文档库 最新最全的文档下载
当前位置:文档库 › 一种新的复张量理论

一种新的复张量理论

一种新的复张量理论
一种新的复张量理论

应力张量的认识(一)

应力张量的认识(一)
本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到 后来逐渐认识的过程。相关还有:Levy-Mises 理论的思考
从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。初始,以一个基本定义记住 了它,进而有过疑惑,随着矩阵论的学习又有了新的认识。曾经就有记录下对其理解的想法,但因思路尚未完 善而一再搁置;直到今天重新想起,完成了方向余弦作为线性空间的证明,才终于开始详细记录。 我将这部分思考分为以下三部分: 应力张量的认识(一) 应力张量的认识(二) 应力张量的认识(三) 本文介绍第一部分应力的基本知识和常规认识。
应力
初中物理就已知道,因外力作用而在物体内部产生的力成为内力。单位面积上的内力即是应力,表征内力的强 度。 为了研究某一点 P 处的应力,用某个截面在 P 点处切开物体,如下图所示。根据定义可以得到 P 点的正应力 σ、切应力 τ,他们的合成即为全应力 T。
需要注意的是,一个确定的截面对应了一组正应力和切应力。但是过 P 点有无数的截面,那么如何才能真正 描述 P 点的应力状态呢?
应力状态
点的应力状态是受力物体内某一点各个截面上应力的变化情况。上面已经意识到过一点点有无数的截面,只有 任意截面上的应力分量都可以确定,才可以说应力状态是确定的。 通常在无数的截面中,任意取三个互相垂直的截面,并以他们的法线方向建立笛卡尔坐标系。也即在 P 点截 取一个无限小的平行六面体,称为单元体。

单元体无限小,视为一点,因此单元体上相互平行的两个平面视为过该点的同一平面,也即他俩的应力是相同 的。这样就只用三个互相垂直的截面上的应力来分析问题。 由于单元体处于静力平衡状态,由绕各轴合力矩为零可以得到切应力互等定律。 问题:既然单元体上相互平行的两个平面视为过该点的同一平面,那为什么上图平行的平面上应力是相 反的? 单元体上相互平行的两个平面视为过该点的同一平面,但是分别是被截开的的两部分的平面,截开前他 们是重合的,截开后成为了两部分各自的表面,而外表面是有方向的。所以,从各自的方向上来看,应 力方向还是相同的。
应力张量
根据上面的微单元体上的应力分量,是否可以求出任意截面的应力分量?
答案是肯定的。根据三个方向的静力平衡就可以列式计算得到上图的任意的法向为(n1,n2,n3)的截面上的应力 分量。 三个互相垂直的截面上的 9 个应力分量可以确定任意截面的应力,也就是说可以确定一点的应力状态了。同 时从这三个截面的选取上来看,他们和坐标系无关。 于是我们把用上面九个应力分量作为一个整体来描述一点应力状态的物理量叫作应力张量,记作
主应力 如果作用在某一截面上的全应力和这一截面垂直,即该截面上只有正应力,则这一截面称为主平面,其法线方 向称为应力主方向,其上的应力称为主应力。如果三个坐标轴方向都是主方向,则称这一坐标系为主坐标系。 求解方法依然是根据静力平衡条件。

(完整版)《张量分析》报告

一 爱因斯坦求和约定 1.1指标 变量的集合: n n y y y x x x ,...,,,...,,2121 表示为: n j y n i x j i ...,3,2,1,,...,3,2,1,== 写在字符右下角的 指标,例如xi 中的i 称为下标。写在字符右上角的指标,例如yj 中的j 称为上标;使用上标或下标的涵义是不同的。 用作下标或上标的拉丁字母或希腊字母,除非作了说明,一般取从1到n 的所有整数,其中n 称为指标的范围。 1.2求和约定 若在一项中,同一个指标字母在上标和下标中重复出现,则表示要对这个指标遍历其范围1,2,3,…n 求和。这是一个约定,称为求和约定。 例如: 3 3 33 2 32 1 31 2 3 23 2 22 1 21 1 3 13 2 12 1 11 b x A x A x A b x A x A x A b x A x A x A =++=++=++

