文档库 最新最全的文档下载
当前位置:文档库 › 微电流测量电路设计[论文]

微电流测量电路设计[论文]

微电流测量电路设计[论文]
微电流测量电路设计[论文]

浅谈微电流测量电路设计

在材料测试,静电研究等应用与研究中,常常需要测量一些ua、na级的微弱电流(小于10-6a电流的测量称为微电流的测量),对于微电流的测量一般有两种方法:取样电阻法和运算放大器电流反馈法。取样电阻法的原理是在回路中接入取样电阻,根据欧姆定律,将电流测量直接转换成电压测量,但要求取样电阻的值很大,而通常要求测量电压的仪器输入电阻要比取样电阻大上1000倍以上,指针式电流表和静电计通常使用这种方法。我们在实用电路中通常使用放大器电流反馈法,本文就介绍一种简单的i/v转换电路,实现对微电流的测量。

一、测量原理

最基本的电流电压转换电路如下图所示,假定运算放大器是理想的运放,利用“虚短虚断”的概念,可以得出:

输出电压与测量电流成线性比例关系,比例系数为,因此只要适当选择就可得到所需的放大倍数。

但在实际应用中,完全理想的运算放大器是没有的,由于集成电路制造技术及工艺的影响,必然存在会产生诸如输入失调电压,偏置电流等,放大器的开环增益也不可能无穷大,故实际的输入输出关系为:

其中分别为运算放大器的失调电压、输入偏置电流和开环增益。实际放大器的误差为

因此,只有满足被测电流远远大于运算放大器的偏置电流;被测

漏电流测试方法

测量接地漏电流 漏电比对人墙MD(地),容易理解和考虑漏电流接地端子的电流。 上的MD(红色和黑色),您认为图左侧的代码表示你的手或脚 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。 插入之间的地面和地面终端适配器导致3P · 2P墙的MD,测量电流从插入被测ME设备的3P接地引脚泄漏。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 再次切换极性,测量功率,并具有重要价值的测量。 ?决定? 另一种形式,无论附加,0.5毫安大致正常 单一故障条件(一电源线开路)测量 ?连接? 删除连接2P 3P ·正常情况下,适配器,该适配器只有一个刀片极2P 3P连接· 2P剥离(漏电电流∵ 单一故障条件下,只有电力导线断开one 。) 壁挂2P插头插座条。 开关电源极性连接到墙上插座旋转2P半条。 交换式电源供应断开的导线连接到其他2P刀片更换地带极适配器3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 极性开关电源,开关电源的测量4供应断开的导线,最大测量值。 ?决定? 另一种形式连接,正常值小于1mA无关。 外部泄漏电流测量 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。3P · 2P适配器地线连接到地面的墙。 ME的设备金属部件测试(如果外部覆盖着绝缘设备,如铝箔贴为20cm × 10CM部分)之间插入墙壁和地面终端的医师,设备的测试ME外观测量泄漏电流。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

数显式测量电路设计报告.doc

数显式测量电路设计报告 北京化工大学信息科学与技术学院自动化专业课程设计题目数显式β测量电路说明书_________________页图纸_________________页班级自控1202 姓名徐越学号2012014059 同组人郭腾龙指导教师曹晰2014年9月11日目录一课程设计的任务及基本要求二逻辑框图设计三逻辑电路的设计及参数计算四安装调试步骤及遇到的问题五印刷线路板设计六体会及建议七参考文献八附录(元件使用说明)九附图(框图逻辑图印刷线路板图) 一、课程设计的任务及基本要求目的设计一个β数显式测量电路,以方便测量一个NPN三极管的β值要求1.可测量NPN硅三极管的电流放大系数β199,测试条件为1IB10μA,允许误差±2;2)14VVCE16V,且对不同b值的三极管,VCE的值基本不变。 2.用两只数码管分别用来显示十位和个位,发光二极管用来显示百位,其亮状态和暗状态分别表示1和0。 3.数字显示器。 显示的数字应当清晰,显示周期的长短要适合,应大于人眼的滞留时间(0.1s)。 4.设B、C、E三个插孔,当北侧三极管插入时,打开电源,显示器即显示该三极管的β值。

