文档库 最新最全的文档下载
当前位置:文档库 › 天体物理概论总复习

天体物理概论总复习

天体物理概论总复习
天体物理概论总复习

天体物理学教材《An Introduction to Modern Astrophysics》评介研究

《An Introduction to Modern Astrophysics》 (second edition)教材评价 暴鹏程(南开大学物理科学学院) 1、本书的出版情况和作者简介 《An Introduction to Modern Astrophysics(second edition)》(《现代天体物理概论》(第二版))是美国麻省理工学院物理系课程编号为8.901的课程”Astrophysics I” (天体物理I)所选用的教材。本书于2006年由Addison-Wesley出版社出版,全书共1278页(含附录共1400页),作者是韦伯州立大学的Bradley W.Carroll和Dale A.Ostlie. Bradley W.Carroll是美国韦伯州立大学的物理系教授,他从加州大学欧文分校取得数学学士学位,之后在博尔德科罗拉多大学取得物理学硕士学位和天体物理博士学位。 Bradley对天文学抱有终身的兴趣并且对头顶的星空怀有一种天真的好奇,这导致最终投身天文学领域。在Carl Hansen 和 John Cox的指导下,他的博士课题是脉冲星的自转效应。之后,他去罗切斯特大学和Hugh Van Horn一起进行博士后研究,主要是研究中子星及其堆积盘的振荡。在这两所大学的熏陶下,Brad 掌握了构造复杂天体物理系统的简化模型的精髓。四年后,结束博士后研究的Bradley幸运地得到韦伯斯特州立大学的教职,并且更幸运的是,在那里碰到了Dale Ostlie,两人在恒星脉冲领域都有专长并且见解相近。Bradley十分喜欢和学生共同探索物理世界,这给他写这本书时提供了很大的帮助。 Dale A.Ostlie是美国韦伯州立大学理学院的院长,他于1977年在圣奥拉夫学院取得物理和数学的学士学位,然后于1982年在爱荷华州立大学取得物理/天体物理的博士学位。之后先后在爱荷华州立大学物理系,约翰霍普金斯大学的空间望远科学技术研究所,贝茨学院物理系,洛斯阿拉莫斯国家图书馆理论物理组进行教学科研工作。从1984年起,在韦伯州立大学物理系进行教学科研工作至今。 在本书的另一个作者Bradley W.Carroll来到韦伯州立大学后,由于在许多领域尤其是恒星脉冲领域的共识和对教学的热爱,两人合著了本书。 2、本书的创作背景和主要内容 天体物理作为天文学的二级学科,也是天文学和物理学的交叉学科。天体物理是研究天体和其他宇宙物质的性质、结构和演化的天文学分支。天体物理学从研究方法来说,可分为实测天体物理学和理论天体物理学。前者研究天体物理学中基本观测技术、各种仪器设备的原理和结构,以及观测资料的分析处理,从而为理论研究提供资料或者检验理论模型。后者则是对观测资料进行理论分析,建立理论模型,以解释各种天象。同时,还可预言尚未观测到的天体和天象。用物理学的技术和方法分析来自天体的电磁辐射,可得到天体的各种物理参数。根据这些参数运用物理理论来阐明发生在天体上的物理过程,及其演变是实测天体物理学和理论天体物理学的任务。 本书是天体物理学的一本经典的教科书,两位作者都是多年从事教学和研究一线工作。本书深入浅出,条理清晰地介绍阐明天体物理的相关基础知识和应用情况,是一本不可多得的天体物理入门级教材。

论天体物理学及其对未来发展的重要作用

论天体物理学及其对未来发展的重要作用 11级物理2班黄健根1107020051 摘要:天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。它分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。多年来,随着世界人口的不断增加,资源不断的消耗,人们的生存环境日益缩减,资源也愈加匮乏。越来越多的国家将希望寄托于地球外部的空间,这进一步促进了天体物理学的发展,理论天体物理学的发展紧密地依赖于理论物理学的进步,几乎理论物理学每一项重要突破,都会大大推动理论天体物理学的前进。二十世纪二十年代初量子理论的建立,使深入分析恒星的光谱成为可能,并由此建立了恒星大气的系统理论。三十年代原子核物理学的发展,使恒星能源的疑问获得满意的解决,从而使恒星内部结构理论迅速发展;并且依据赫罗图的实测结果,确立了恒星演化的科学理论。 关键词:天体银河系特殊行星星系集团同位素 引力原子核等离子体星系空间 引言:本学期开展了物理学史着门课程,陈老师给我们讲述了有关内容,以下是我对天体物理学及其对未来发展的重要作用的论述。 (一)天体物理学的有关介绍 从公元前129年古希腊天文学家喜帕恰斯目测恒星光度起,中间经过1609年伽利略使用光学望远镜观测天体,绘制月面图,1655~1656年惠更斯发现土星光环和猎户座星云,后来还有哈雷发现恒星自行,到十八世纪赫歇耳开创恒星天文学,这是天体物理学的孕育时期。十九世纪中叶,三种物理方法——分光学、光度学和照相术广泛应用于天体的观测研究以后,对天体的结构、化学组成、物理状态的研究形成了完整的科学体系,天体物理学开始成为天文学的一个独立的分支学科。 天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。 天体物理学分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。 利用理论物理方法研究天体的物理性质和过程的一门学科。1859年﹐基尔霍夫根据热力学规律解释太阳光谱的夫琅和费线﹐断言在太阳上存在著某些和地球上一样的化学元素﹐这表明﹐可以利用理论物理的普遍规律从天文实测结果中分析出天体的内在性质﹐是为理论天体物理学的开端。理论天体物理学的发展紧密地依赖于理论物理学的进步﹐几乎理论物理学每一项重要突破﹐都会大大推动理论天体物理学的前进。二十世纪二十年代初

