意图

4.3.2 二次燃料的选择

与空气分级燃烧相比,燃料分级燃烧需要在炉膛内有三级燃烧区,使得燃料和烟气在再燃区内停留时间相对较短,所以,二次燃料宜选用容易着火和燃烧的气体或液体,如天然气。若采用煤粉,则要选择高挥发分的易燃煤种,并且要磨得更细。

从燃料分级原理可知,再燃区的还原性气氛中,最有利于NO X 还原的是CH i 。因此,二次燃料应选择能在燃烧时产生大量CH i 而又不含氮的燃料,如丙烷。图4为燃用不同二次燃料时,a 2对NO X 生成量的影响。

图4 不同二次燃料时a 2对NO X 生成量的影响

因各煤种产生CH i 及含氮量不同,其降低NO X 的效果也不一样,而氢气由于本身不能产生CH i ,故效果最差。有研究表明,与煤和油相比,天然气是最有效的二次燃料,其中碳原子数目较多的烃的含量越多,降低NO X 的效果越明显。

图5 不同一次燃料a 2时与NO X 浓度的关系

当以甲烷作二次燃料时,尽管不同的煤种在a 1>1的一级燃烧区内所生成的NO X 量各不相同,但当再燃区的温度达1 300o C 、停留时间为1s 时,最终的NO X 浓度值非常接近,见图5。图5表明采用合适的二次燃料、特别是烃类气体燃料,只要再燃区内有足够高的温度和停留时间,就可基本完成NO X 的还原,而与一级燃烧区的NO X 初始值无关。 4.3.3 二次燃料的比例

为保证再燃区NO X 的还原效果,需要送人足够的二次燃料,以提供还原NO X 所需要的CH i 。图6分别为以煤和天然气作二次燃料时,二次燃料的比例对NO X 、CO 及飞灰碳分的影响。由图6可见,在相同的二次燃料比例下,天然气可以达到更好的降NO X 效果,但在其比例达20% 以上时,继续增加二次燃料的比例则效果不再明显。所以,一般二次燃料的比例在10%-20%之间。当以煤作二次燃料时,烟气中的CO 浓度和飞灰碳分将随其比例的提高显著增加,故对具体的某一种二次燃料,其比例需要由试验确定。

图6二次燃料的比例对NO X 、CO 及飞灰碳分的影响

4.3.4 a 2和温度的影响

图7是以烟煤作一次燃料,甲烷为二次燃料,停留时间为2 S 时,再燃区NO X

浓度与a 2的关系。图7表明,在一定的燃烧温度与停留时间下,存在一个最佳的a 2,此时的NO X 浓度最低。一般对于不同燃烧设备, a 2在0.7~1.0之间,其最佳值应由试验确定。

由图7还可以看出,温度越高,一级燃烧区中的NO X 浓度也越高,但随着a 2的降低, NO X 的浓度也会降低。当温度为1 400 O C 时,NO X 从一级区出口的1 700 mg/m 3(a 2=1.5)降低到约100 mg/m(a 2=0.8),再燃区中NO X 的降低率高达94%。而当

温度为1 000 O

C ,降低率为70%左右。可见,升高再燃区温度,可提高对NO X 的降低率。

图7不同温度下再燃区过剩空气系数对NO X浓度的影响

4.3.5 停留时间的影响

再燃区停留时间取决于再燃区的长度,即二次燃料喷口距主燃烧器的距离。理论上,再燃区的温度越高、停留时间越长,还原反应越充分,NO

X

的降低率就越高。

但实际上烟气在再燃区的停留时间是由二次燃料入口和“火上风”喷口的位置所决定,而二次燃料喷口的位置还影响一级燃烧区的停留时间,如一味地延长再燃区的停留时间而减少了一级燃烧区的停留时间,不仅会降低燃料的燃尽率,还会使过量氧进入再燃区而减弱其还原气氛。故一般再燃区中的温度为1 200 O C 时,停留时间在0.7~1.5 s之间。有试验表明,当再燃区的停留时间低于0.7 s

时,NO

X 会显著增加。但停留时间过长不会进一步降低NO

X

浓度。此外,过长的再

燃区停留时间缩短了燃尽区的停留时间,还会导致燃烧效率降低。燃尽区的停留时间在0.7~0.9 s为宜。

4.3.6 综合分析

燃料分级燃烧中,影响NO

X

排放浓度的因素有:二次燃料的种类、过剩空气

系数a

1

、温度和停留时间等,当采用烃类气体作二次燃料时,则与一次燃料的种类无关。这些影响因素的最佳值均需试验确定。

和空气分级燃烧相比,燃料分级燃烧的燃尽率与降低NO

X

浓度的矛盾更加突

出,由于燃料在燃尽区的停留时间更短,选择a

2

和利用“火上风”,组织好燃尽区的燃烧过程,以获得较高的燃尽率显得更为重要。

4.4低NOx燃烧器

低NO

X

燃烧器的主要技术原理是通过特殊设计的燃烧器结构(LNB)及改变通过燃烧器的风煤比例,以达到在燃烧器着火区空气分级、燃烧分级或烟气再循环法的效果。在保证煤粉着火燃烧的同时,有效抑制NOx的生成。如燃烧器出口燃

料分股:浓淡煤粉燃烧。在煤粉管道上的煤粉浓缩器使一次风分成水平方向上的

浓淡两股气流,其中一股为煤粉浓度相对高的煤粉气流,含大部分煤粉;另一股为煤粉浓度相对较低的煤粉气流,以空气为主。我国低NO

x

燃烧技术起步较早,国内新建的300MW及以上火电机组已普遍采用LNBs技术。对现有100~300MW机组

也开始进行LNB技术改造。采用LNB技术,只需用低NO

x

燃烧器替换原来的燃烧器,燃烧系统和炉膛结构不需作任何更改。因此,它是在原有炉子上最容易实现的最经济的降低NOx排放的技术措施。其缺点是,单靠这种技术无法满足更严格的排放法规标准。因此,LNBs技术应该和其他NOx控制技术联合使用。在国外,LNBs 技术通常和烟气脱氮技术联合使用。

5 烟气脱销技术

5.1选择性催化还原法(SCR)

在含氧气氛下,还原剂优先与废气中NO反应的催化过程称为选择性催化还

原。以NH

3作还原剂,V

2

O

5

-TiO

2

为催化剂来消除固定源(如火力发电厂)排放的NO

的工艺已比较成熟。

选择性催化还原也是目前唯一能在氧化气氛下脱除NO的实用方法。1979年,世界上第一个工业规模的脱 NOx装置在日本的Kudamatsu电厂投入运行,1990年在发达国家得到广泛应用,目前已达5 00余家(包括发电厂和其它工业部门)。

在理想状态下,此法NO脱除率可达90%以上,但实际上由于NH

3

量的控制误差而造成的二次污染等原因,使得通常的脱除率仅达65%~80%。性能的好

坏取决于催化剂的活性、用量以及NH

3

与废气中的NOx的比率。

NH

3

-SCR消除NO的方法已实现工业化,且具有反应温度较低(573~753K)、催化剂不含贵金属、寿命长等优点。但也存在明显的缺点:(1)由于使用了腐蚀

性很强的NH

3

氨水,对管路设备求高,造价昂贵(投资费用80美元/kW);(2)由

于NH

3

加入量控制会出现误差,容易造成二次污染;(3)易泄漏,操作及存储困

难,且易于形成(NH

4)

2

SO

4

5.2非催化选择性还原法(SNCR法)