5.限定使用的主要元器件如下所示通用型集成运放LM324 高阻型集成运放LF351 通用型集成电压比较器LM311 集成定时器NE555 2/5十进制计数器74LS90 BCD七段译码器74LS47 双D上升沿触发器74LS74 六施密特反相器74LS14 四2输入与非门CC4011 共阳极LED七段数码管 二、逻辑框图设计 三、逻辑电路的设计及参数计算1. β/Vx转换电路(1)采用固定偏置电流电路由测试条件10 uA,可选择合适的、2采用运放构成的电压并流负反馈,使Vx∝VXβIBR2 VX 极性为正由测试条件由β199时,取Vx最大值为13V,则可得到R2 为了平衡,R3略小于R2 2.压控振荡器(1)积分器、电压比较器的选择351高阻型;311专用电压比较器(转换速度快)(2)积分器中的D1使正向积分与负向积分的回路不通、时间不同。 R9R4′为能实现压控振荡,并忽略正向积分时间。 (3)后接的43k电阻的作用(4)积分器输出的V1波形 3.计数时间产生器电路(1)计数时间Tc须经反相器(4011)引出,因为译码器的消隐信号的相位是低电平有效。 (2)555定时器的VC2和VO的波形(3)计数时间与压控振荡器的输出相与(经与非门和反相器)4.计数、译码、显示电路(1)译码器采用47输出低电平有效,后接共阳极数码管;(2)90清零信号高电平有效,因此在使用

微弱电流检测的设计

毕业设计 微电流检测器设计 指导教师讲师 学院名称工程学院专业名称自动化 论文提交日期2011年5月论文答辩日期2011年5月 答辩委员会主席____________ 评阅人____________ 摘要

近年来,微弱电流信号检测技术在信号处理、电视技术、测量技术、通信技术、信息运算多媒体技术以及一般的电子电路设计等领域得到了非常广泛的应用,并极大地促进了相关技术领域的迅速发展,例如军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等。随着科学技术的发展,对微弱信号进行检测的需要日益迫切,微弱信号检测是发展高新技术、探索及发现新的自然规律的重要手段,对推动相关领域的发展具有重要的意义。 微弱是相对于噪声而言的,所以只靠放大并不能检测出微弱信号,只有在有效地抑制噪声的条件下增大微弱信号的幅度,才能提取出有用信号。因此,必须研究微弱信号检测的理论方法和设备,包括噪声的来源和性质,分析噪声产生的原因和规律以及噪声的传播途径,有针对性地采取有效措施抑制噪声。 本设计制作的微电流检测电路,是以A T89S52芯片为核心实现对微电流信号进行检测并显示,利用两个斩波稳零式高精度运放ICL7650组成的放大模块电路,实现I/V转换,将微电流信号转换成为电压信号,而两个相同高精度运放可以实现对电压信号的一二级放大,经两级放大后的电压通过ADC0809采样、A/D转换后传送给单片机AT89S52,之后单片机经过一些运算编程后控制,将所要测得弱电流信号在LCD1602显示出来。能实现对1uA 到2500uA微电流的实时检测。 关键词:弱电流检测 AT89S52 ICL7650 ADC0809

医用泄漏电流测试仪操作规程

1.目的 规范医用泄漏电流测试仪操作过程,保证测试的安全性。 2.范围 适用于医用泄漏电流测试仪的使用。 3.责任者 操作人对本规程实施负责,部门负责人监督实施。 4.规程 4.1主要技术指标及参数 4.1.1工作环境: 4.1.1.1温度: 0℃~40℃。 4.1.1.2相对湿度:不大于80%。 4.1.1.3周围无强烈电磁场干扰源,无大量灰尘和腐蚀气体,通风良好。 4.1.2供电电源: 4.1.2.1测量装置:220V±20V/50Hz。 4.1.2.2供电装置:220V±22V/50Hz。 4.1.3仪器功耗:50W(不包括供电电源装置)。 4.1.4测量装置:自动量程转换,真有效值测量。 4.1.4.1泄漏电流测量范围: I 3~99.9(μA)分辨力 0.1Μa II 100.0~999.9(μA)分辨力 0.1Μa III 1000~9999(μA)分辨力 1Μa 4.1.4.2患者漏电流、患者辅助电流:DC测量范围: 3~99.9(μA)分辨力 0.1μA 4.1.4.3测量精度:5%读数+5个字。(注:精度范围为电流大于10μA以上。) 4.1.4.4频响范围:DC~1MHz 4.1.4.5输入阻抗:≥1MW 4.1.4.6测量阻抗电路(MD):电阻:R1=10k;R2=1k。电容:C1=0.015μF。 4.1.5测量供电电源装置: 4.1. 5.1测量供电电源的电压输出范围:50V~250V 分辨力 1V。 4.1. 5.2精度:±4%读数加2个字。 4.1. 5.3容量:测量供电电源 (V1):0.5kVA/1kVA/2kVA/2.5kVA四种规格。 4.1.6电流上限设定: 4.1.6.1范围:1~9999(μA)分辨力 1μA。