881-天体物理学

881-《天体物理学》考试大纲 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟。 二、试卷的内容结构及分值分布 填空题 10% 选择题 10% 名词解释 20% 简答题 30% 证明、计算题 30% 三、考察的知识及范围 (一)宇宙概观 了解天体物理学的研究对象,不同层次的天体系统的基本性质,包括太阳系、恒星世界、星系和星系团等; 了解接受宇宙信息的主要渠道,了解电磁辐射的地面、空间观测手段和方法。 (二)基本天体物理量及其测量 1. 掌握恒星视星等和绝对星等之间的关系、星等和光度之间的关系; 2. 了解恒星的黑体辐射谱,掌握维恩位移定律、斯特藩-玻尔兹曼定律在估计恒星相关参量中的应用。 3. 掌握恒星的光谱分类标准、不同光谱型谱线特征及成因; 4. 掌握恒星在赫罗图上的分布、利用赫罗图估计恒星的基本性质; 5.掌握变星的分类及基本特征;造父变星的周光关系及应用;

超新星的分类及特征; 6. 掌握不同天体距离测定方法,包括三角时差法、标准烛光法及哈勃定律; 7. 掌握双星系统恒星质量测定方法、恒星光度对质量的依赖关系、球状星团或椭圆星系的位力定理; 8. 了解恒星的年龄的估计方法。 (三)恒星的形成与演化 1.了解恒星形成时的金斯判据、恒星形成主序星前阶段所发生 的物理过程; 2.了解恒星在主序阶段所发生的物理过程; 3.了解求解恒星结构的基本方程,了解简并和非简并状态下的 物态方程; 4.掌握恒星能量的位力定理; 5.掌握小质量、中等质量和大质量恒星离开主序后的演化过 程,以及在赫罗图中的位置及对应的物理过程; 6.了解超新星分类及特征、中微子基本性质、太阳中微子之谜 及可能解释;超新星遗迹的高能辐射; 7.了解密近双星的演化的洛希等势面、密近双星演化中的物质 交流、白矮星和中子星系统中的吸积过程; 8.了解引力波辐射及探测原理。 (四)致密星 1.了解白矮星的基本性质,掌握白矮星质量的钱德拉塞卡极限; 2.了解中子星的结构,掌握中子星自转角速度与磁场的估计方

2020物理学和天文学回国就业前景解析

2020物理学和天文学回国就业前景解析 物理学和天文学解决了宇宙的基本问题:宇宙是如何开始的?它是什么做的?它是如何工作的?如果试图找出其中一些问题的答案听起来很有趣,那么这就是你学习中最大的获得,除了巨大的收获,那么回国后的“经济收获”会怎样的呢?将为您详细介绍。 物理学是一门激动人心的学科,是现代社会发展的基础。该学科的应用范围从非常纯粹到非常实用,物理学位在科学研究和技术发展以及各种其他专业领域开辟了广泛的有益职业。相当数量的毕业生继续接受研究生教育,或直接依赖其专业技能的就业。 学生还可以在职业生涯中找到工作,因为他们在课程中获得了一般技能,如逻辑思维,解决问题,计算能力和计算机知识。例子包括咨询,财务,计算机编程和会计,以及管理和行政职位。 1.物理学解释了世界 了解为什么天空是蓝色的。找出世界如何发展。了解为什么全球变暖将使阿拉斯加人的雪地靴换成人字拖鞋。如果你足够好,你甚至可能破解生命的意义。可能性是无止境。 2.研究生前景 我们的研究生前景排名通常平均在60-70%左右。物理与天文学排名前10位的大学都有超过80%的前景,这意味着你在完成本科学位课程后会有很高的专业水平就业率或进一步学习。 3.解决问题的能力

一个普遍存在的术语,当人们无法用其他任何东西填充其他任何内容时,人们会把它们放在他们的简历上,但对于物理学毕业生来说,你几乎可以解决任何问题。许多学过物理的人发现它有助于他们培养批判性思维和解决问题的能力。它让你非常有用。 4.出国工作 相当多的课程不仅允许工业一年,而且可以允许它被带到国外。对于大多数人来说,这将是在英语国家,如爱尔兰或美国,但如果你也说外语,可能性进一步开放。 5.国际技能 世界是一个小而多样的地方,既更加全球化,又同时将人们分开。对宇宙的了解以及如何对其进行研究提供了可应用于当今世界任何国家或文化的技能和知识。 6.多才多艺 物理学家不必过于紧密地坚持他们的主题。你可以成为一名数学家,任何学科的工程师,确实可以接受大多数科目和主题。探索宇宙,开发激光技术,解决世界能源危机 - 等等。如果您是多技能型,请尝试联合学位。 7.困难但令人印象深刻 物理学让你对大学招聘人员,未来的雇主,以及大脑开启的任何小伙子/小姑娘更有吸引力,并关注聪明才智。如果你知道斯蒂芬霍金,那么你可以站在醉酒的人们面前不断地问你们,然后考虑物理学和天文学。 例如,宇宙学是对宇宙的起源,演化和最终命运的研究,而天体物理学则关注充满它的恒星,而空间科学则是对我们当地行