筒写为: i j ij b x A = j——哑指标 i——自由指标,在每一项中只出现一次,一个公式中必须相同 遍历指标的范围求和的重复指标称为“哑标”或“伪标”。不求和的指标称为自由指标。 1.3 Kronecker-δ符号(克罗内克符号)和置换符号 Kronecker-δ符号定义 j i j i ij ji ≠=???==当当0 1δδ 置换符号 ijk ijk e e =定义为: ?? ? ??-==的任意二个指标任意k j,i,当021) (213,132,3的奇置换3,2,1是k j,i,当112)(123,231,3的偶置换3,2, 1是k j,i,当1ijk ijk e e i,j,k 的这些排列分别叫做循环排列、逆循环排列和非循环排列。 置换符号主要可用来展开三阶行列式: 23123133122123321123123113322133221133 323 123222 113121 1a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++==

张量的基本概念(我觉得说的比较好-关键是通俗)

向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计算机水平,不只对数值计算有极深的造诣,对一个程序如何编译成汇编代码,如何在CPU 中执行,操作系统如何对内存处理,那些程序又如何在内存中调度,反正听得多了,我也能

第一章 张量分析基础知识

晶体物理性能 南京大学物理系

由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域. 《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用. 鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容. 由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.

张量的基本概念(我觉得说的比较好,关键是通俗)

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计

微波技术基础课程学习知识要点

《微波技术基础》课程学习知识要点 第一章学习知识要点 1.微波的定义—把波长从1米到0.1毫米范围内的电磁波称为微波。微波波段对应的频率范围为: 3×108Hz~3×1012Hz。在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽10000倍。一般情况下,微波又可划分为分米波、厘米波、毫米波和亚毫米波四个波段。 2.微波具有如下四个主要特点:1) 似光性、2) 频率高、3) 能穿透电离层、4) 量子特性。 3.微波技术的主要应用:1) 在雷达上的应用、2) 在通讯方面的应用、3) 在科学研究方面的应用、4) 在生物医学方面的应用、5) 微波能的应用。 4.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。 第二章学习知识要点 1. 传输线可用来传输电磁信号能量和构成各种微波元器件。微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。传输线方程是传输线理论中的基本方程。 2. 均匀无耗传输线方程为

() ()()()d U z dz U z d I z dz I z 22222 20 -=-=ββ 其解为 ()()() U z A e A e I z Z A e A e j z j z j z j z =+=---120121ββββ 对于均匀无耗传输线,已知终端电压U 2和电流I 2,则: 对于均匀无耗传输线,已知始端电压U 1和电流I 1,则: 其参量为 Z L C 00 0=,βπλ=2p ,v v p r =0 ε,λλεp r =0 3. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态: (1) 当Z Z L =0时,传输线工作于行波状态。线上只有入射波存在,电压电流振幅不变,相位沿传播方向滞后;沿线的阻抗均等于特性阻抗;电磁能量全部被负载吸收。 (2) 当Z L =0、∞和±jX 时,传输线工作于驻波状态。线上入射波和反射波的振幅相等,驻波的波腹为入射波的两倍,波节为零;电压波腹点的阻抗为无限大,电压波节点的阻抗为零,沿线其余各点的阻抗均为纯电抗;电压(电流)波腹点和电压(电流)波节点每隔λ4交替出现,每隔2λ重复出现;没有电磁能量的传输,只有电磁能量的交换。 (3) 当Z R jX L L L =+时,传输线工作于行驻波状态。行驻波的波腹小于两倍入射波,波节不为零;电压波腹点的阻抗为最大的纯电阻R Z max =ρ0,电压波节点的阻抗为最小的纯电阻R Z min =0ρ; ()()?????-=-= sin cos sin cos 011011Z z jU z I z I z Z jI z U z U ββββ()()?????+=+= sin cos sin cos 022022Z z jU z I z I z Z jI z U z U ββββ