同SCR法,由于没有催化剂,反应所需温度较高(900~1200℃),因此需控制好反应温度,以免氨被氧化成氮氧化物。该法净化率为50%。

该法的特点是不需要要催化剂,旧设备改造少,投资较SCR法小(投资费用15美元/kW)。但氨液消耗量较SCR法多。日本的松岛火电厂的l~4号燃油锅炉、四日市火电厂的两台锅炉、知多火电厂350MW的2号机组和横须贺火电厂350MW的2号机组都采用了SNCR方法。但是,目前大部分锅炉都不采用SNCR方法,主要原因如下:(l)效率不高(燃油锅炉的NOx排放量仅降低30%~50%);(2)增加反应剂和运载介质(空气)的消耗量;(3)氨的泄漏量大,不仅污染大气,而且在燃烧含硫燃料时,由于有硫酸氢铵形成,会使空气预热器堵塞。

5.3催化分解法

理论上,NO分解成N

2和O

2

是热力学上有利的反应,但该反应的活化能高达

364KJ/mol,需要合适的催化剂来降低活化能,才能实现分解反应。由于该方法简单,费用低,被认为是最有前景的脱氮方法,故多年来人们为寻找合适的催化剂进行了大量的工作,主要有贵金属、金属氧化物、钙钛矿型复合氧化物及金属离子交换的分子筛等。

Pt、Rh、Pd等贵金属分散在Pt/7-Al2O3等载体上,可用于NO的催化分解。在同等条件下,Pt类催化剂活性最高。贵金属催化剂用于NO催化分解的研究已比较广泛和深入,近年来,这方面的工作主要是利用一些碱金属及过渡金属离子对单一负载贵金属催化剂进行改性,以提高催化剂的活性及稳定性。

5.4 等离子体治理技术

电子束(electron|beam,EB)法的原理是利用电子加速器产生的高能电子束,直接照射待处理的气体,通过高能电子与气体中的氧分子及水分子碰撞,使之离解、电离,形成非平衡等离子体,其中所产生的大量活性粒子(如OH、O 等)与污染物进行反应,使之氧化去除。许多国家已经建立了一批电子束试验设施和示范车间。日本、德国、美国和波兰的示范车间运行结果表明,这种电子束系统去除SO

2

总效率通常超过95%,去除NOx的效率达到80%~85%。

但电子束照射法仍有不少缺点:(1) 能量利用率低,当电子能量降到3eV以下后,将失去分解和电离的功能,剩余的能量将浪费掉;(2) 电子束法所采用的电子枪价格昂贵,电子枪及靶窗的寿命短,所需的设备及维修费用高;(3)设备结构复杂,占地面积大,X射线的屏蔽与防护问题不容易解决。上述原因限制了电子束法的实际应用和推广。

针对电子束法存在的缺点,20世纪80年代初期,日本的Masuda提出了脉冲电晕放电等离子体技术(pulse corona discharge plasma,PCDP)。PCDP技术产生电子的方式与EB法截然不同,它是利用气体放电过程产生大量电子,电子能量等级与EB法电子能量等级差别很大,仅在5~20eV范围内。与电子束照射法相比,该法避免了电子加速器的使用,也无须辐射屏蔽,增强了技术的安全性和实用性。

20世纪90年代中期,Ohkaho和Chang等根据喷嘴电晕矩的流动稳定性原

理,提出了直流电晕自由基簇射脱硝过程。此法的优点是添加剂被分解, NH

3排放可减少到0.0038mg/L以下;令一优点是NH

3

直接喷入电晕区,不会激活烟气中的其他气体,可提高能量利用率。其他等离子体治理技术还包括介质阻挡放电技术、表面放电技术等,但这些技术都还处于实验室阶段,还没有实际的工业应用。

5.5 液体吸收法

NOx是酸性气体,可通过碱性溶液吸收净化废气中的NOx。常见吸收剂有:

水、稀HNO

3、NaOH、Ca(OH)

2

、NH

4

(OH)、Mg(OH)

2

等。为提高NOx的吸收效率,又

可采用氧化吸收法、吸收还原法及络合吸收法等。氧化吸收法先将NO部分氧化

为NO

2,再用碱液吸收。气相氧化剂有O

2

、O

3

、Cl

2

、和ClO

2

等;液相氧化剂有HNO

3

KmnO

4、NaClO

2

、H

2

O

2

、K

2

Br

2

O

7

、等。吸收还原法应用还原剂将NOx还原成N

2

,常

用还原剂有(NH

4)

2

SO

4

、(NH

4

)HSO

3

、Na

2

SO

3

等。液相络合吸收法主要利用液相络合

剂直接同NO反应,因此对于处理主要含有NO的NOx尾气具有特别意义。NO生成的络合物在加热时又重新放出NO,从而使NO能富集回收。目前研究过的NO

络合吸收剂有FeSO

4、Fe(Ⅱ)-EDTA和Fe(Ⅱ)-EDTANa

2

SO

4

等。

该法在实验装置上对NO的脱除率可达90%,但在工业装置上很难达到这样的脱除率。Peter、Harri、Ott等人在中试规模达到了10%~60%的NO脱除率。

此法工艺过程简单,投资较少,可供应用的吸收剂很多,又能以硝酸盐的形式回收利用废气中的NOx,但去除效率低,能耗高,吸收废气后的溶液难以处理,容易造成二次污染。此外,吸收剂、氧化剂、还原剂及络合物的费用较高,对于含NOx浓度较高的废气不宜采用。

5.4 吸附法

吸附法是利用吸附剂对NOx的吸附量随温度或压力的变化而变化,通过周期性地改变操作温度或压力,控制NOx的吸附和解吸,使NOx从气源中分离出来,属于干法脱硝技术。根据再生方式的不同,吸附法可分为变温吸附法和变压吸附法。变温吸附法脱硝研究较早,已有一些工业装置。变压吸附法是最近研究开发的一种较新的脱硝技术。常用的吸附剂有杂多酸、分子筛、活性炭、硅胶及含NH

3

的泥煤等。

吸附法净化NOx废气的优点是:净化效率高,不消耗化学物质,设备简单,操作方便。缺点是:由于吸附剂吸附容量小,需要的吸附剂量大,设备庞大,需要再生处理;过程为间歇操作,投资费用较高,能耗较大。

5.5 生物处理法

生物法处理的实质是利用微生物的生命活动将NOx转化为无害的无机物及微生物的细胞质。由于该过程难以在气相中进行,所以气态的污染物先经过从气相转移到液相或固相表面的液膜中的传质过程,可生物降解的可溶性污染物从气相进入滤塔填料表面的生物膜中,并经扩散进入其中的微生物组织。然后,污染物作为微生物代谢所需的营养物,在液相或固相被微生物降解净化。

美国爱达荷国家工程实验室(Idaho National Engineering Laboratory)的研发人员最早发明了用脱氮菌还原烟气中NOx的工艺。当烟气在塔中的停留时间(EBRT)约为1min, NO进口浓度为335mg/m3时,NO的去除率可达到99%。塔中细菌的最适温度为30~45℃,pH值为6.5~8.5。

虽然微生物法处理烟气中NOx的成本低,设备投入少,但要实现工业应用还有许多的问题需要克服:(1)微生物的生长速度相对较慢,要处理大流量的烟气,还需要对菌种作进一步的筛选;(2)微生物的生长需要适宜的环境,如何在工业应用中营造合适的培养条件将是必须克服的一个难题;(3)微生物的生长,会造成塔内填料的堵塞。