天体物理概论_向守平_第一章绪论探索宇宙12天体物理学简史资料

§1.2 天体物理学简史 真正意义上的天体物理学开始于十九世纪。由于分光学、光度学和照相术广泛应用于天体的观测研究,对天体的结构、化学成分、物理状态的研究形成了完整的科学体系。 天体物理学发展史上的一些主要事件是:(注:科学家在天体物理学领域的重大进展已经获得了十几次诺贝尔物理奖)

1864年英国天文爱好者哈根斯和意大利教士塞西分别用摄谱仪证认出一些恒星的元素谱线,哈根斯并根据多普勒效应测定了一些恒星的视向速度;1869年英国天文学家洛基尔在太阳光谱中首次发现氦线,之后到1895年才由英国化学家雷姆塞在地球上发现了氦; 1885年哈佛大学天文台开始用物端棱镜方法,对恒星光谱的分类作大规模的研究,此后到1924年,共完成225,000多颗星的光谱分类,这 是近代天文史上的巨作,为以后的研究提供了丰富的资料;

1915年爱因斯坦发表广义相对论,并求出水星近日点进动的精确值; 同年,美国天文学家亚当斯发现测定恒星距离的分光视差法,使得恒 星距离测量的范围由几百光年(三角视差法的上限)达到几千光年;1917年爱因斯坦发表《根据广义相对论对宇宙学所作的考查》一文,为现代宇宙学的奠基之作; 1919年英国天文学家爱丁顿领导的日食观测队发现太阳引力使光线偏转的现象,成为爱因斯坦广义相对论的天文学验证之一;

1920年代印度天文学家萨哈发表恒星大气电离理论,同时德国天文学家埃姆登和史瓦西、英国天文学家爱丁顿等建立了系统的恒星内部结构 1929年美国天文学家哈勃发现星系的红移-距离关系,为现代大爆炸宇宙学奠定了观测基础; 1930年 1932年前苏联物理学家朗道预言存在完全由中子构成的恒星——中子星; 1934年德国天文学家巴德与瑞士天文学家兹威基提出,中子星是超新星爆发的产物; 1937~1939年德国物理学家魏茨泽克和美国物理学家贝特提出质子-质子反应和碳氮循环两种核反应,创立了恒星核能源理论; 1939年美国物理学家奥本海默和沃尔科夫建立了中子星的理论模型,预言中子星的直径只有几千米,密度可达每立方厘米几亿 吨; 1944年荷兰天文学家范德胡斯特从理论上提出存在星际中性氢21厘米射电谱线,后在50年代初被观测证实; 1948年美国物理学家伽莫夫预言,宇宙创生于一次热大爆炸,并预言可以观测到温度大约为10K的大爆炸背景辐射遗迹; 1951~1954年美国、荷兰和澳大利亚的天文学家先用光学的方法,继而用射电方法发现并描绘出银河系的旋涡结构; 1959年美国用高空气球进行γ辐射观测,发现宇宙γ射线源,之后又发现太

天体物理学

天体物理学 2008.9-2009.2 袁业飞董小波 1.【天文思维。】a. 一个致密天体位于银河系内,我们在0.1秒钟之内观测到它增亮了二倍。请估计它的物理尺度不能超过多少?如果增亮的幅度只有10%,又能得到什么结论? b. 某种类型的活动星系在所有星系中的比例大约为1/100。那么,这种类型星系的活动期至少是多长? 2.【视超光速。】我们对一个遥远天体作了两次观测(相隔一段时间),发现它在高速运动。我们可以测得它在天球上走过的角距离,还可以通过其它方法测得它的宇宙学红移从而确定它离地球的距离,这样我们可以算得它的横向速度。请推导这个速度和它的真实运动速度的关系;什么情况下我们测得的横向速度会超出光速? 3.【位力定理;辐射压。】大质量黑洞(M BH > 106 M⊙)吸积周围气体释放引力能产生电磁连续谱辐射,连续谱辐射又电离周围气体从而产生发射线(e.g. H-beta 4861?,半高宽度大概几十?);另外,由于吸积过程中的一些不稳定性,连续谱的光度会有变化。这就是在活动星系核中发生的基本过程。假设周围的电离气体运动被黑洞引力所主导并处于Viral平衡,而且呈球对称分布。 请设计一种方案来测量黑洞质量;如果忽略电子散射引起的效应,那么基于Viral定理估计的黑洞质量的系统偏差是怎样的? 4.【辐射拉拽。】一颗尘埃颗粒质量为10-11克,在1AU处绕太阳作近似圆周运动。它吸收太阳光并以红外方式再辐射出去,保持温度一定。尘埃吸收太阳光的截面为10-8 cm2。请计算需要多长时间它将掉入太阳表面?假设1/108的太阳光被绕太阳运动的尘埃所吸收,那么每秒钟掉入太阳的尘埃总质量是多少? 对于绕太阳运动的电离气体(电子-质子对),这种效应显著吗? 5.【*optional: 伽利略相对性原理、狭义相对论;推理思辨能力】 请基于伽利略相对性原理作推理(没必要做复杂的数学计算推演),证明:如果质点速度不存在上限,则惯性系之间由伽利略变换相联系(牛顿时空观);否则,洛仑兹变换(狭义相对论)。 6.【星等、绝对星等;流量、光度;面亮度(Flux/α2)、面光度(L/S)】 一个星系距离地球1Mpc,面亮度为 27mag/ascsec2。请问1”的角距离对应这个星系多大的物理尺度(pc)?星系单位面积(1pc2)的发光功率是多少?如果另一个星系的单位面积发光功率与上一个星系相同,但距离地球10Mpc,请问它的面亮度是多少? [*optional: 设一个位于较高红移z处(这时要考虑宇宙膨胀效应)的星系的光度为L,固有的物理直径为D。请推导它表面亮度公式I(L,D,z)。]