张量概念的形成与张量分析的建立

张量概念的形成与张量分析的建立 【摘要】:张量分析在数学物理学中占据重要地位。由于广义相对论的成功,张量分析逐渐被人们所重视。更重要的是规范场论和弦理论的建立,张量分析被应用到了更加广泛的领域。而如此重要的数学分支的历史却极少被研究,这不能不说是一个很大的缺憾。在发掘、搜集、整理、分析张量数学的原始文献的基础上,运用概念分析的方法,梳理、研究、探讨了张量数学的发展史,得到了若干新的发现。首先,找到了向量的代数定义的原始文献,这是张量数学发展史研究的中间链条。如果没有向量的代数定义,这种扩张量是无法超出三维情形的。而张量是一种高维的数学量,因此向量的代数定义是通向张量概念的非常重要的概念。在关于张量数学史的研究中,这是一个被忽略的内容。其次,解读了张量概念的电磁学起源。从电磁学角度揭示了张量概念的物理学源头。而在过去,则一直把弹性力学作为张量概念起点,事实上,应用力学与张量概念的起源关系不大。论文最重要的发现是考证了第一个在现代意义上使用tensor的学者。论文系统论述了张量分析的建立过程。从非欧空间观念、高斯的内蕴思想、黎曼的n维流形、格拉斯曼的高维空间观念、凯莱的n维向量空间开始,逐一陈述了张量数学的历史。张量分析作为解决曲线坐标系中微分运算的数学方法,是从高斯的内蕴几何开始孕育的。而第一个真正提出这个问题的是黎曼,他的n维流形的构想,具体地提出了弯曲空间中二次微分形式的变换问题,这是通向张量分析的起点。随后,经过贝尔特拉米、克

里斯托夫、里奇等人的发展,这种方法终于得以建立。作为补充,简述了张量分析的应用史。包括爱因斯坦、希尔伯特的引力场方程,以及外尔、列维-齐维塔的黎曼几何学。这里的新发现是考证了“黎曼几何学”这个名词的最早出处。张量分析的产生,依赖19世纪的代数和几何的解放。正是非欧几何和抽象代数的出现,使得张量分析得以产生。而张量分析与黎曼几何的深入发展,极大地促进了现代数学的进步。这使得对张量数学史的研究具有深刻的意义。【关键词】:张量分析曲线坐标系向量的代数定义黎曼流形协变系统 【学位授予单位】:山西大学 【学位级别】:博士 【学位授予年份】:2008 【分类号】:O183.2 【目录】:中文摘要4-5Abstract5-11导论11-33一论文选题的意义11-12二关于张量数学的几个重要问题12-15三论文的基本内容15-22四国内外研究现状22-29五思路、研究方法、创新点与不足之处29-33第一章流形理论:张量概念形成的几何学进路33-60第二节弯曲空间观念的形成:黎曼流形的渊源之一34-481、非欧空间观念形成:张量数学的萌芽34-372、弯曲空间的首次探索:张量分析的几何学基础37-48第二节高维空间观念的形成:黎曼流形的渊源之二48-531、格拉斯曼

VUMAT基本知识

NBLOCK:在调用Vumat时需要用到的材料点的数量 Ndir:对称张量中直接应力的数量(sigma11,sigma22,sigma33) Nshr:对称张量中间接应力的数量(sigma12, sigma13, sigma23) Nstatev:与材料类型相关联的用户定义的状态变量的数目 Nfieldv:用户定义的外场变量的个数 Nprops:用户自定义材料属性的个数 Lanneal:指示是否在退火过程中被调用例程的标志。Lanneal=0,指示在常规力学性能增量,例程被调用。Lanneal=1表示,这是退火过程,你应该重新初始化内部状态变量, stepTime:步骤开始后的数值 totalTime:总时间 Dt:时间增量值 Cmname:用户自定义的材料名称,左对齐。它是通过字符串传递的。一些内部材料模型是以“ABQ_”字符串开头给定的名称。为了避免冲突,你不应该在“cmname”中使用“ABQ_”作为领先字符串。 coordMp(nblock,*):材料点的坐标值。它是壳单元的中层面材料点,梁和管(pipe)单元的质心。 charLength(nblock): 特征元素长度,是基于几何平均数的默认值或用户子程序VUCHARLENGTH中定义的用户特征元长度。 props(nprops):用户使用的材料属性 density(nblock):中层结构的物质点的当前密度