烟气脱销技术的总结及展望

(1)选择性催化还原(SCR)是最早实现工业化应用的氮氧化物脱除技术,其过程要求严格控制NH

3

/NO比率。

(2)有关催化分解法及催化还原法这两类反应的催化剂虽然研究得很多,但是仍与实际要求有很大的距离。寻找新型催化材料,探索新的催化剂制备技术以及设计新的催化工艺流程以求得突破,是目前具有实际意义的研究工作。

(3)电子束照射和脉冲电流晕放电是当今烟气脱氮的一大发展方向,可以同

时处理大型火力发电厂的CO

2、SO

2

、NO

X

和飞灰,但存在着设备和运行费用高的

缺点。如果设备和运行费用能得到进一步控制,此技术有良好的应用前景。

(4)传统的液体吸收、吸附脱硝技术工艺过程简单,投资较少,虽然存在不少的问题,但通过处理手段和操作工艺的不断完善,必将焕发出新的生命力。

(5)微生物法目前还处于实验阶段,存在着明显的缺点,例如填料塔的空塔气速、烟气温度、反硝化菌的培养、细菌的生长速度和填料的堵塞等等问题都有待于得到解决,它的实际应用取决于工艺的不断完善。随着人们对微生物净化含NOx废气处理工艺研究的不断深入,该技术将会从各方面得到全面的发展。

参考文献

[1]吴碧君,刘晓勤.燃烧过程NO 的控制技术与原理

锅炉烟气治理技术方案

锅炉烟气除尘脱硫治理工程
设计方案
0

一、工程概述
59MW 燃煤供暖锅炉机组烟气脱硫除尘治理并达标排放,对该锅炉烟气
除尘脱硫治理工程进行设计如下:
二、设计依据
根据有关技术资料及要求为参考依据,并严格按照所有相关的设计规范 与标准,编制本方案:
1、《锅炉大气污染物排放标准》GB13271-2001
2、《大气污染物综合排放标准》GB/T16297----1996
3、《花岗石类湿式烟气脱硫除尘装置》HJ/T 319-2006
4、厂方提供的技术参数;
5、国家相关标准与规范。
三、设计烟气参数、设计原则及范围
1、设计处理烟气参数:
锅炉烟气参数为:
序号
名称
1
进口烟气量
2
烟气温度
3
烟气进口 SO2 浓度
2、处理后排放的空气质量:
单位 m3/h
℃ mg/m3
数值 240000
150 800
按照环保部门的要求,治理后排放的废气污染物指标必须达到《锅炉大
气污染物排放标准》GB13271-2001 及地方相关标准的要求。
具体参数如下:
序号 1 2
项目 SO2 排放浓度 烟尘排放浓度
1
参数 ≤150 mg/m3
50 mg/m3

3
烟气黑度
<林格曼 1 级
4
除尘效率
≥95%
5
脱硫效率
≥80%
3.设计原则
§认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、 规范和标准。
§选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统 的安全、稳定性能,并减少系统运行费用。
§充分结合厂方现有的客观条件,因地制宜,制定具有针对性的技 术方案。
§系统平面布置要求紧凑、合理、美观,实现功能分区,方便运行 管理。
§设计采用钠钙双碱法脱硫工艺,该方法技术成熟、脱硫效率高、运行 安全可靠、操作简便。
§脱硫系统设置烟气旁路,可以确保脱硫装置对现有锅炉机组不产生负 面影响,提高系统的稳定性;
§烟气脱硫系统具有应付紧急停机的有效措施;
§烟气脱硫系统能适应锅炉的起动和停机,并能适应锅炉运行及其负荷
的变动;
§烟气脱硫系统便于日常检查和正常维修、养护及进行年修。
4.设计范围 设计范围:烟气脱硫除尘系统结构、电气等专业的设计。 工程范围:脱硫除尘装置和相应配套的附属设施。
四、工艺选择及流程说明
(一) 工艺选择
1.目前国内外脱硫技术应用最广泛的是湿式石灰石—石膏法,但该技
术工程投资大、运行成本高,设备和管路系统易磨损和堵塞。
双碱法是先用可溶性的碱性清液作为吸收剂吸收 SO2,然后再用石灰乳
2

锅炉烟气量估算方法完整版

锅炉烟气量估算方法集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

常用锅炉烟气量估算方法 烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。3L!p+A)H#y&z9H#^ 烧一吨柴油,排放2000×S%千克SO2,1.2万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,1.6万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。4b4p3u#E0W 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克;)u%S!h+k%X,g0] 砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。9^)e8|$w/q+P 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。;~#I+I8I!]"h8q 物料衡算公式:8v;_$M*U'V8T;~ 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。若燃煤的含硫率为1%,则烧1吨煤排放16公斤S O2。,C8Sr9W"L&J 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油1.5-3%,柴油0.5-0.8%。若含硫率为2%,燃烧1吨油排放40公斤SO2。'J5D"G3m2C$\*U6p 排污系数:燃烧一吨煤,排放0.9-1.2万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放1.2-1.6万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】0.7~0.9,即用水量的70-90%。2E#C1W&]'g3V+Q+Q 【生活污水排放系数】采用本地区的实测系数。。*B-t?G1f:U)N)j 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。9S1s-]1`*h3m._9E*t!A%@'i 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘9E-R)m)O1A9H9Y4C(C 原?煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法/d2G%D.c1d*].x-C

氮氧化物废气的处理..

氮氧化物废气的处理 姓名:贺佳萌 学号:1505110107 专业班级:应化1101 指导老师:曾冬铭

氮氧化物废气的处理 摘要:氮氧化物是主要的大气污染物之一,本文介绍了含氮氧化物废气的产生原因及处理方法。 关键词:氮氧化物;处理技术; 前言 氮氧化物是指一系列由氮元索和氧元素组成的化合物,包括有N2O、NO、N2O3 、NO2、N2O4、N2O5,通常用分子式NO x 来统一表示。大气中NO x主要以NO、NO2的形式存在。 NO x的危害早已被人们所认识到,主要体现在: (1)氮氧化物对人体的危害很大,可直接导致人体的呼吸道损伤,而且是一种致癌物。 (2)氮氧化物会使植物受损伤甚至死亡。 (3)在阳光的催化作用下,氮氧化物易与碳氢化物发生复杂的光化反应,产生光化学烟雾,导致严重的大气污染。 (4)氮氧化物会导致臭氧层的破坏。 (5)氮氧化物也易与水气结合成为含有硝酸成分的酸雨川。 以上光化学烟雾、酸雨及臭氧问题,近年来有逐渐恶化的趋势,已经成为政府及社会公众非常关心的问题。 氮氧化物的产生主要来自于两个方面:自然界本身和人类活动。据统计,由自然界本身变化规律产生的NOx每年约500×106t,人类活动产生的NOx每年约50×106t。从数据来看,虽然人类活动产生的NOx较自然界本身产生的NOx少得多,但由于人类活动产生的NOx往往比较集中,浓度较高,且大多在人类活动环境区域内,因而其危害性更大。 人类活动产生的氮氧化物主要来源于两个方面: (1)含氮化合物的燃烧; (2)亚硝酸、硝酸及其盐类的工业生产及使用。据美国环保局估计,99%的NOx产生于含氮化合物的燃烧,如火力电厂煤燃烧产生的烟气、汽车尾气等。在亚硝酸、硝酸及其盐类的工业生产及使用过程中,由于它们的还原分解,会放出大量的NOx,其局部浓度很高,处理困难,危害大。 在含NOx废气中,对自然环境和人类生存危害最大的主要是NO和NO2。NO为无色、无味、无臭气体,微溶于水,可溶于乙醇和硝酸,在空气中可缓慢氧化为NO2,与氧化剂反应生成NO2,与还原剂反应生成N2。NO2溶于水和硝酸,和水反应生成HNO3和HNO2,和碱及强碱弱酸盐反应生成硝酸盐和亚硝酸盐,和还原剂反应还原为N2。