十大天体物理学发现时间将亿后停止

2010十大天体物理学发现:时间将50亿年后停止 2010年12月09日 09:53 新浪环球地理讯北京时间12月8日消息,美国国家地理网站评选出2010年度十大天体物理学发现,宇宙外潜伏未知“结构”新证据、银河系中心发现神秘气泡状结构以及“大爆炸”造出“液态”宇宙等重大发现榜上有名。 1.每个黑洞内都含有一个宇宙 每个黑洞内都含有一个宇宙 天文学家在2010年4月宣布,我们的宇宙就像是俄罗斯套娃的一部分,可能栖身于一个黑洞内,而这个黑洞本身又是一个更大宇宙的一部分。反过来,迄今在宇宙中发现的所有黑洞可能都是通向其他世界的通道。 美国印第安纳大学的物理学家尼克丹姆·鲍勃拉姆斯基(Nikodem Poplawski)近日提出了一个有关落入黑洞的物质所作旋转运动的崭新数学模型。根据他的方程,黑洞可能是不同宇宙间的时空通道,或者说,一种虫洞。被黑洞吞噬的物质并未如之前理论预言的那样塌缩成一个奇点,而是从黑洞的另一端以“白洞”的形式喷发出来。

根据爱因斯坦的广义相对论,当一个区域的物质密度达到极大时会产生奇点,通常这一现象会出现在黑洞的中心。这种奇点密度无限大,温度无限高,因而显得怪异。而如果鲍勃拉姆斯基的理论正确,那么这种奇异的现象或许根本就不存在。 2.时间将在50亿年后停止 时间将在50亿年后停止 物理学家在2010年10月表示,永久膨胀理论称我们的宇宙只是众多宇宙中的一个,该理论还预测时间将在50亿年后停止。 一般认为,我们生活的宇宙已经存在了超过140亿年,并且将继续存在数十亿年。但根据一份最新发表的论文,时间本身可能将于50亿年后终止。巧合的是,这一时间恰逢太阳耗尽燃料熄灭的那一刻。 这一研究依据的是一种“永恒膨胀”的理论。该理论认为我们生活的宇宙其实是一系列宇宙中的一个。这一巨大的结构是由无穷多个宇宙组成的,其中每一个宇宙都可以产生无穷多个“子宇宙”。 这一理论的主要问题在于:在多重宇宙理论框架下,任何发生的事件都将发生无穷多次。这样就会使概率论的计算——如估算地球大小行星普遍存在的可能性,变得几乎不可能。

理论天体物理学

理论天体物理学 利用理论物理方法研究天体的物理性质和过程的一门学科。1859年,基尔霍夫根据热力学规律解释太阳光谱的夫琅和费线,断言在太阳上存在着某些和地球上一样的化学元素,这表明,可以利用理论物理的普遍规律从天文实测结果中分析出天体的内在性质,是为理论天体物理学的开端。理论天体物理学的发展紧密地依赖于理论物理学的进步,几乎理论物理学每一项重要突破,都会大大推动理论天体物理学的前进。二十世纪二十年代初量子理论的建立,使深入分析恒星的光谱成为可能,并由此建立了恒星大气的系统理论。三十年代原子核物理学的发展,使恒星能源的疑问获得满意的解决,从而使恒星内部结构理论迅速发展;并且依据赫罗图的实测结果,确立了恒星演化的科学理论。1917年爱因斯坦用广义相对论分析宇宙的结构,创立了相对论宇宙学。1929年哈勃发现了河外星系的谱线红移与距离间的关系,以后人们利用广义相对论的引力理论来分析有关河外天体的观测资料,探索大尺度上的物质结构和运动,这就形成了现代宇宙学。近二十年来,在理论天体物理这一领域,可以看到理论物理与天体物理更广泛更深入的结合,其中以相对论天体物理学、等离子体天体物理学、高能天体物理学等几个方面最为活跃。 从理论物理学的分支与天体物理学问题的联系,可以看出目前理论天体物理的概貌。 ①辐射理论研究类星体、射电源、星系核等天体的辐射,以及X射线源、γ射线源和星际分子的发射机制。 ②原子核理论研究恒星的结构和演化,元素的起源和核合成(见元素合成理论),以及宇宙线问题。 ③引力理论探讨致密星的结构和稳定性,黑洞问题,以及宇宙学的运动学和动力学。 ④等离子体理论分析射电源的结构、超新星遗迹、电离氢区、脉冲星、行星磁层、行星际物质、星际物质和星系际物质等。 ⑤基本粒子理论研究超新星爆发、天体中的中微子过程(见中微子天文学)、超密态物质的成分和物态等。 ⑥固态(或凝聚态)理论研究星际尘埃、致密星中的相变及其他固态过程。 理论天体物理的基本方法是把地球上实验室范围中发现的规律应用于研究宇宙天体。这种方法不仅对于说明和解释已知的天体现象是有力的,而且还可以预言某些尚未观测到的天体现象或天体。例如,在1932年发现中子之后不久,朗道、奥本海默等就根据星体平衡和稳定的理论预言可能存在稳定的致密中子星。尽管这种预言中的天体与当时已知的所有天体差别极大(异乎寻常的高密度等),可是在三十多年后的1967年,发现了脉冲星,预言终于被证实。另一方面,许多物理学概念首先是由研究天体现象得到的,后来又是依靠天体现象加以检验的。例如,首先是天体物理学家注意到充满宇宙间的电离物质具有一系列特性,这对建立等离子体物理学这门学科起了极大的推动作用。又如,热核聚变概念是在研究恒星能源时首次提出的。禁线也是受到天体光谱研究的刺激才得到深入探讨的。 由于地面条件的限制,某些物理规律的验证只有通过宇宙天体这个实验室才能进行。有关广义相对论的一系列关键性的观测检验,都是靠研究天体现象来完成的。水星近日点进动问题、光线偏转以及雷达回波的延迟是几个早期的例子。1978年,通过对脉冲星双星PSR1913+16的周期变短的分析,给引力波理论提供了第一个检验,这是理论物理学与天体现象二者结合的一个新的成功事例。因此,理论天体物理学既是理论物理学用于天体问题的一门“应用”学科,又是用天体现象探索基本物理规律的“基础”学科。无论从天文学角度来看,或是从物理学角度来看,理论天体物理学都是富有生命力的。