strainInc (nblock, ndir+nshr):每个物质点处的应变增量张量 relSpinInc (nblock, nshr):在随转系统中定义的每个物质点处增加的相对旋转矢量 tempOld(nblock):物质点开始增加时的温度。 defgradOld (nblock,ndir+2*nshr):在增量开始时,每个物质点出的变形梯度张量,在3d中形为(F11, F22,F33,F12,F23,F31,F21,F32,F13),在2d中形为(F11,F22,F33,F12,F21) stretchOld (nblock, ndir+nshr) fieldOld (nblock, nfieldv):在增量开始时,每个物质点处用户定义场变量的值stressOld (nblock, ndir+nshr):在增量开始时,每个物质点处的应力张量:stateOld (nblock, nstatev):在增量开始时,每个物质点处的状态变量:tempNew(nblock):在增量结束时,每个物质点处的温度 defgradNew (nblock,ndir+2*nshr):在增量结束时,每个物质点出的变形梯度张量,在3d中形为(F11, F22,F33,F12,F23,F31,F21,F32,F13),在2d中形为(F11,F22,F33,F12,F21) fieldNew (nblock, nfieldv):在增量开始时,每个物质点处用户定义长变量的值

(完整版)张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

张量的基本概念我觉得说的比较好,关键是通俗

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变 换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的 概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等.线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价. 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何 比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了. 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射. 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计算

张量分析中文翻译(最新整理)

柯西应力张量是一个二阶张量。该张量的元素在三维笛

,其中新的基矢量按照如下公式由旧的基矢量变换得到,

指数之间的变换规律如下: 11111111,,,,11,,,,=n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R T ++++???∧???--????????????()()这样的张量称为阶或类型为(n,m-n )型的张量[4].这样的讨论产生了张量的一般定义。 定义:(n,m-n )型的张量是多线性映射的分配,即: 对于基f=(e 1,...,e N ) 是如此,如果应用如下基变换 多维阵列变成“协变”规律形式 11111111,,,,11,,,,[f,]=[f ] n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R R T ++++??????--????????????()()多维阵列定义张量满足“协变”规律,这个可以追溯到里奇的早期工作。如今,这种定义在一些物理和工程书籍中仍然经常使用。 张量场 在许多实际应用当中,特别是微分几何和物理领域,通常把张量的元素考虑成为函数形式。事实上,这只是Ricci 早期的工作。在当今的数学术语里面,这样的对象称为张量场,但是它们通常仅仅指的的张量本身。 本文当中的“协变”规律的定义采用一种不同的形式,张量场的基底由基础空间的坐标所决定,而且,“协变”规律的定义通过坐标函数的偏导数来表示, ,定义如下坐标变换 多线性映射 有一种定义张量的方法是站在多维阵列的角度的,从被定义对象基独立性和几何对象的本质来看,这种定义方法并不明显。尽管这种方法也可以说明变化规律对基独立性的觉得作用,但有时还是首选张量更本质的定义。一种方法是张量定义成多线性映射。这种方法中(n,m )类型的张量被定义成一种映射。 copies copies :, n m T V V V V R **???????????→ 式中V 表示向量空间,V *表示该向量空间对应的共轭向量空间,其中的变元是线性的。 通过把多线性映射(n,m )型的张量T 应用到V 的基{e 1}和V *的基共轭基{ε1}中,即: 1111(,,,,)i in i in j jm j jm T T e e εε??????≡??????