氮氧化物排放量计算

锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx=1.63B(β·n+10-6Vy·CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); B ~煤或重油消耗量(kg); β~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n≥0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3/kg); CNOx~温度型NO浓度(mg/Nm3),通常取70ppm,即93.8mg/Nm3。第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938)

GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为

18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为

如何降低烟气中氮氧化物的含量

深国安电子给您分享 如何降低烟气中氮氧化物的含量 1 重要性和产生的原因 氮氧化物(NOX) 是锅炉排放气体中的有害物之一。燃煤锅炉在1996 年国家要求控制在 650mg/m3,而2004 年第3 时段排放标准进一步提高要求控制在450 mg/m3 ;所以对于我们燃煤机组的火电厂热电厂减少NOX 的排放迫在眉睫。 在燃烧过程中, NOX 生成的途径有3 条: 1)热力型NOX :是空气中氮在高温(1 400℃以上)下氧化产生; 2)快速型NOX :是由于燃料挥发物中碳氢化合物高温分解生成的CH 自由基和空气中氮气反应生成HCN 和N,再进一步与氧气作用以极快的速度生成NOx ; 3)燃料型NOX :是燃料中含氮化合物在燃烧中氧化生成的NOx,称为燃料型NOx。 2 降低的方法 对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOX 的生成机会。 1)在燃用挥发分较高的烟煤时,燃料型NOX 含量较多,快速型NOX 极少。燃料型NOX 是空气中的氧与煤中氮元素热解产物发生反应生成NOX,燃料中氮并非全部转变为NOX,它存在一个转换率,降低此转换率,控制NOX 排放总量,可采取: (1)减少燃烧的过量空气系数; (2)控制燃料与空气的前期混合; (3)提高入炉的局部燃料浓度。 2)热力型NOx :是燃烧时空气中的N2 和O2 在高温下生成的NOX,产生的主要条件是高的燃烧温度使氮分子游离增本化学活性;然后是高的氧浓度,要减少热力型NOX 的生成, 可采取: (1)减少燃烧最高温度区域范围; (2)降低锅炉燃烧的峰值温度; (3)降低燃烧的过量空气系数和局部氧浓度。 具体来说,就是在保证锅炉燃烧安全的前提下,采取以下措施来减少氮氧化物的生成:(1)低过量空气燃烧 使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOX 的生成。这是一种最简单的降低NOX 排放的方法。一般可降低NOX 排放15~20%。但 如炉内氧浓度过低(3% 以下),会增加化学不完全燃烧热损失,引起飞灰含碳量增加,使锅炉燃烧效率下降。因此,在锅炉运行时,应选取最合理的过量空气系数。 (2)空气分级燃烧 基本原理是将燃料的燃烧过程分阶段完成,采用倒三角的配风方式。在第一阶段预燃阶段,将从主燃烧器供入炉膛的空气量减少(相当于理论空气量的80%),使燃料先在缺氧的富

焚烧炉烟气处理除尘系统技术方案

石化废泥浆焚烧炉烟气治理除尘系统 技 术 方 案 成都智联环境保护设备有限公司 2015年1月

一、概述: 东汽集团有一韶关项目,主要焚烧危险废弃物,其烟气需要进行处理,拟在后续工艺配备一台袋式除尘器,现就针对该袋式除尘器作出如下技术方案。 二、设备选型及技术参数: 1、处理烟气参数 (1)烟气来源:危险废弃物焚烧干法脱酸系统处理后含尘烟气 (2)烟气量:11719 Nm3/h(设计富裕量要求10%,则烟气量达到12891 Nm3/h,工况20446m3/h(按160℃计))。 (3)进口烟温:~160℃(140~220℃) (4)烟气湿度:30~35% (5)入口含尘浓度:≤15g/Nm3 (6)入口酸性气体浓度:SO2含量158.4mg/Nm3(最大300 mg/Nm3);HCl含量21.3mg/Nm3(最大37mg/Nm3);HF含量7mg/Nm3; 2、除尘器技术参数: (1)按设计提供的参考图纸,采用MC-288型脉冲袋式除尘器,其工艺原理如下,含尘烟气由进风总管通过除尘器风口进入除尘器箱体,粗尘粒沉降至灰斗底部,细尘粒随气流转折向上进入过滤室,粉尘被阻留在滤袋表面,净化后的气体经滤袋口(花板孔上)进入清洁室,由出风口排出,而后再经引风机排至大气。其技术参数如下:

MC-288型脉冲袋式除尘器技术参数 三、工程供货范围: 四、工程价格: 优惠价格:若上箱体采用不锈钢51万元;若采用普通碳钢48万元(含税)。 注:1、以上报价在30天内有效; 2、工期为合同生效后60天; 3、整体设备总包一年,保修期内免费维护。 成都市智联环境保护设备有限公司 2013年7月

浅析含氧量对锅炉烟气氮氧化物折算值的影响

龙源期刊网 https://www.wendangku.net/doc/a512240022.html, 浅析含氧量对锅炉烟气氮氧化物折算值的影响 作者:禤四德 来源:《企业科技与发展》2016年第08期 【摘要】氮氧化物是燃煤锅炉的主要排放污染物之一,为了达标排放,必须对氮氧化物 进行无公害处理。脱硝是处理燃煤锅炉烟气达标排放的重要措施之一。锅炉烟气的含氧量对氮氧化物及氮氧化物折算值都有影响,为了分析含氧量对氮氧化物折算值的影响,抽取了某75 t/h燃煤循环流化床锅炉运行的烟气监测数据进行理论分析,得出有效控制氮氧化物折算值的 措施,保证燃煤锅炉烟气得到有效的治理,从而达标排放。 【关键词】含氧量;氮氧化物(NOx);氮氧化物折算值 【中图分类号】TM621.2 【文献标识码】A 【文章编号】1674-0688(2016)08-0075-03 燃煤锅炉运行中,NOx是主要大气污染物之一。氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这二者统称为NOx。此外,还有少量的氧化二氮(N2O)产生。排入大气的NOx会引起酸雨和光化学烟雾污染,破坏臭氧层,严重破坏生态环境,危害到人类的健康。 为达到国家最新颁布实施的(《火电厂大气污染物排放标准》(GB 13223—2011)的大气污染物排放限值标准,必须对NOx进行无公害处理后合格排放。烟气排放中氮氧化物和氮氧化物折算值是其中2项重要的指标,下面分析一下含氧量对氮氧化物折算值的影响。 1 氮氧化物的生成 燃煤锅炉在燃烧过程中产生的NOx,可采用SCR(选择性催化还原)和SNCR(选择性 非催化还原)2种技术进行处理。目前,大多数厂家采用SNCR(选择性非催化还原)技术进行无公害处理。选择性非催化还原是指无催化剂的作用下,在适合脱硝反应的工况位置,喷入还原剂与烟气中的氮氧化物发生化学反应,还原为无害的氮气和水。采用NH3作为还原剂,在温度为850~1 050 ℃的范围内,还原NOx的化学反应方程式主要为 4NH3+4NO+O2=4N2+6H2O;4NH3+2NO+2O2=3N2+6H2O;8NH3+6NO2=7N2+12H2O。 烟气中NOx的生成反应过程是相当复杂的,煤在燃烧过程中生成NOx的途径有3种:①热力型,这是空气中氮气在高温下氧化而成的过程。②燃料型,这是燃料中含有的氮化合物在燃烧过程中热分解后继续氧化的过程。③快速型,这是燃烧时空气中的氮和燃料中的碳氢离子团(如CH等)反应生成的过程。根据氮氧化物的燃烧化学反应,降低炉内过量空气系数,可以降低氮氧化物的生成;缺点为锅炉燃烧需要足够的氧量,在炉膛出口氧量为5%~6%,较低的空气系数会造成燃烧化学反应不充分,也会降低锅炉热利用效率;易于还原性气体的生成,