天体物理学的发展与历史物理学史期末论文

天体物理学的发展与历史 摘要:在本学期学习《物理学史》课程以来,让我了解到很多物理学发展史,以及众多物理学家对物理做出的巨大贡献;了解到现代如此先进的技术都脱离不开物理学的高度发展,因此,物理学是科学技术的基础,是科技得以产生的基石。他不仅推动着科学技术的发展,更成为人类社会发展的助燃剂。在众多物理分支方面我比较感兴趣的就是天文学这一块,所以接下来我将介绍有关天体物理方面的发展。 关键词:天体物理学粒子物理学宇宙学 (一)天体物理学的起源 从公元前129年古希腊天文学家喜帕恰斯目测恒星光度起,中间经过1609年伽利略使用光学望远镜观测天体,绘制月面图,1655~1656年惠更斯发现土星光环和猎户座星云,后来还有哈雷发现恒星自行,到十八世纪赫歇耳开创恒星天文学,这是天体物理学的孕育时期。十九世纪中叶,三种物理方法——分光学、光度学和照相术广泛应用于天体的观测研究以后,对天体的结构、化学组成、物理状态的研究形成了完整的科学体系,天体物理学开始成为天文学的一个独立的分支学科。 天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。 多年来,随着世界人口的不断增加,资源不断的消耗,人们的生存环境日益缩减,资源也愈加匮乏。越来越多的国家将希望

寄托于地球外部的空间,这进一步促进了天体物理学的发展,理论天体物理学的发展紧密地依赖于理论物理学的进步,几乎理论物理学每一项重要突破,都会大大推动理论天体物理学的前进。二十世纪二十年代初量子理论的建立,使深入分析恒星的光谱成为可能,并由此建立了恒星大气的系统理论。三十年代原子核物理学的发展,使恒星能源的疑问获得满意的解决,从而使恒星内部结构理论迅速发展;并且依据赫罗图的实测结果,确立了恒星演化的科学理论。 (二)天体物理学的分类: 天体物理学分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,粒子物理学射天体、电天文学、空间天文学、高能天体物理学也是它的分支。 (三)天体物理学在对外太空研究的作用: 对行星的研究是天体物理学的一个重要方面。近二十年来,对彗星的研究以及对星星及物质的分布、密度、温度、磁场和化学组成等方面的研究,都取得了重要成果。随着空间探测的进展,太阳系的研究又成为最活跃的领域之一。 银河系有一、二千亿颗恒星,其物理状态千差万别。球状体、红外星、天体微波激射源、赫比格一阿罗天体,可能都是从星际云到恒星之间的过渡天体。 特殊行星更是多种多样:造父变星的光变周期为1~50天,

1983年诺贝尔物理学奖——天体物理学的成就

1983年诺贝尔物理学奖——天体物理学的成就 1983年诺贝尔物理学奖一半授予美国伊利诺斯州芝加哥大学的钱德拉塞卡尔(Subrahmanyan Chandrasekhar,19l0—1995),以表彰他对恒星结构和演变有重要意义的物理过程的理论研究;另一半授予加利福尼亚州帕萨迪那加州理工学院的W.A.福勒(William AlfredFowler,1911—1995),以表彰他对宇宙中化学元素的形成有重要意义的核反应的理论和实验研究。 钱德拉塞卡尔是另一诺贝尔物理学奖获得者拉曼(SirChandrasekhara Venkata Raman)的外甥,1910年10月19日出生于巴基斯坦的拉合尔,1930年毕业于印度马德拉斯大学,后在英国剑桥大学学习和任教。1937年移居美国。 钱德拉塞卡尔的主要贡献是发展了白矮星①理论。 白矮星的特性是大约在1915年由美国天文学家亚当斯(W.S.Adams)发现的。1925年英国物理学家R.H.福勒(R.H.Fowler)用物质简并假说解释了白矮星的巨大密度。物质简并假说称,电子和电离的核在极大的压力下组成高度密集的物质。1926年爱丁顿(A.S.Eddington )建议,氢转变为氦是恒星能量的可能泉源,这就为恒星演化理论奠定了基础。 1930年—1936年,钱德拉塞卡尔在剑桥大学三一学院工作期间,就投入到了白矮星的研究之中。他找到了决定恒星生命的基本参数,通过应用相对论和量子力学,利用简并电子气体的物态方程,为白矮星的演化过程建立了合理的模型,并作出了如下预测: 1.白矮星的质量越大,其半径越小; 2.白矮星的质量不会大于太阳质量的1.44倍(这个值被称为钱德拉塞卡尔极限); 3.质量更大的恒星必须通过某些形式的质量转化,也许要经过大爆炸,才能最后归宿为白矮星。 钱德拉塞卡尔的理论解释了恒星演化的最后过程,因此对宇宙学作出了重大贡献。1939年他在全面研究了恒星结构的基础上出版了《恒星结构研究导论》一书,系统总结了他的白矮星理论。他还在恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学等方面进行了许多工作。 钱德拉塞卡尔1995年8月21日由于心脏病发作而去世,享年84岁。他在晚年时潜心研究牛顿的《自然哲学的数学原理》。1995年3月20日他还在美国物理学会圣何塞年会上做过题为“牛顿…原理?的一些命题”的特邀报告。当时他正在写一本有关牛顿的书。 W.A.福勒1911年8月9日出生于美国宾夕法尼亚州的匹兹堡。由于从事与