01 张量基础

第一章 张量基础
晶体的物理性质一般是各向异性的,这 些性质常常需要用与方向有关的两个可测量 的量之间的关系来定义,而用张量来描述, 张量是晶体物理的数学基础。

第一章 张量基础
张量的基本知识 张量的变换定律 张量的几何表示法 晶体对称性对晶体性质的影响 晶体物理性质的相互关系

1.1 张量的基本知识(1)
一、标量与矢量
1、标量
在物理学中,常遇到这样一些量,如物体的温 度、密度等等,它们都与方向无关。这些无方向的 物理量,称为标量(也称零阶张量)。它们完全由 给定的某一数值来确定。

1.1 张量的基本知识(2)
2、矢量
与方向有关的物理量,称为矢量(也称一阶张 量)。它们不仅有大小,而且有一定的方向。如电 场强度、电位移、温度梯度等都是矢量。矢量用上 方带箭头的字母表示,如电场强度可表示为 E 。 矢量还可以用直角坐标系(x1,x2,x3 )中三个坐 标轴上的分量来决定它的大小和方向,于是 就可以 E 写成: E = [E , E , E ]
1 2 3
——字母的下标1、2、3分别代表x1, x2, x3轴。这 样,当坐标轴选定后,矢量就完全由其在这些轴 上的分量来确定。

1.1 张量的基本知识(3)
二、二阶张量
在各向同性介质中,电场强度矢量 E 和电位移矢量 D 的 方向永远保持一致,在电场强度不高的情况下,两者成线形 关系,因此,它们间的关系可以直接表示为:
D =εE
ε——介电常数
在各向异性介质中,电场强度矢量 E 和电位移矢量 D 的 E 方向经常不一致,因此, D 在三个坐标轴上的分量都与 的三 个分量相关,此时,它们间的关系可表示为: D1 = ε 11 E1 + ε 12 E 2 + ε 13 E3 D2 = ε 21 E1 + ε 22 E 2 + ε 23 E3 D3 = ε 31 E1 + ε 32 E 2 + ε 33 E3

脑成像基础知识

TR(time of repetition,TR)又称重复时间。MRI的信号很弱,为提高MR的信噪比,要求重复使用同一种脉冲序列,这个重复激发的间隔时间即称TR。 弛豫(relaxation,经常被误写为“驰豫”)是指在核磁共振和磁共振成像中磁化矢量由非平衡态到平衡态的过程。在统计力学和热力学中,弛豫时间表示系统由不稳定定态趋于某稳定定态所需要的时间。在协同学中,弛豫时间可以表征快变量的影响程度,弛豫时间短表明快变量容易消去。这个系统可以是具体或抽象的,比如弹性形变消失的时间可称为弛豫时间,又比如光电效应从光照射到射出电子的时间段也称为弛豫时间,政策实施到产生效果也可称为弛豫时间。 弛豫时间有两种即T1和T2。 T1 T1为自旋一晶格或纵向驰豫时间,纵向磁化强度恢复的时间常数T1称为纵向弛豫时间(又称自旋-晶格弛豫时间)。 T2 T2为自旋一自旋或横向弛豫时间,横向磁化强度消失的时间常数T2称为横向弛豫时间(又称自旋-自旋弛豫时间)。 T2* 在理想的状态下,在同一磁场下,给定的化学环境中,所有的核以同一频率进动。但是在实际系统中,各个核的化学环境有细微的不同。 1/T2* = 1/T2 + 1/T (inhomo) = 1/T2 + γΔB0 不像T2,T2*受磁不均匀性的影响,T2*总是比T2短。 T1总是比T2长吗? 一般来说,2T1 ≥ T2 ≥ T2*。在大部分情况下,T1比T2长。 常见弛豫时间值 以下为常见健康人体组织的两个弛缓时间常数大概数值,仅供参考。 1.5特斯拉主磁场之下 组织类型T 1 大约值(毫秒) T 2 大约值(毫秒) 脂肪组织 240-250 60-80 全血(缺氧血) 1350 50 全血(带氧血) 1350 200 脑脊髓液(类似纯水) 2200-2400 500-1400 大脑灰质 920 100