单摆实验周期测量电路设计方案

沈阳航空航天大学 课程设计 (说明书) 单摆实验周期测量电路的设计 班级34010104 学号2013040101164 学生姓名周兴荣 指导教师滕金玉

沈阳航空航天大学 课程设计任务书 课程名称数字逻辑课程设计 课程设计题目单摆实验周期测量电路的设计 课程设计的内容及要求: 一、设计说明与技术指标 在物理实验中,通常采用人工计时测量单摆单位时间内摆动次数,测量单摆摆动的周期时间,拟采用时钟电路配合触发电路测量单位时间单摆摆动次数,具有方便快捷、方便准确的特点,其原理框图如图1所示。 二、设计要求 图1单摆实验计数器电路原理框图 1.电源输出电压为:+5V。2.最大定时时间100S,摆动开始时,触发时间计时,测量5个单摆整周期时间停止,通过5个周期的时间得出一个整周期的时间。3.计数显示用LED数码管。 4.根据技术指标,通过分析计算确定电路和元器件参数。5.画出电路原理图(元器件标准化,电路图规范化)。 三、实验要求 1.根据技术指标制定实验方案;验证所设计的电路,用multisim软件仿真。 2.进行实验数据处理和分析。 四、推荐参考资料 1. 童诗白,华成英主编.模拟电子技术基础.[M]北京:高等教育出版社,2013年 五、按照要求撰写课程设计报告

成绩评定表: 指导教师签字: 2015 年7 月19 日

一、概述 步入新纪元,高科技的发展如火如荼,各行各业百废俱兴,方便、快捷、高效成为高科技发展所要解决的问题。在单摆实验周期测量时一定有不少人深有体会,高中或初中的单摆实验在记录单摆周期时间时使用的是电子秒表,当然这还需要手动,我们在开始计时时和结束计时要尽可能的同步于单摆,可想而知实际同步那是不可能实现,但在要求高精度的实验中要这样做,也绝不可能。单摆实验周期测量的数字电路出现可以解决使用秒表计时时出现的计时不同步的的问题,这样便可以减少误差甚至没有误差,为测量单摆实验周期提供更加精准的计时时间。 本文介绍了基于单摆试验周期测量电路的设计,在硬件方面上使用了一个十六进制的74161N计数器和三个十进制的74160N计数器芯片,一个D触发器芯片,也同时使用了四个LED管与555定时器等。实验设计分为计数部分与计时部分,十六进制计数器芯片连接的LED数码管显示的是单摆第一次经过最低点记数开始,以后每次经过最低点的次数,开关则是每次最低点闭合一次单摆计数器计数一次,LED并显示。555定时器产生1S的时钟信号脉冲,用于三个并联74160N计数器芯片的记时,并同时在三个与之相连的LED管上显示时间。当74161N为零时记时芯片是被清零的,这保证了记时的同步性。根据实验要求设置记时的最大值为X,则可当记时为(X+1)时进行记时置零,同时实验要求记录A个周期内的时间,在单摆计数显示数等于(2A+1)时使用三输入与门从计数芯片部分产生高电平触发D触发器,Q*出来便是低电平与个位记时芯片的ENP端相连,对于74160N芯片ENP端低电平时则保持此芯片的的状态,这样当计数部分走到(2A+1),此时也就是A 个周期时停止记时,所记录的便为A个周期的时间。然后便用记时显示的时间除以A就得到我们所求的时间。

微小电容测量电路

电容式传感器是将被测量的变化转换成电容量变化的一种装置。电容式传感器具有结构简单、分辨力高、工作可靠、动态响应快、可非接触测量,并能在高温、辐射和强烈振动等恶劣条件下工作等优点已在工农业生产的各个领域得到广泛应用。例如在气力输送系统中,可以用电容传感器来获得浓度信号和流动噪声信号,从而测量物料的质量流量;在电力系统中,采用电容传感器在线监测电缆沟的温度,确保使用的安全;由英国曼彻斯特科学与技术大学(UMIST)率先开发的电容层析成像(ECT)技术是解决火电厂煤粉输送风-粉在线监测等气固两相流成分和流量检测的有效途径,其中微小电容测量是关键技术之一。 电容传感器的电容变化量往往很小。结果电容传感器电缆杂散电容的影响非常明显。特别在电容层析成像系统中被测电容变化量可达0.01pF,属于微弱电容测量,系统中总的杂散电容(一般大于100 pF)远远大于系统的电容变化值,且杂散电容会随温度、结构、位置、内外电场分布及器件的选取等诸多因素的影响而变化,同时被测电容变化范围大。因此微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。 1 充/放电电容测量电路 充/放电电容测量电路基本原理如图1所示。 由CMOS开关S1,将未知电容Cx充电至Ve,再由第二个CMOS开关S2放电至电荷检测器。在一个信号充/放电周期内从Cx传输到检波器的电荷量Q=Ve·Cx,在时钟脉冲控制下,充/放电过程以频率f=1/T 重复进行,因而平均电流Im=Ve·Cx·f,该电流被转换成电压并被平滑,最后给出一个直流输出电压 Vo=Rf·Im=Rf·Ve·Cx·f(Rf为检波器的反馈电阻) 。 充/放电电容测量电路典型的例子为差动式直流充放电C/V转换电路,如图2所示。