天体物理学和宇宙演变

天体物理学和宇宙演变 世界是物质的,宇宙是物质的,宇宙中物质颗粒是客观存在的,物质颗粒的运动出现扩散、溶合、碰撞三种结果,使得在宇宙空间物质颗粒产生各种分布。其中溶合在一起的颗粒渐渐溶合增长,依次形成星子、行星、恒星、星团、类星体、星系。当星系形成时,使杂乱无章的宇宙中星体的无规则运动变化成有规则运动,星体结束了碰撞期,星系又以自身的运动特点运动下去,它们同样会出现碰撞、溶合和扩散。这便是宇宙的演变。 天体物理学属于应用物理学的范畴,是研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。由于天体物理学是一门很广泛的学问,天文物理学家通常应用很多不同学术领域的知识,包括力学、电磁学、统计力学、量子力学、相对论、粒子物理学等。 本书作者Leonard S Kisslinger是美国卡内基梅隆大学教授,他意在使任何学科的学生对于近几十年天体物理学取得的那些令人兴奋和感到神秘的发展有一些了解。本书解释了宇宙从早期到现在的演化过程,运用通俗易懂的讲述方式使任何一个拥有高等数学基础的大学生都能够理解。 全书由10章组成:1.天体物理学的物理概念:速度、

加速度、动量和能量的基本概念,温度(作为一种能量形式),力和牛顿运动学定律;2.力和粒子:基本粒子的标准模型,原子、原子核、重子等;3.哈勃定律―宇宙膨胀:首先定义和讨论了光的多普勒频移和红移,然后从星系中光的多普勒频移的测量回顾了哈勃定律,最后讨论了宇宙的膨胀;4.恒星、星系等:地球怎样绕着太阳旋转,太阳(作为一个熔炉)的特性,大质量恒星由于引力坍塌导致脉冲星和黑洞形成的过程;5.中微子振荡、对称性和脉冲星冲击:称为中微子振荡的中微子相互转化的三种标准模型的重要属性,怎样利用中微子振荡来测量宇称性、电荷共轭和时间演化对称性,通过中微子发射来解释脉冲星冲击的可能原因;6.爱因斯坦狭义和广义相对论:狭义相对论中的重要假设,以及由此产生的长度收缩和时间膨胀,由洛伦兹变换得到的附加速度的爱因斯坦方程与假设的相一致性,利用相对动量和张量简单讨论了广义相对论;7.从广义相对论得到的宇宙的半径和温度:宇宙的弗里德曼方程、宇宙膨胀的引力辐射和重力波,以及引力量子场理论;8.宇宙微波背景辐射:宇宙微波背景辐射相关的一些概念,重点是温度和时间的相关性;9.电弱相变(Electroweak phase Transition):定义了量子力学的相变和潜伏热,重点讨论了电弱理论和电弱相变,电弱相变和其产生的重力波间磁场的建立过程;10.量子色动力学相变:量子色动力学相变和银河系和星系团之间磁场的关

天体物理学及其对未来发展的重要作用

年级 08 专业光信息科学与技术 学生姓名张桂洋 学号080701110090 理学院 实验时间: 2011 年 6 月16 日

天体物理学及其对未来发展的重要作用 摘要:天体物理学分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。多年来,随着世界人口的不断增加,资源不断的消耗,人们的生存环境日益缩减,资源也愈加匮乏。越来越多的国家将希望寄托于地球外部的空间,这进一步促进了天体物理学的发展,理论天体物理学的发展紧密地依赖于理论物理学的进步,几乎理论物理学每一项重要突破,都会大大推动理论天体物理学的前进。二十世纪二十年代初量子理论的建立,使深入分析恒星的光谱成为可能,并由此建立了恒星大气的系统理论。三十年代原子核物理学的发展,使恒星能源的疑问获得满意的解决,从而使恒星内部结构理论迅速发展;并且依据赫罗图的实测结果,确立了恒星演化的科学理论。 关键词:天体银河系特殊行星星系集团同位素引力原子核等离子体星系空间 引言:本学期开展了物理前沿着门课程,我们在此课程中前后接受了三位老师的精彩讲课。他们分别是胡老师讲述的等离子体,张老师的天文学以及龙老师的量子力学。其中我最感兴趣的就是天文学中的天体物理学这一块。