教材张量分析及场论

张量分析与场论 第一章 张量代数 任何物理现象的发展都是按照自身的规律进行的,这是客观的存在,而不以人们的意志为转移。但是,在研究、分析这些物理现象时,采用什么样的方法则是由人们的意志决定的。无数事实证明,研究方法的选取与当时人们对客观事物的认识水平有关,而研究方法的好坏则直接关系到求解问题的繁简程度。 由于物理量的分量与坐标的选择有关,所以由物理量的分量表示的方程,其形式就必然与坐标系的选取有关。在建立基本方程时,每选用一种坐标系都要作一些繁琐的推导。 张量分析能以简洁的表达式,清晰的推导过程,有效地描述复杂问题的本质,并突出现象的几何和物理特点。张量分析成功应用的根本在于由它表示的方程具有坐标变换下不变的性质,即由张量表示的方程,其形式不随坐标的选择而变化。 第一章中将着重介绍直角坐标系中的张量代数,第二章介绍正交曲线坐标系的张量分析及场论,作为进一步的学习的基础,在第三章还对一般曲线坐标系中的张量做了简单的介绍。 1.1点积、矢量分量及记号ij δ 我们在以前的学习中已熟悉了用箭头表示的矢量,如 位移u ρ,力F ρ等。这些量满足平行四边形运算的矢量加法 法则,即设u ρ,v ρ为矢量,则v u w ρρρ+=的运算如右图所 示。 在理论力学中我们还知道,如u ρ表示某一点的位移, F ρ表示作用在该点上的力, 则该力对物体质点所做的功为 其中F ρ、|u ρ|分别表示矢量F ρ、u ρ的大小,θ表示矢 量F ρ与矢量u ρ之间的夹角,这就定义了一种称为点积的运算。 点积的定义:设u ρ,v ρ为两个任意矢量,设|u ρ|,|v ρ|分别为其大小(也称为模)。θ为这两个矢量之间的夹角,则u ρ与v ρ的点积为 由点积定义可知,点积具有交换律,即u ρ?v ρ=v ρ?u ρ。可以用几何的方法证明点积也具有分配率,即如w ρ=u ρ+v ρ,则 或可写为 如果0v u =?ρρ则称u ρ垂直于v ρ,记为u ρ⊥v ρ。 由点积的定义可知,2u u u ρρρ=?。如|u ρ|=1则称u ρ为单位矢量。 以上对矢量的记法是一种几何记法,称为实体记法,也有的书上称其为不变性形式。这种记法的特点是非常直观。如在力学中,分析作用力时,就用有向线段来表示矢量。但是用几何记法只能进行简单的矢量运算,稍微复杂一点的矢量运算就无法进行了,因此必须借助于坐标用分析的方法来进行。 我们引入坐标系,用坐标的方法来描述一个矢量。在 空间选三个矢量组成坐标架,这三个矢量取名为 (1e ρ,2e ρ,3e ρ ),其大小为1,方向互相垂直,即有如下的性 质:

张量第二章

第二章 普通张量的基本概念 §2.1 普通张量的记法 一、 上标、下标、自由指标 普通张量理论采用上标和下标。 上标称为逆变指标,下标称为协变指标。 具有上标的分量称为张量的逆变分量。 具有下标的分量称为张量的协变分量。 同时具有上标和下标的分量称为张量的混变分量。 i T i T ij T ij T i j T ? i j T ? k ij T ?? 字母中的上标和下标称为自由指标。对于张量,自由指标的个数就是张量的阶数。 二、爱因斯坦求和约定、哑标 求和简记法(爱因斯坦约定): 在一个单项式中,同一个指标出现两次,而且一次作为上标,一次作为下标,就表 示对该指标求和。 表示求和的重复指标称为哑标。 j i j i x a =ξ 或是 k i k i x a =ξ 注意与笛卡儿张量求和的区别。 三、Kronecker 记号δ ? ??=01 i j δ j i j i ≠= 3=i i δ i j k j i k δδδ= 3==i i j i i j δδδ i l k l j k i j δδδδ= i k i k x x =δ ij k j ik a a =δ 四、置换符号 ?? ? ??-==011 ijk ijk e e 非循环序列、、逆循环序列、、循环序列、、)()()(k j i k j i k j i 应用实例 1、 表示行列式 k j i ijk n m l lmn a a a e a a a e a a a a a a a a a a 32132133 32 3 123222 1 13 12 11===