微弱电流信号检测记录

微弱电流信号检测记录 (2012-02-14 11:19:12) 标签: 杂谈 目录 零、序 一、微弱电流测试器的指标 二、微弱电流测试所需要的条件 三、微弱电流计 四、高阻电阻 五、微弱电流计放大器的基本电路 六、微弱电流标准源 七、微弱电流计的测试 八、微弱电流测试仪器DIY汇总 九、微弱电流测试器DIY 十、改进与应用 二、微弱电流计放大器的基本电路 1、微弱电流放大的基本电路 弱电流的基本电路是反向放大器的形式,即I-V转换电路。先看一个实例,来自ICH8500的数据表。

放大器接成典型的反向放大器,但没有输入电阻,其实是一个电流-电压变换器,并有几点不同: a、有保护(Guard,作用见下) b、反馈电阻Rfb非常大,为10的12次方欧姆,即1T c、有个反馈电容Cfb,用来与输入等效电容分压,提高响应时间。在一个实际采用ICH8500的电路板上,该电容采用了470pF的聚苯乙烯(反馈电阻用了30G) 反馈电阻Rf(或叫Rfb)的选择。这是一个关键元件,一方面取决于所要求的灵敏度和噪音,另一方面与其他元件和电阻的来源情况有关。 上述电路的Rfb非常大达到1T,因此1pA的输入电流就会引起1V的输出,即灵敏度是1V/pA,这样用2V的电压表,就可以实现满度2pA的微电流计,甚至可以用200mV的电压表事项满度200fA的超微电流计。 Rfb也与电流噪音密切相关,越大则理论噪音越小,很多静电计选100G,这样理论噪音极限大概是0.25fArms,而K642选择了1000G,噪音就更小了。 当然,Rfb不能取得太大,因为运放的偏置电流Ib是完全流过这个电阻的,产生压降,也产生噪音、温度系数等弊病,所以Rfb要与运放匹配,最好Ib×Rfb 小于满度输出的1%,至少<10%。否则,当没有输入的时候,Ib就要全部流过Rfb,

泄漏电流测量

实验二泄漏电流测量 一、实验目的 1.熟悉测量泄漏电流的试验设备及其接线。 2.学会测量电力设备绝缘泄漏电流及绘制伏安曲线的方法。 3.掌握通过绘制出的伏安特性曲线判断绝缘状况。 4.比较泄漏电流试验和绝缘电阻试验的异同 二、基本原理 泄漏电流测量试验的机理与绝缘电阻试验的相同,只是试验的方法不同。泄漏电流测量的试验电压有高压整流设备供给,试验电压可任意调节,所加电压比兆欧表的高,可用灵敏而准确度高的微安表来测量泄漏电流的大小。故测量值较兆欧表准确。并可根据所测出的泄漏电流与所加的试验电压绘制出一条伏安曲线,由曲线的变化规律可进一步分析被试品绝缘的状况。 对于绝缘良好的被试品,其泄漏电流与一定的外加电压成正比;若绝缘受潮或有缺陷则泄漏电流的增加与试验所加电压不再保持直线关系。 三、试验用仪器设备 电源部分:220V/0~250V 自耦调压变压器一台 高压试验变压器(K=200)一台 整流部分:高压硅堆一只 测压部分:电压表(150V)一只 测流部分:微安表(100μA)一只 被试品:绝缘套管一个 四、试验原理接线 AC T C x 1 说明: V1 :电压表,测量升压变压器低压侧绕组的电压;A1 :微安表,测量高压回路当中的电流 R1 :试验变压器上面的水电阻 R2 :球隙放电器上面的水电阻 Q1 :球隙器 ZL :整流器 C :滤波电容 C X:被试品(套管) 1~2:自耦变压器的原边输入 3~4:自耦变压器的副边输出

a~x:升压变压器的低压侧 A~X:升压变压器的高压侧 E~F:升压变压器的低压的测量绕组 注:在微安表上面有短路刀闸 五、试验步骤 1.按照试验原理接好试验电路。 2.检查接线,确认接线正确,接通高压电源,逐渐升高电压至电压表指示 35.4V(实际上加到高压部分为35.4*1.414*200=10000V),停止加压,打 开微安表的短路刀闸,待微安表指针稳定后读取10kV时的泄漏电流值。 3.按步骤2,读取电压表读数为70.7V(20kV)、106V(30kV)、141.4(40kV) 时的泄漏电流值。 4.数据记录完毕,调压器归零,切断电源。 5.用接地棒连接电容器的高电位端,进行放电。 六、注意事项 1.在整个试验过程中,要密切监视被试品、试验回路及有关表计。若有击 穿、闪络、气体放电等现象发生,尤其是在加到高压为30KV和40KV 时,此时应先将调压器归零,进行降压,然后再切断电源、放电。查明 原因,待妥善处理后,方可继续进行试验。 2.每次试验完毕后,都要进行充分的放电,然后才能进行下一次的试验, 放电的时侯必须确定要先切断电源。 3.每次加高压前必须检查调压器是否在零位,防止在未退至零位时就投入 高压电源而产生冲击,损伤试验设备的绝缘和得到不正确的试验结果。 每次切除高压时必须将调压器退至零位,这样可以防止下次通电时突然 加上高压。 七、实验报告 1.整理出各项试验结果,绘制出泄漏电流与试验电压的关系曲线。 2.根据绘制的伏安特向曲线判断被试品绝缘状况。