(一)天体物理学的有关介绍 从公元前129年古希腊天文学家喜帕恰斯目测恒星光度起,中间经过1609年伽利略使用光学望远镜观测天体,绘制月面图,1655~1656年惠更斯发现土星光环和猎户座星云,后来还有哈雷发现恒星自行,到十八世纪赫歇耳开创恒星天文学,这是天体物理学的孕育时期。十九世纪中叶,三种物理方法——分光学、光度学和照相术广泛应用于天体的观测研究以后,对天体的结构、化学组成、物理状态的研究形成了完整的科学体系,天体物理学开始成为天文学的一个独立的分支学科。 天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。 天体物理学分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。 对行星的研究是天体物理学的一个重要方面。近二十年来,对彗星的研究以及对星星及物质的分布、密度、温度、磁场和化学组成等方面的研究,都取得了重要成果。随着空间探测的进展,太阳系的研究又成为最活跃的领域之一。 银河系有一、二千亿颗恒星,其物理状态千差万别。球状体、红外星、天体微波激射源、赫比格一阿罗天体,可能都是从星际云到恒星之间的过渡天体。

《天体物理学》考试大纲

中科院研究生院硕士研究生入学考试 《天体物理学》考试大纲 一.考试内容: 大学理科的《天体物理》课程的基本内容,包含:实测天体物理,天体物理辐射过程,太阳物理,恒星物理,星系天文学和宇宙学等。 二.考试要求: (一)宇宙概观 由近及远各层次天体:太阳系、恒星、星际物质、星系、宇宙 宇宙中物质状态,粒子和四种作用力,物理和天体物理,21世纪天体物理学(二)天体物理辐射过程 描述辐射场的物理量,辐射转移方程,热辐射,黑体辐射,普朗克定律的特征,维恩位移定律; 回旋辐射,同步加速辐射,曲率辐射,康普顿散射,逆康普顿散射,切连科夫辐射。 (三)实测天体物理 获得天体信息的渠道,天文望远镜,哈勃空间望远镜,LAMOST, 辐射探测器(CCD); 天体的光度测量:星等,绝对星等,色指数和热改正,星际消光,星际红化和色余; 天体的光谱分析:天体物理光谱分析,谱线轮廓,谱线强度,等值宽度,谱线证认; 恒星的光谱分类:光谱型,光度型; 射电天文方法:射电望远镜基本组成原理,射电天文测量基本参数,射电天文成就; 空间天文方法:红外天文卫星;X射线天文和γ射线观测; 天体的距离:视差:定义和单位,造父变星测距,谱线红移和哈勃定律; 天体的质量的测定; 天体年龄的测定方法。 (四)太阳物理 太阳的基本参数,太阳的质量、半径、光度、有效温度,太阳常数; 太阳大气分层:光球,(临边昏暗),色球,日冕; 太阳活动:太阳活动和磁场,太阳黑子(蝴蝶图),耀斑,日冕物质抛射,日地关系。 (五)恒星物理 恒星的观测特性:光度、光谱、质量、半径、有效温度, 星团和赫-罗图:星团、星协、赫-罗图(定义和各种表示法、在天体物理中的重要性), 恒星内部结构和演化:演化时标,内部结构方程和边界条件,物态方程,不透明度,能源和主要核反应,林忠四郎线,各种质量恒星的演化,

宇宙的天体物理学

给忙碌者的宇宙天体物理学 第一章:大爆炸简史 偶尔仰望天空的时候,你会想到什么呢?我们可能会想到宇宙之博大和个人之渺小,想到真理,想到公平和正义。但事实上,现代天体物理学比我们想象的东西要丰富很多倍,也精彩很多倍。 牛顿之前的人一般认为,天上有天上的法则,跟地球上是完全不同的。而牛顿的万有引力定律是历史上第一个宣称不仅仅适用于地球,而且适用于整个宇宙的理论。他的理论还真的解释了天体运行。人们发现,天上和地上在这个定律眼中是平等的。可以想象,对当时的人来说,这是一个多么震撼的知识。这个震撼一直保持到十九世纪。那时候物理学家发现,每个化学元素的光谱都有自己唯一的特征。物理学家随便给一堆气体,他们拿光一照,看看吸收光谱,就能准确判断这里面都有些什么元素。物理学家马上就分析了太阳的光谱。到这时候物理学家才知道,原来太阳里的各种元素基本都是地球上也有的,无非是氢、碳、氧、氮、钙等等。只有一个元素地球上没有,就是“氦”元素。不过元素周期表里已经给它留了位置,而且现在人类也可以在地球上制造氦。 这是人类第一次得知,原来构成太阳的物质不是什么神秘的东西,就是地球上也能找到的普通元素。再分析远处那些星星发光的光谱,结果也都是平常的元素。这是一个非常了不起的发现,科学家并未离开地球,但它让人们知道了,宇宙中的星辰大海跟我们这儿并没有什么不同。光谱的发现,不仅让我们对太阳的了解更深了一层,还开创了整个天体物理学。那么如果真有外星人造访地球,他们乘坐的那个飞碟,也应该是用“普通”元素建造的。而且宇宙其他地方的物理定律也跟我们这里是一样的。 从各民族的创世神话开始,到哥白尼的“日心说”,在到牛顿的“万有引力定律”震惊世界,人们对宇宙的认识不断改进,但某种根本认识从来没有改变,那就是宇宙是静态的、永恒的,在时间上无始无终。在20世纪初,包括爱因斯坦在内的所有人都认为宇宙是静的。 直到1907年,爱因斯坦在广义相对论的研究上取得了重要成果,他发现时间和空间都是可以弯曲的。这有点违背我们的直觉,但爱因斯坦说,牛顿万有引