2、 矢量的叉积 设 j j e a = k k e b b = i i e c =?= i i e c b a e ==?=222 k j ijk i b a e c = 五、求普通导数的简记法 取坐标参数x j ,则: j i j i u x u ,=?? j i j i u x u ,=?? j j u x u ,=?? jk i k j i u x x u ,2=??? §2.2 基矢量、矢量的逆变分量和协变分量 客观过程的内在规律是不应该依赖所选择的坐标系的,即自然规律是协变的。因此,尽可能建立张量方程。摆脱坐标系。现在研究几种坐标系。 一、 笛卡儿直角坐标系 ) ('1 p p ) (22p 笛卡儿直角坐标系采用三个相互垂直的单位矢量作为基矢量。 i i e p e p e p e p =++=332211 i e 称为协变基矢量。i p 为逆变分量。 332211e p e p e p ++= i e 称为逆变基矢量,i p 为协变分量。 笛卡儿直角坐标系中,i e 和i e 是重合的,无须区分。

张量分析各章要点

各章要点 第一章:矢量和张量 指标记法: 哑指标求和约定 :同一项中出现一对相同的协、逆变指标则对该指标求和 自由指标规则:同一项中只能出现一次,不同项中保持在同一水平线上 协变基底和逆变基底: k i k i i x ??==?ξ?ξr g e j j i i ?=δg g i i k k x ?ξ=?g e 123 = ==g g g 张量概念 i i'i'i =βg g i'i'i i =βg g i k i k j j ''''ββ=δ i'i'i i v v =β i i 'i 'i v v =β i 'j'i 'j'k l ij ..k 'l'i j k 'l'..kl T T =ββββ i i i i v v ==v g g ..kl i j ij k l T =???T g g g g 度量张量 ij i i i j i i g =?=?=?G g g g g g g ?=?=?=?=v G G v v T G G T T .j kj i ik T T g = 张量的商法则 lm ijk T(i,j,k,l,m)S U = ijk ...lm T(i,j,k,l,m)T = 置换符号 312n 1n 123n i i i i i 123n 1n i i i ...i A a a a ......a a e -- i j k Lmn ijk .L .m .n a a a e e A = i j k .L .m .n ijk Lmn a a a e e A = 置换张量

i j k ijk ijk i j k =ε??=ε??εg g g g g g ijk i j k ()e ε=??=g g g ijk ijk i j k ()ε=??=g g g i j k ijk ijk i j k a b a b ()::()?=ε=ε=?=?a b g g a b εεa b 广义δ符号 i i i r s t j j j ijk ijk ijk r s t rst rst rst k k k r s t e e δδδδδδ==εε=δδδδ ijk j k j k jk ist s t t s st δ=δδ-δδδ ijk k ijt t 2δ=δ ijk ijk 6δ= 性质:是张量 重要矢量等式:()()()??=?-?a b c a c b a b c 第二章: 二阶张量 重要性质:T =T.u u.T 主不变量 i 1.i Tr()T ζ==T i j l m 2l m .i .j 1T T 2 ζ=δ 3det()ζ=T 1()()(())(())()?????????=ζ??T u v w +u T v w +u v T w u v w 2)[)][()(]()[()]()????????????=ξ??T u (T v w +u T v T w)+T u (v T w u v w ( ()[()()]det()()?????=??T u T v T w T u v w 标准形 1. 特征值、特征向量 ?=λT v v ()-λ?=T G v 0 321230λ-ζλ+ζλ-ζ= 2. 实对称二阶张量标准形 i 12 3 i 1122 33=??=λ?+λ?+λ? N N g g g g g g g g 3. 正交张量(了解方法) 12112233(cos()sin())(sin()cos())=?+??+-?+??+?R e e e e e e e e

相关文档
相关文档 最新文档