微电流检测资料

目录 1、设计背景 (1) 2、设计方案选择 (1) 2.1典型的微电流测量方法 (1) 2.1.1开关电容积分法[1] (1) 2.1.2运算放大器法 (2) 2.1.3场效应管+运算放大器法 (2) 2.2总体设计方案 (3) 3、具体设计方案及元器件的选择 (4) 3.1稳流信号源问题 (4) 3.2I/V转换及信号滤波放大 (5) 3.2.1前级放大 (5) 3.2.2滤波及后级放大电路 (6) 3.2.3运算放大器的选取 (6) 3.3量程自动转换 (6) 3.4信号采集处理 (7) 4、软件仿真结果 (8) 5、参考资料 (9)

微电流测试电路设计 1、设计背景 微电流是指其值小于-6 10A的电流,微电流检测属于微弱信号检测的一个分支,是一门针对噪声的技术,它注重的是如何抑制噪声和提高信噪比。该技术在军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等许多领域具有广泛的应用。我们所研究的微电流检测主要针对电力系统中的绝缘材料,因为现代国民经济对电力供应的依赖性日益增大,电力系统的规模、容量也在不断扩大。而电气设备的绝缘材料往往是电力系统中的重要组成部分,绝缘材料的漏电流情况严重会造成电力系统的重大损失。微电流检测是通过对泄漏电流的测量来评估绝缘材料状况的有效方法。近年来,针对微弱电流的信噪改善比SNIR已能达到1了,目前国内做得比较好的单位是南京大学,其独家生产的ND-501型微弱信号检测实验综合装置己被国内至少76家高等院校使用。但其产品价格昂贵,少则几千元,多则几万元,例如HB-831型pA级电流放大器、HB-834型四通道pA级电流放大器、HB-838型八通道pA级电流放大器的售价分别为4100元/台、13000元/台、22000元/台。所以,研制高精度、寿命长、成本低、电路简单的微电流检测仪具有重要的现实意义及理论参考价值。为了达成目标,我们需要重点考虑以下几个问题: 10 A(本设计要求)的稳流信号源的实现(1)如何获得实验信号,即电流为12 问题; (2)如何将微弱电流信号转换成易于操作的信号; (3)怎样将微弱信号提取放大; (4)如何实现量程的自动转换问题; (5)将实际中的模拟信号转换成数字信号; (6)实现对数字信号的处理和显示。 2、设计方案选择 2.1典型的微电流测量方法 2.1.1开关电容积分法[1] 开关电容式微电流测量方法的前级是在利用开关电容实现电流向电压转换的同时对电压信号进行调制和放大,达到微伏级;后级电路通过选频放大电路实

泄漏电流和直流耐压试验..

泄漏电流和直流耐压试验 一、泄漏电流 由于绝缘电阻测量的局限性,所以在绝缘试验中就出现了测量泄漏电流的项目。关于泄漏电流的概念在上节中已加以说明。测量泄漏电流所用的设备要比兆欧表复杂,一般用高压整流设备进行测试。由于试验电压高,所以就容易暴露绝缘本身的弱点,用微安表直测泄漏电流,这可以做到随时进行监视,灵敏度高。并且可以用电压和电流、电流和时间的关系曲线来判断绝缘的缺陷。它属于非破坏性试验。 由于电压是分阶段地加到绝缘物上,便可以对电压进行控制。当电压增加时,薄弱的绝缘将会出现大的泄漏电流,也就是得到较低的绝缘电阻。 1、泄漏电流的特点 测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的性质也大致相同。但由于泄漏电流测量中所用的电源一般均由高压整流设备供给,并用微安表直接读取泄漏电流。因此,它与绝缘电阻测量相比又有自己的以下特点: (1)试验电压高,并且可随意调节。测量泄漏电流时是对一定电压等级的被试设备施以相应的试验电压,这个试验电压比兆欧表额定电压高得多,所以容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。因为要换算首先要知道加到被试设备上的电压是多少,兆欧表虽然在铭牌上刻有规定的电压值,但加到被试设备上的实际电压并非一定是此值,而与被试设备绝缘电阻的大小有关。当被试设备的绝缘电阻很低时,作用到被试设备上的电压也非常低,只有当绝缘电阻趋于无穷大时,作用到被试设备上的电压才接近于铭牌值。这是因为被试设备绝缘电阻过低时,兆欧表内阻压降使“线路”端子上的电压显著下降。 (4)可以用)u (f i =或)t (f i =的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-7所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 i I 1 I 2 图1-7 泄漏电流与加压时间的关系曲线 1—良好;2—受潮或有缺陷