中科大考博辅导班:2019中科大天文与空间科学学院学院考博难度解析及经验分享

中科大考博辅导班:2019中科大天文与空间科学学院考博难度解析 及经验分享 中国科学院大学2019年博士研究生招生统一实行网上报名。报考者须符合《中国科学院大学2019年招收攻读博士学位研究生简章》规定的报考条件。考生在报考前请联系所报考的研究所(指招收博士生的中科院各研究院、所、中心、园、台、站)或校部相关院系,了解具体的报考规定。 下面是启道考博辅导班整理的关于中国科学技术大学天文与空间科学学院考博相关内容。 一、院系简介 自2016年起中国科学院紫金山天文台(紫台)教育归口单位由中国科学院大学变更为中国科学技术大学(中国科大),同年4月紫台与中国科大签署协议,依托紫台和中国科大在“天文与空间科学”领域中的高水平科研与教学平台,通过“科教融合”新机制,强强联合,优势互补,联合共同建设“天文与空间科学学院”,学院总部设在南京市北京西路2号紫金山天文台内。今后,天文与空间科学学院录取的研究生为中国科大学籍,完成学业后,将获得中国科大毕业证书和学位证书,研究生在学期间的日常管理、学习和论文工作仍在紫台进行。 二、招生信息

X/UV天体物理①英语②高能天体物理③天体物理辐射机制 等离子体物理 ①英语②等离子体物理③天体物理辐 射机制 分子云与恒星形成研究①英语②射电天文③星际物质物理

学或空间物理学 日地关系和空间天气 行星化学①英语②地球化学③岩石学基础 070402(天体测轨道动力学、空间碎片探测方法 ①英语②轨道力学③天体测量精密轨道确定、空间环境 卫星精密定轨及应用①英语②轨道力学③天体测量太阳系小天体或系外行星研究①英语②高等数学③天体力学行星科学;遥感①英语②行星遥感③行星地质学

天体物理学

天体物理学 1、计算行星的半长轴 2 324GMP a π= 其中: a 为公转半长轴 G 为重力常量 P 为公转周期 M 为绕行的行星及被绕行的恒星质量之和(其中,因为恒星质量太大,往往占总质量的99%以上,行星质量基本可以忽略) 简易计算方式: 设地球至太阳长半轴a=1AU (1.5x1011米),周期P 为1年,求任意行星的长半轴:a 23223244GM P a GMP a θθθππ== 推导得:

a M P θθθ = 其中:a 是以AU 为基础单位,P 是以年为单位的量。 2、计算观测角度 计算公式: 2sin 1 D D ?= 其中:D1=D3;α=sin α D1为观测者到横行的距离、D3为观测者到行星的距离。 D2为行星和恒星之间的距离。 α为观测者观察到的恒星和星星的夹角。 在实际计算中,D2以AU 为单位,D1=D3等于秒差距(即3光年),α为角度(1度为60角分、1角分等60角秒)

例题:经过观测,天狼星的运动周期为40光年,地 球距离天狼星为3秒差距远,已知其表面温度为10000度,求观测着与天狼星和其所绕行的恒星间的夹角。 推论:假设恒星质量M=M(太阳),已知M和P, 由半长轴公式可得半长轴a,而a近似于D2,已知D3,可求得夹角。 3、太阳系内系统组成 1、太阳 2、内行星(类地行星) 3、小行星(位于火星和木星之间) 4、外行星(类木行星) 5、外海王星天体(柯伊伯天体) 6、外部区域(奥尔特云,多为尘埃和冰块等固体物质,如彗星) 4、观测恒星附近的行星的方法 (1)行星运动的重要公式(牛顿第一定律)

天体物理学与生活

天体物理学应用和发展 天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科,这个定义听起来离我们的日常生活非常遥远,而大多数天体物理学的内容也很难与我们的日常学习和生活有任何联系,但是,从天体物理学中我们还是可以获得许多与我们生活息息相关的信息和知识,比如我们可以将天体的运动简化为力学和运动学的物理模型从而帮助我们更好地将力学和运动学知识加以运用,可以从天文望远镜以及一些其他观察设备的构造和原理中了解到更多的光学知识,甚至,我们可以更进一步通过对天体物理学知识的学习和分析来了解我们生活的世界。而在今后,天体物理学的发展也必将更好地为我们的生活服务。 首先,天体物理学对我们来说,可以很好地运用到物理问题的解决中,比如天体运动中非常著名的双星系统问题。行星围绕恒星做圆周运动,或者卫星绕行星做圆周运动时,万有引力作用的距离,刚好是行星(或卫星)圆周运动的轨道半径,但是在双星系统中的引力作用的距离与双星运动的轨道半径是不同的,双星系统中两星做圆周运动时的角速度和周期是一定相同的。通过这些信息,我们可以将双星系统简化为圆周运动的模型,从而计算出与此系统相关的万有引力,向心力,周期等物理量并通过这些物理量之间的转化和运算解决一些简单的问题,如由双星运动引起的类似日食的食双星现象,粗略计算万有引力常量等等。 另外,在研究天体物理学的过程中,观察是一个必不可少的过程,所以在观察中用到的仪器也就成为了可以影响我们生活和学习的一大应用方向。天文望远镜是收集天体辐射并能确定辐射源方向的天文观测装置,通常指有聚光和成像功能的天文光学望远镜。天文望远镜的发展和使用原理结合了光学和热学的很多内容,从最早的伽利略式天文望远镜到现代大型光学望远镜,通过对透镜焦距的不断调整和其他光学套件的复杂组合,让我们有机会观察到更多的天文现象,所以可以说,天文望远镜的出现和发展就是现代天文学的基础。 同时,天体物理学还可以应用到许多其他有趣的方面。近年来十分受人关注的2012末日理论其实也与天体物理学有着密不可分的关系。一些星象学家认为,

相关文档
相关文档 最新文档