锅炉烟气治理技术方案

燕化一厂低压车间反应釜
锅炉烟气除尘脱硫治理工程
设计方案
页脚内容

燕化一厂低压车间反应釜
一、工程概述
59MW 燃煤供暖锅炉机组烟气脱硫除尘治理并达标排放,对该锅炉烟气
除尘脱硫治理工程进行设计如下:
二、设计依据
根据有关技术资料及要求为参考依据,并严格按照所有相关的设计规范 与标准,编制本方案:
1、《锅炉大气污染物排放标准》GB13271-2001
2、《大气污染物综合排放标准》GB/T16297----1996
3、《花岗石类湿式烟气脱硫除尘装置》HJ/T 319-2006
4、厂方提供的技术参数;
5、国家相关标准与规范。
三、设计烟气参数、设计原则及范围
1、设计处理烟气参数:
锅炉烟气参数为:
序号
名称
1
进口烟气量
2
烟气温度
3
烟气进口 SO2 浓度
2、处理后排放的空气质量:
单位 m3/h
℃ mg/m3
数值 240000
150 800
按照环保部门的要求,治理后排放的废气污染物指标必须达到《锅炉大
气污染物排放标准》GB13271-2001 及地方相关标准的要求。
具体参数如下:
序号 1 2
项目 SO2 排放浓度 烟尘排放浓度
页脚内容
参数 ≤150 mg/m3
50 mg/m3

燕化一厂低压车间反应釜
3
烟气黑度
<林格曼 1 级
4
除尘效率
≥95%
5
脱硫效率
≥80%
3.设计原则
§认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、 规范和标准。
§选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统 的安全、稳定性能,并减少系统运行费用。
§充分结合厂方现有的客观条件,因地制宜,制定具有针对性的技术方 案。 §系统平面布置要求紧凑、合理、美观,实现功能分区,方便运行管理。 §设计采用钠钙双碱法脱硫工艺,该方法技术成熟、脱硫效率高、运行 安全可靠、操作简便。 §脱硫系统设置烟气旁路,可以确保脱硫装置对现有锅炉机组不产生负 面影响,提高系统的稳定性;
§烟气脱硫系统具有应付紧急停机的有效措施;
§烟气脱硫系统能适应锅炉的起动和停机,并能适应锅炉运行及其负荷
的变动;
§烟气脱硫系统便于日常检查和正常维修、养护及进行年修。
4.设计范围 设计范围:烟气脱硫除尘系统结构、电气等专业的设计。 工程范围:脱硫除尘装置和相应配套的附属设施。
四、工艺选择及流程说明
(一) 工艺选择
1.目前国内外脱硫技术应用最广泛的是湿式石灰石—石膏法,但该技
术工程投资大、运行成本高,设备和管路系统易磨损和堵塞。
双碱法是先用可溶性的碱性清液作为吸收剂吸收 SO2,然后再用石灰乳
或石灰对吸收液进行再生,由于在吸收和吸收液处理中,使用了不同类型的
页脚内容

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

根据环境统计手册 煤渣包括煤灰和炉渣,锅炉中煤粉燃烧产生的叫粉煤灰,炉膛中排出的灰渣称为炉渣。 (1)炉渣产生量: Glz= B×A×dlz/(1-Clz) 式中: Glz——炉渣产生量,t/a; B——耗煤量,t/a; A——煤的灰份,20%; dlz——炉渣中的灰分占燃煤总灰分的百分数,取35%; Clz——炉渣可燃物含量,取20%(10-25%); (2)煤灰产生量: Gfh= B×A×dfh×η/(1-Cfh) 式中: Gfh——煤灰产生量,吨/年; B——耗煤量,800吨/年; A——煤的灰份,20%; dfh——烟尘中灰分占燃煤总灰分的百分比,取75% (煤粉炉75-85%);dfh=1-dlz η——除尘率; Cfh——煤灰中的可燃物含量,25%(15-45%); 注:1)煤粉悬燃炉Clz可取0-5%;C f取15%-45%,热电厂粉煤灰可取4%-8%。Clz、Cfh也可根据锅炉热平衡资料选取或由分析室测试得出。 2)d fh值可根据锅炉平衡资料选取,也可查表得出。当燃用焦结性烟煤、褐煤或煤泥时, d fh值可取低一些,燃用无烟煤时则取得高一点。 烟尘中的灰占煤灰之百分比(d fh)

表1 煤的工业分析与元素分析 一、烟气量的计算: 0V -理论空气需求量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); ar net Q ?-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料)); daf V -干燥无灰基挥发分(%); V Y -烟气量(Ng 或Nm 3/m 3/KNm 3(气体燃料)); α-过剩空气系数, α=αα?+0。 1、理论空气需求量 daf V >15%的烟煤: 278.01000 Q 05.1ar net 0+? =?V daf V <15%的贫煤及无烟煤: 61.04145 Q ar net 0+= ?V 劣质煤ar net Q ?<12560kJ/kg : 455.04145 Q ar net 0+= ?V 液体燃料:

新形势下氮氧化物烟气治理技术现状及趋势

新形势下氮氧化物烟气治理技术现状及趋势 发表时间:2018-06-01T10:49:22.757Z 来源:《基层建设》2018年第9期作者:纪嫄 [导读] 摘要:燃煤电厂是目前我国电力资源的主要供应者,为国民经济发展提供重要支撑。 安徽省宣城市郎溪县环境保护局 242100 摘要:燃煤电厂是目前我国电力资源的主要供应者,为国民经济发展提供重要支撑。燃煤电厂在发电的同时也产生巨大的污染,其中包括颗粒污染和气态污染两个重要方面,气态污染物又可以分为二氧化硫和氮氧化物。因此,必须对相关的污染物进行处理,以保证环境的清洁。本文以氮氧化物的治理为切入点,介绍氮氧化物的脱除技术及发展趋势。以期更好地促进脱硝技术的发展。 关键词:氮氧化物;烟气治理;脱硝SCR 1引言 随着经济和社会不断发展,人们对环境保护认识日益深刻。我国的大气污染仍然以煤烟型为主,主要污染是SO2和烟尘,酸雨问题依然较严重,电厂的烟道气中氮氧化物含量较高,超过了排放标准,不能直接排放,因此要对电厂的烟道气进行脱脱硝处理,,因此本文结合氮氧化物的脱除技术对燃煤电厂的烟气治理情况进行分析介绍,以期更好地促进烟气的洁净排放顺利完成。 2氮氧化物脱除概述 我国的一次能源中有70%-80%的能源是由煤炭提供,尤其是电力资源。目前,我国电网中的电力资源绝大部分是通过燃煤电厂提供,煤炭在燃烧过程中产生大量的污染物。氮氧化物(NOx)是在煤炭燃烧中产生的,相关的研究已经证实NOx对环境具有较大的影响,不仅和酸雨、光化学烟雾有关,同时也是诱导温室效应和光化学反应的主要物质。据相关数据统计显示,燃烧1t的煤炭可以产生约20-30kg的氮氧化物。因此,采取相关的措施减少电厂NOx的排放量对于改善环境具有重要的影响。减少氮氧化物的排放的主要途径可以分为两大方面:其一改善燃煤结构,燃烧优质煤,从源头降低NOx生成。其二,通过烟气脱硝装置吸收或者还原烟气中的NOx。 烟气脱硝方法是目前国际上使用较多的用于减少环境中NOx的方法。具有很高的脱硝率,符合环保指标排放要求。 3我国氮氧化物废气的治理技术现状 目前,常使用的氮氧化物处理技术(脱硝工艺)分为选择性催化还原技术和选择性非催化还原技术。本单位采用SCR技术对烟气中的氮氧化物进行处理。SCR烟气脱硝技术就是利用还原剂选择性地将烟气中的NOx反应生成对环境无害的无机小分子物质氮气和水。具体的工作原理如图1表示。 图1 SCR烟气脱硝工作原理 SCR烟气脱硝技术中应用的还原剂一般为碳氢化合物,应用较多的是氨气,氨气作为还原剂的条件下,主要发生的反应如下: 由于燃煤烟气中的NOx主要为NO,因此SCR烟气脱硝反应中主要发生上述的第一个反应。在没有催化剂的条件下,NOx和NH3也可以发生化学反应,不过只能在相对较窄的温度范围内进行,一般在930℃左右。通过选择合适的催化剂,有效的降低反应温度,提升反应的效率,在使用催化剂的条件下,上述反应可以在电厂的合适温度范围内反应(300℃-400℃)。SCR烟气脱硫过程除了存在上述反应过程,还会发生以下副反应。 上述副反应的存在会对SCR技术的脱硝效率产生一定的影响,降低催化剂的选择性和收率。 选择性非催化还原脱硝方法是不利用催化剂,直接将还原剂喷入高温的烟气中进行还原反应,从而将NOx脱除。温度对于选择性非催化还原脱硝方法的选择性影响较大,一般情况下,该方法的适宜温度为800-1100℃,方法的脱除效率为30%-40%左右。还原剂一般选用尿素和NH3。主要的反应如下: 4 脱硝过程的效率影响因素 (1)反应温度的影响 反应温度对于催化剂的效率和活性都存在联系,催化剂的效率和活性随温度的变化规律一致,即均在200℃-400℃之间随温度增加而增加,在200-300温度范围区间的增长速度最快,活性和效率均在400℃时达到最大值。而温度大于400℃时,活性和效率均降低。 (2)氨氮摩尔比的影响 氨氮摩尔比是评价SCR工艺经济性的技术指标。在相同的脱硝效率下,氨氮摩尔比越大,其经济性越低。图2是脱硝效率与氨氮摩尔比的关系,图中看出,随着氨氮摩尔比的增加,脱硝效率先增加而后降低,最大值处在氨氮摩尔比为1.05的位置。至于氨气的逃逸率,在氨氮摩尔比小于1时,逃逸率的变化幅度较小,氨氮摩尔比大于1时,逃逸率的变化呈现抛物线函数增加。因此,一般情况下,氨氮的摩尔比一般设置在0.9-1.05的范围内。

降低烟气氮氧化物技术

降低烟气氮氧化物技术 一、氮氧化物的介绍 NOx对环境的损害作用极大,它既是形成酸雨的主要物质之一,也是形成大气中光化学烟雾的重要物质和消耗O3的一个重要因子。 根据国标GB 31573-2015标准规定了无机化学工业烟气氮氧化物排放标准,其中镍铁等重金属行业氮氧化物最高排放量为200mg/m^3,地方可以制定严于国家标准的地方标准。厦门市地方排放标准(DB 35323-2011)其中氮氧化物排放量也是200mg/m^3,目前尚不知宁德地区的标准. 一般燃烧形成的氮氧化物主要来自两个方面:一是燃烧所用空气(助燃空气)中氮的氧化,二是燃料中所含氮氧化物在燃烧过程中热分解氧化,燃料中氮的热分解温度低于煤粉燃烧温度,在600℃~800℃时就会生成燃烧型NOx,它在煤粉燃烧的氮氧化物中占60%~80%,其中挥发分燃烧又占燃烧型氮氧化物的一大部分,燃料挥发分增加NOx 转换量就增大,挥发分的NOx的转化率又随氧浓度的平方增加,火焰温度越高NOx 的转换量就越大。 二、选用洗选煤 1、煤炭洗选可脱除煤中50%-80%的灰分、30%-40%的全硫 (或60%~80%的无机硫),燃用洗选煤可有效减少烟尘、SO2和NOx的排放,入洗1亿t动力煤一般可减排60~70万tSO2,去除矸石16Mt。

2、一些研究表明:工业锅炉和窑炉燃用洗选煤,热效率可提高3%~8%; 表(1)我厂使用烟煤成分

表(2)市场上几种洗选煤成分 由表(1)可以得知我厂使用烟煤挥发分平均含量为29.5%左右、灰分平均含量为15.8%左右、平均含硫量0.7%。由表(2)可以得知市场上的洗选煤成分挥发分平均含量9.37%、灰分平均含量12%、平均含硫量0.52%。洗选煤的挥发分仅为烟煤的1/3 、灰分含量比烟煤低3.8%、全硫量比烟煤低0.18%。煤的挥发分就是煤中有机质的可挥发的热分解产物。其中除含有氮、氢、甲烷、一氧化碳、二氧化碳和硫化氢等气体外,还有一些复杂的有机化合物。我们知道挥发分的燃烧占燃料型氮氧化物的大部分,而燃料型氮氧化物又是主要的氮氧化物来源,因此选用洗选煤对减少氮氧化物和硫化物有很大作用。同时通过比较表(1)表(2)可知洗选煤的热值并不会比烟煤低,相反,而是比烟煤高很多。

锅炉烟气治理技术方案

锅炉烟气除尘脱硫治理工程设计方案

一、工程概述 59MAV燃煤供暖锅炉机组烟气脱硫除尘治理并达标排放,对该锅炉烟气除尘脱硫治理工程进行设计如下: 二、设计依据 根据有关技术资料及要求为参考依据,并严格按照所有相关的设计规范 与标准,编制本方案: 1、《锅炉大气污染物排放标准》GB13271-2001 2、《大气污染物综合排放标准》GB/T16297-一1996 3、《花岗石类湿式烟气脱硫除尘装置》HJ/T 319-2006 厂方提供的技术参数; 5、国家相关标准与规范。 三、设计烟气参数、设计原则及范围 1、设计处理烟气参数: 锅炉烟气参数为: 2、处理后排放的空气质量: 按照环保部门的要求,治理后排放的废气污染物指标必须达到《锅炉大 气污染物排放标准》GB13271-2001及地方相关标准的要求。

具体参数如下: 3 ?设计原则 §认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标准。 §选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用。 §充分结合厂方现有的客观条件,因地制宜,制定具有针对性的技术方案。 §系统平而布置要求紧凑、合理、美观,实现功能分区,方便运行管理。 §设计采用钠钙双碱法脱硫工艺,该方法技术成熟、脱硫效率高、运行安全可靠、操作简便。 §脱硫系统设置烟气旁路,可以确保脱硫装置对现有锅炉机组不产生负面影响,提高系统的稳定性; §烟气脱硫系统具有应付紧急停机的有效措施; §烟气脱硫系统能适应锅炉的起动和停机,并能适应锅炉运行及其负荷 的变动; §烟气脱硫系统便于日常检查和正常维修、养护及进行年修。 4 ?设计范围 设计范围:烟气脱硫除尘系统结构、电气等专业的设计。 工程范围:脱硫除尘装置和相应配套的附属设施。 四、工艺选择及流程说明 (一)工艺选择