电化学分析系统中pA_A微电流测量

第25卷 第11期 电子测量与仪器学报 Vol. 25 No.11 · 972 · JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT 2011年11月 本文于2011年9月收到。 DOI: 10.3724/SP.J.1187.2011.00972 电化学分析系统中pA~μA 微电流测量 王 俊 (福州大学 至诚学院, 福州 350002) 摘 要: 为了提高电化学分析系统的分析速度和测量的准确度。探究如何对电化学分析系统中,既有慢变化又有快变化的pA~μA 范围的微电流进行快速、准确的测量。基于定阻式I/V 转换的方法,对pA~μA 范围的微电流,设置了由微机控制的多个电流量程及自动调零电路,以及从软?硬件上进行抗工频干扰的设计。实现对宽范围微电流测量的量程快速搜索?转换,提高了电化学分析系统中pA~μA 范围微电流测量的准确度? 关键词: 微电流; 测量; pA~μA; 电化学分析系统 中图分类号: TH399 文献标识码: A 国家标准学科分类代码: 460.40 pA~μA micro-current measurement in electrochemical analysis system Wang Jun (Zhicheng College, Fuzhou University, Fuzhou 350002, China) Abstract: In order to improve the speed of analysis and the accuracy of measurement in electrochemical analysis system, the fast-speed and accurate measurement of micro current of pA~μA range in both slow and fast change was researched. Based on the constant resistance I/V conversion method, for the pA~μA micro-current measurement range, a number of current computer control and automatic zero-adjusting circuit was set up, and anti-frequency interference design of software and hardware were carried out. The fast search and conversion in wide micro current measurement range were realized. Thereby the scope of pA~μA micro-current measurement accuracy is enhanced. Keywords: micro-currents; measurements; pA~μA; Electrochemical analysis system 1 引 言 应用在电化学、生物电化学和生命科学等作为物质组分分析和测量的电化学分析系统。随着超微电极技术的突破性进展, 使用具有信?噪比高、反应速度快等优良电化学特性的微电极、超微电极作为电化学分析系统的传感器, 大大提高了该系统对微小量测量的准确度[1-2]。微电极、超微电极由于化学反应所生成的微电流(极化电流), 其范围为pA~μA, 对该范围的微电流测量, 正是文中要讨论的。 把反映被测物质含量的微电流信号, 经过电流—电压转换, 形成相应的电压信号。 利用计算机技术对产生的电压信号进行一系列的数据处理, 电化学分析系统可以较容易实现最优化选择, 实现数据处理过程的全部自动化, 但系统的分析速度和测量的准确 度之关键在于对微电流的测量。 鉴于微电极、超微电极其尺寸及表面形状、测试它们的化学反应体系及其控制电位(电压)的波型、扫描速度以及电化学分析方法等不同, 其极化电流峰值大小差别很大, 达几个数量级[3]。微电极一般为nA~μA, 超微电极一般为pA~nA, 极化电流的时间曲线和电位曲线也不同。有的变化较缓慢, 有的变化较快, 有的曲线的频谱还包含工频50 Hz 频率分量, 而且测试环境往往是高阻抗, 工频干扰尤显严重, 对测量小至pA 级微电流的元器件的温、湿度影响很大。因此, 要快速、准确地测量电化学分析系统中pA~μA 微电流难度较大[9]。 电化学分析系统中测量的微电流可小至pA 级, 要实现对既有慢变化的, 又有快变化的pA~μA 宽范围微电流量程自动地快速搜索、转换有以下难点:

测量放大电路的设计

测量放大电路的设计 作者: 【摘要】:测量放大器能够将微弱的电信号进行放大,在生活中应用也十分广泛,如在自动控制领域,往往需要用电压信号进行控制,也就必然离不开电压测量放大器,由于测量放大器应用十分广泛,因而现在已经有集成的测量放大器供使用了。本次设计就是围绕测量放大器展开的,测量放大器主要是通过运用集成运放将所测量的信号进行不失真的放大,并且不对所测量的电路产生影响,这就是需要放大器有高的输入电阻和较高的共模抑制比。 【关键字】:放大电路二阶高通有源滤波器二级低通有源滤波器 一、设计技术与要求: 如图所示,测量放大器由基本测量放大器、二阶高通有源滤波器、二阶 低通有源滤波器三部分组成。 1、性能技术指标: (1)输入阻抗Ri>1m? (2)电压放大倍数Au≥1000(即输入信号Ui-p=1mv时,输出信号Uop-p>1v (3)频带宽度B=10?10KHZ (4)共模抑制比Kcmr>80dB 二:基本测量放大电路 如下图:放大器电路有两个同相放大器和一个基本差动放大电路组合而成;该电路具有输入阻抗高、电压增益容易调节,输出不包含共模信号等优点。若不接R时,该电路由于引入了串联负反馈,所以其差模输入电阻Rid和共模输入电阻Ric都很大;当接入电阻R后,由于R很小,则R与Rid(或Ric)并联后,该电路的差模输入电阻Rid≈2R,共模输入电阻Ric≈R/2。其中RL是负载电阻。 基本放大电路有(前置放大电路组成)下:

图(1) 1其中放大倍数: Aud1==1+2R2/R1=81 Aud1’==1+2R2/R1=31

2其中放大倍为: Aud2==Rf/R3=20 由上可知在前置放大电路中,总的放大倍数为: Aud==Aud1·Aud2=81·20=1620 Aud==Aud1’·Aud2=31·20=620 由以上电路图(2)可观察到,Ri1是一个高输入阻抗的模块的组合放大电路,即输入电阻 Ri1=∞Ω>1MΩ 但由于引入了电阻R,因此,其引入的R达到要求的指标,两个R串联电阻之和2R满足: R>0.5MΩ 为了有更好显示效果,取标称值R=1.2MΩ。 同时,共模抑制比K CMR ,由于放大电路由两级放大电路组成,K CM R1 表示第 一级放大电路的共模抑制比, K CMR2 表示第二级放大电路的共模抑制比,即该型运放的共模抑制比,则 K CMR = K CM R1 ·K CMR2 其中,K CM R1=Aud1/Auc1,K CMR2 = Aud2/Auc2。 又Aud1≥1,K CM R1 ≥1,因此有; Aud1≈1+2R2/R1=81,Aud1==1+2R2/R1=31, Auc1≈1 则有K CM R1=Aud1/Auc1≈Aud1≈81,K CM R1 =Aud1/Auc1≈Aud1≈31,

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项? ? ??测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就

等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一

微电流测量

微电流测量(nA级交流、直流) 一、直流微电流测量 基于I-V变换的弱电流测量方法是常用的弱电流检测方法,其中的反馈电流放大型测量电路结构较简单,转换的线性较好,电路频率响应特性较好,在加入有效的硬件和软件抗干扰措施后,可以提高测量精度和稳定性。因此测量的电路是按照基于反馈式电流放大器型I-V转换原理进行设计,其基本电路如图1所示。 图1 I/V转换原理图 假定运放为理想运放,利用运算放大器的虚地概念和结点电流代数和为0的定律得出 (1) 输出电压V o与测量电流I s成线性比侧关系,比例系数为R f,因此根据放大要求选取R f值即可获得所需的放大倍数。 电流测量电路整体框架如图2,其中反馈电流放大电路采用的是两级放大方式。 图2 电路整体框图 由于待测电流信号为10-9A,所需放大倍数较高,若采用一级放大,则需要R f约为1010Ω。当R f过大时会产生较大的电阻热噪声电流,增大了分布电容,同时要求运放的输入电阻更大以减小分流;根据式(1),一级放大后信号与输人为反相,所以采用两级放大电路,这样可以通过调整每一级放大倍数,来选择阻值适当的R f,减小由R f引起的误差;并通过两次电压反相,使放大电路的最终输出电压与输入信号同相,两级放大电路如图3。

图3 两级放大电路图 为减小噪声干扰和运算放大器负担,通常要求输出电压应比运算放大器的噪声电压值至少大两个数量级或更高;但输出电压太大,必然要增大R f,同时增大对运算放大器性能的要求。所以第一级放大器输出电压应设计为50~100mV,由式(1),R f应为100MΩ。图3中C f表示R f引入的杂散电容,通常为0.5pF。当R f为100MΩ时,电路的截止频率约为0.3kHz,严重影响放大电路的频率响应特性。为改进频率响应,可以引入补偿电容C来消除C f的影响。根据运算放大器以及流入节点电流与流出节点电流相等特性,得出 (2)由于R f1为kΩ级电阻,其杂散电容可忽略,可得 (3)代入式(2),拉式变换并消去V x(s)后,得出传递函数为 (4)为消除C f影响,取RC=R f C f,得 (5)由式(3)可知,截止频率为无穷大,理论上频带已经扩展到整个区域,因此频率响应得到改善。通过RC网络补偿可改善系统的动态特性,实际中100kHz 的带宽完全可以达到。但因为电路中还有其他的杂散电容,不可能被简单的RC 网络完全补偿。为减小由大电阻引入的噪声电流和分布电容,R f可采用T型网络结。 第二级放大电路将第一级输出电压信号进一步放大,并反向输出,保证最终电压输出与检测的电流输入同相。第二级放大倍数为10倍,由式(1),取R f/R1为10。 为消除背景噪声影响,在运放输出端和A/D转换电路之问加入双T型50Hz 信号带阻滤波器将这个主要干扰谐波成分滤除,其电路如图4。