然气锅炉运行时烟气含氧量重要性及调整方法

然气锅炉运行时烟气含氧量重要性及调整方法 --北京市左家庄供热厂和方庄供热厂97年 煤炉改燃气炉后的试运行情况分析 王钢郑斌贺平 一、理想燃烧 1.天然气的主要成份 (1)方庄97年12月15日北京电力科学研究院化验(当时主要是华北油田的气)结果。 表(一) (2)左热98年1月12日北京市技术监督局节能监测站化验(陕甘宁气已到京)结果。 表(二) 由以上化验的结果可得如下结论: a.天然气的主要成份是烷烃(在方庄化验占了98%多,左热化验占了约94%)。

b.天然气中含量最大的是甲烷(CH4),方庄占85.29%,左热占90%。 c.今后在供天然气正常的情况下,我们主要使用的是“三北”气。故天然气在燃烧时主要化学反应式是: CH

4+2O 2 =CO 2 +2H 2 O 2.天然气完全燃烧所需的理论空气量Vo 方庄计算为10.7819Nm3/Nm3 左热计算为9.21Nm3/Nm3 一般可认为,1Nm3的天然气完全燃烧需要的理论空气量约为10Nm3。 二、实际空气量和空气过剩系数 在实际燃烧中,由于空气和天然气的混合很难达到理想的程度,因此即使供给理论空气量仍不能使天然气完全燃烧,必须多供给一些空气才能使天然气完全燃烧。在实际燃烧过程中所供的空气量称为实际空气量,符号Vα。实际空气量与理论空气量之比称空气过剩系数,符号α=Vα/V 。 空气过剩系数α:(可根据烟气成份分析结果来计算) 式中:O 2、CO和RO 2 分别是干烟气中氧气、一氧化碳和三原子气体(CO 2 +SO 2 ) 的容积百分比。21是空气中氧的容积百分数(20.6%≈21%) 在燃气炉运行时,只要燃烧不是很坏,CO是微量的,在计算α时可以忽略,视其为零。上式可简化为: (1) 烧煤时,一般烟气的含氧量都在10%左右,故100-(RO 2+O 2 +CO)79O 2 -0.5CO≈O 2(CO一般为零点零几)所以α≈21/(21-O 2 ) (2) 在烧天然气时,由于烟气含氧量一般应小于4%,故不宜用此式简算。必须用α=(100-RO2-O2)/(100-RO2-4.76O2)计算。 2.左热和方庄去年热平衡测试的实例: 烟气测试数据见表三、表四。 表三 方庄97.12.5RO2O2COα 用(2) 计算α 数值(%)10.477082.5341670.111.1231.137235 表四

烧结过程对烟气中氮氧化物含量的影响

烧结过程对烟气中氮氧化物含量的影响 刘国忠 (北营炼铁厂400烧结作业区本溪市117000) 摘要:本钢北营400m2烧结随着环保意识的提高,通过调整燃气中,高炉煤气和焦炉煤气配比,减少氮气含量,从而达到减少烟气中氮氧化物的排放浓度。 关键词:高炉煤气,焦炉煤气,氮氧化物 Effect of sintering process on nitrogen oxide content in flue gas LiuGuoZhong (400 sintering operation area north of ironmaking plant Benxi 117000) Abstract: with the improvement of environmental awareness, 400m2 sintering in beiying of benxi iron & steel group co., ltd. can reduce the nitrogen content by adjusting the proportion of blast furnace gas and coke oven gas in the gas, so as to reduce the emission concentration of nitrogen oxides in the flue gas. Keywords: blast furnace gas, coke oven gas, nitrogen oxide 前言 北营400m2烧结作为炼铁厂烧结矿的主要供应单位,为实现节能减排,通过优化操作参数,制定相应应急预案,确保烟气中氮氧化物安规在排放。 1 烧结烟气的产生及其特点: 烧结是钢铁冶炼中的一个重要环节,是将各种不能直接入炉的炼铁原料,如粉矿、高炉炉尘、杂副料等配加一定的燃料和熔剂,加热到1300-1500℃,使粉料烧结成块状的工艺。烧结过程中将产生大量烟气,烟气是烧结混合料点火后,随台车运行,在高温烧结成型过程中所产生的含尘废气。据统计,每生产1t烧结矿大约产生4000-6000m3的烟气,其中,机头烟气量一般为3600-4300m/t烧结矿。 烧结烟气与其他环境含尘气体有着较大的区别,其主要特点是 (1)烟气量大,每生产1烧结矿大约产生4000~6000m的烟气。 (2)烟气温度波动较大,随工艺操作状况的变化,烟气温度一般在100~200℃上下。 (3)烟气携带粉尘量较大,含尘量一般为0.5-15g/m3。 (4)烟气含湿量大。为了提高烧结混合料的透气性,混合料在烧结前必须加适量的水制成小球,所以烧结烟气的含湿量较大,按体积比计算,水分含量一般在10%左右。

首创锅炉烟气超低排放技术方案

开封?首创环境能源有限公司?生物质锅炉烟?气综合治理理?工程 技 术 ?方 案 ?广州绿华环保科技有限公司 2019年年1?月

?目录 第?一章?广州绿华环保科技有限公司介绍 (1) 第?二章总论 (2) 2.1项?目概况 (2) 2.2设计依据 (2) 2.3设计原则 (3) 2.4设计参数 (4) 2.4整体设计?工艺流程选择 (6) 第三章?干法脱硫脱硝?工艺的可?行行性论证 (8) 3.1SDS?干法脱硫?工艺介绍和可?行行性论证 (8) 3.2脱硝?工艺技术介绍和可?行行性论证 (12) 3.2可?行行性论证结论 (18) 第四章脱硫脱硝系统?方案设计 (19) 4.1引?用的主要规范和标准 (19) 4.2基本设计参数 (20) 4.3能源介质条件 (21) 4.4脱硫脱硝?工艺系统说明 (21) 第五章主要设备清单 (44) 5.1SDS+HSR-SCR?工艺主要设备清单 (44) 5.2尿尿素法SNCR脱硝的主要设备清单 (49) 5.3尿尿素热解制氨和供应系统的主要设备清单 (50) 第六章主要的运营费?用 (54) 第七章?工程业绩 (55)

第?一章?广州绿华环保科技有限公司介绍 ?一、公司简介: ?广州绿华环保科技有限公司是?一家集环境?工程、化?工环保和环保材料料等领域的新技术、新?工艺、新材料料和新产品的研究、开发和应?用的科技型有限责任公司。绿华环保团队?大多来源于?高校环保研发系统,对环保事业怀着满满的责任?心,附带着“绿满中华”的使命感,专注于环保产业,着眼于客户利利益,满?足企业的环保需要和可持续发展。我们相信技术是企业的核?心装备,?而技术创新是企业可持续发展的推动?力力。在?自主研发的基础上,我们与国家重点?高校暨南?大学合作,在环保技术开发、?人才培养、环保新产品研究与应?用等?方?面,建?立了了?长期的产学研合作关系,不不断整合和转化适合于实际应?用的?高新技术成果,提?高服务能?力力,以持续地满?足客户发展的需要。 ?二、公司荣誉: 国家?高新技术企业 2.?广州市科技创新?小巨?人 3.?广东省环境保护优秀示范?工程 (1)佛?山?西城玻璃制品有限公司“?生物质锅炉?高温HSR烟?气脱硝?工程” (2)佛?山华纳陶瓷有限公司的“陶瓷辊道窑HSR?高温烟?气脱硝?工程” 4.?广东省?高新技术产品 (1)?高温烟?气脱硝产品:HSR脱硝剂及脱硝装置 (2)低温烟?气脱硝产品:CAR脱硝剂及脱硝装置 (3)?水处理理材料料产品:?高效多元复合?水处理理剂 5.获授权专利利: (1)?一种含氮氧化物?工业废?气的处理理装置,ZL201620257497.X (2)?一种同时脱硫脱销的处理理装置,ZL201620257496.5 (3)?一种废?气中氮氧化物的处理理装置,ZL200920062363.2 (4)?一种含氮氧化物废?气的处理理?方法与装置,ZL200910041869.x (5)?一种处理理?工业废?气中氮氧化物的?方法,ZL201310383986.0 (6)除氮素?生物过滤装置及其在处理理微污染?水源中的应?用,ZL201410127269.6。 6.?工程业绩:在?广东佛?山、珠海?、恩平、清远、开平、肇庆,?山东淄博、临沂,河南、?广?西、江苏、浙江、内蒙古等省市,承担废?气治理理?工程、废?水处理理?工程和环保材料料?生产与应?用?工程项?目50余项。 第?二章总论 2.1项?目概况 1)本项?目的锅炉是采?用国外先进的?生物燃料料燃烧技术的130t/h振动炉排?高温?高压

如何控制锅炉过剩空气系数

如何控制锅炉过剩空气系数 ?通过燃烧调整确定最佳过剩空气系数根据经验当炉膛过剩空气系数1.3~1.5左右时,锅炉的热效率最高。省煤器(二 级省煤器)出口的最佳过剩空气系数控制在1.7以内,如 果α过高,一方面使烟气量增加,排烟热损失加大,另一 方面使炉内温度降低,燃烧恶化,造成机械不完全燃烧损 失和化学不燃烧损失增大。 ?根据负荷和煤种变化等情况,及时调整送、引风门开度。 如锅炉负荷降低时,燃料的需要量相应减少,燃烧所需的 空气量也相应减少,此时如不及时调节风量,就会使炉膛 过剩空气系数增大。 ?要及时堵住漏风,堵绝炉膛、省煤器等尾部设备的漏风。 ?装设二氧化碳或氧气分析仪,连续自动地检测烟气中二氧化碳或氧气含量,以便及时地对炉膛或出口处过剩空气系 数作必要的调整。 剩空气系数 过剩空气系数是燃料燃烧时实际空气需要量与理论空气需要量之比值,用“α”表示。 计算公式:α=20.9%/(20.9%-O2实测值) 其中:20.9%为O2在环境空气中的含量,O2实测值为仪器测量烟道中的O2值 举例:锅炉测试时O2实测值为13%,计算出的过剩空气系数α=20.9%/(20.9%-13%) =2.6

国标规定过剩空气系数应按α=1.8(燃煤锅炉),α=1.2(燃油燃 气锅炉)进行折算。 举例:燃煤锅炉,锅炉测试时O2实测值为13%,SO2排放值500ppm, 计算出的过剩空气系数α=2.6,那么根据国标规定,折算后的SO2排放浓 度=SO2实测值×(α实际值/α国标值)=500ppm×(2.6/1.8 )=722ppm 举例:燃油燃气锅炉,锅炉测试时O2实测值为13%,SO2排放值500ppm,计算出的过剩空气系数α=2.6,那么根据国标规定,折算后的SO2排放浓 度=SO2实测值×(α实际值/α国标值)=500ppm×(2.6/1.2 )=1083ppm 在ecom产品中,J2KN、PLC具备测量过剩空气系数的功能。 摘要: 大庆油田有多套原油稳定装置,均采用立式圆筒加热炉为原油加热,该种加热炉在运行过程中普遍存在过剩空气系数偏大,能耗较高、热效率偏低又不易解决的难题。但通过控制炉膛烟道档板开度将炉膛负压调节在一定范围,就可提高加热炉运行效率,经济效益非常显著。对于新型加热炉可选用测量烟气中的含氧量装置,直接计算出过剩空气系数来自动控制烟道档板,从而控制空气的进入量,使过剩空气系数始终在标准规定的规范内,排烟温度得以有效地降低,提高加热炉的热效率。 根据《安全工程大辞典》(1995年11月化学工业出版社出版),一般认为,层燃炉和沸腾炉最佳的a值为1.3~1.6;固态排渣煤粉炉为1.2~1.25;液态排渣煤粉炉为1.15~1.2;旋风炉和燃油

氮氧化物废气的处理

氮氧化物废气的处理

氮氧化物废气的处理 姓名:贺佳萌 学号:1505110107 专业班级:应化1101 指导老师:曾冬铭

氮氧化物的来源 天然(5×108t/a): 自然界细菌分解土壤和海 洋中有机物而生成 人类活动( 5×107t/a ): 1.工业污染 ?主要是由于在工业生产过程中(特别是在石油化工企业)燃烧化石燃料而产生的,它主要包括二部分: ?一是在工艺生产过程中排放的泄漏的气体污染物,如化工厂及煤制气厂; ?二是在工业生产用的各种锅炉、窑炉排放的污染物; 2.生活污染 主要是指城镇居民、机关和服务性行业,因做饭、取暖、沐浴等生活需 要,燃烧矿物质燃料而向大气排放的氮氧化合物等污染物质,是大气污 染的有害气体产生的主要来源之一 3.交通污染 主要来自两个方面: ?一是汽车、火车、轮船和飞机等交通工具在运动过程中排放的一氧化碳、氮氧化合物等; ?二是在原料运输过程中.由于某些原料的泄漏及直接向空排放而造成的污染 氮氧化物的危害 1.腐蚀作用 氮氧化物遇到水或水蒸气后能生成一种酸性物质,对绝大多数金属和有机物均产生腐蚀性破坏。它还会灼伤人和其它活体组织,使活体组织中的水份遭到破坏,产生腐蚀性化学变化。 2.对人体的毒害作用 它们和血液中的血色素结合,使血液缺氧,引起中枢神经麻痹。吸入气管中会产生硝酸,破坏血液中血红蛋白,降低血液输氧能力,造成严重缺氧。而且据研究发现,在二氧化氮污染区内,人的呼吸机能下降,尤其氮氧化物中的二氧化氮可引起咳嗽和咽喉痛,如果再加上二氧化硫的影响,会加重支气管炎、哮喘病和肺气肿,这使得呼吸器官发病率增高。与碳氢化合物经太阳紫外线照射,会生成一种有毒的气体叫光化学烟雾。这些光化学烟雾,能使人的眼睛红痛,视力减弱,呼吸紧张,头痛,胸痛,全身麻痹,肺水肿,甚至死亡 3.对植物的危害 一氧化氮不会引起植物叶片斑害,但能抑制植物的光合作用。而植物叶片气孔吸收溶解二氧化氮,就会造成叶脉坏死,从而影响植物的生长和发育,降低产量。如长期处于2—3ppm的高浓度下,就会使植物产生急性受害 4.对环境的污染

相关文档
相关文档 最新文档