位移电涡流传感器测量电路设计)

成绩评定:_______ 传感器技术 课程设计 题目位移电涡流传感器测量电路设计

电涡流传感器由于具有对介质不敏感、非接触的特点, 广泛应用于对金属的位移检测中。为扩大电涡流传感器的测量范围, 采用恒频调幅式测量电路, 引用指数运算电路作为非线性补偿环节。利用Matlab计算软件辅助设计了直径为60mn电涡流传感器探头,并结合测量电路进行实验。实验结果表明最大测量范围接近90mm验证了该系统工作的稳定性,证明设计达到了预期效果。关键词: 电涡流传感器; 测量电路;大位移; 线性化

一、设计目的-------------------- 1 二、设计任务与要求- --------------------- 1 2.1 设计任务 ---------------------- 1 2.2 设计要求 ---------------------- 1 三、设计步骤及原理分析--------------- 1 3.1 设计方法----------------------- 1 3.2 设计步骤 ---------------------- 2 3.3 设计原理分析 -------------------- 6 四、课程设计小结与体会--------------- 6 五、参考文献- ------------------------- 6

一、设计目的 1. 了解电涡流传感器测量位移的工作原理和特性。 2. 了解电涡流传感器的前景及用途 二、设计任务与要求 2.1设计任务 扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。验证了该系统工作的稳定性,证明设计达到了预期效果。 2.2设计要求 1. 工作在常温、常压、稳态、环境良好; 2. 设计传感器应用电路并画出电路图; 3. 应用范围:测量物体的位移。 三、设计步骤及原理分析 3.1设计方法 电涡流传感器具有体积小、非接触、对介质不敏感的特点,被广泛应用于对金属位移等的测量中。尽管用电涡流传感器非接触测量位移已经得到广泛的应用但是测量位移的线性范围受到传感器线圈直径的限制,位移测量范围为线圈直径的1/3~1/5,大直径的传感器,其测量范围最大可以接近到直径的1/2。在许多领域希望能进一步扩大传感器的测量范围,以满足大位移的非接触测量。文中采用指数运算电路作为非线性补偿环节来改善传感器原有的传输特性,扩大传感器测量范围。 由电磁感应定律可知:闭合金属导体中的磁通发生变化时,就会在导体中产生闭合的感应电涡流,阻碍磁通量的变化。如图1所示,传感线圈由交流信号激励在产生焦耳热的同时,又要产生磁滞损耗,它们造成交变磁场能量的损失,进而使传感器的等效阻抗Z发生变化。 影响阻抗Z的因素有被测导体的电导率、磁导率、线圈的激励频率f及传感器与被测导体间的位移x等,只要保证这些影响因素只有位移x变化,其他都保持不变,则传感器

电容传感器测量电路

第一部分引言 本设计是应用于电容传感器微小电容的测量电路。 传感器是一种以一定的精度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。传感器在发展经济、推动社会进步方面有着重要作用。 电容式传感器是将被测量转换成电容量变化的一种装置,可分为三种类型:变极距(间隙)型、变面积型和变介电常数型。 二、电容式传感器的性能 和其它传感器相比,电容式传感器具有温度稳定性好、结构简单、适应性强、动态响应好、分辨力高、工作可靠、可非接触测量、具有平均效应等优点,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用于压力、位移、加速度、液位、成分含量等测量之中[1]。 电容式传感器也存在不足之处,比如输出阻抗高、负载能力差、寄生电容影响大等。上述不足直接导致其测量电路复杂的缺点。但随着材料、工艺、电子技术,特别是集成电路的高速发展,电容式传感器的优点得到发扬,而它所存在的易受干扰和分布电容影响等缺点不断得以克服。电容式传感器成为一种大有发展前途的传感器[2]。 第二部分正文 一、电容式传感器测量电路 由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。 由于电容传感器的电容变化量往往很小,电缆杂散电容的影响非常明显,系统中总的杂散电容远大于系统的电容变化值[5]。与被测物理量无关的几何尺寸变化和温度、湿度等环境噪声引起的传感器电容平均值和寄生电容也不可避免的变化,使电容式传感器调理电路设计相当复杂[6]。分立元件过多也将影响电容的测量精度[3]。 微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。测量仪器应该有飞法(fF)数量级的分辨率[6]。 二、常用电容式传感器测量电路 1、调频电路 这种电路的优点在于:频率输出易得到数字量输出,不需A/D转换;灵敏度较高;输

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项 测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不

是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一种是采用屏蔽环将表面泄漏电流直接短接,使之不流过微安表。 (3)温度 温度对泄漏电流测量结果有显著影响。温度升高,泄漏电流增大。 测量最好在被试设备温度为30~80℃时进行。因为在这样的温度范围内,泄漏电流的变化

相关文档