文档库 最新最全的文档下载
当前位置:文档库 › 基于双目视觉的深度图立体匹配算法研究改进

基于双目视觉的深度图立体匹配算法研究改进

基于双目视觉的深度图立体匹配算法研究改进
基于双目视觉的深度图立体匹配算法研究改进

视觉检测系统报告

视觉检测系统报告 年春季学期研究生课程考核(阅读报告、研究报告)考核科目:视觉测量系统学所在院(系):电气工程及自动化学院学生所在学科:仪器科学与技术学生姓名:***学 号:10S001***学生类别:工学硕士考核结果: 阅卷人: 视觉测量系统课程报告第一部分视觉测量系统发展现状综述机器视觉自起步发展到现在,已有15年的发展历史。应该说机器视觉作为一种应用系统,其功能特点是随着工业自动化的发展而逐渐完善和发展的。 目前全球整个视觉市场总量大概在60~70亿美元,是按照每年 8、8%的增长速度增长的。而在中国,这个数字目前看来似乎有些庞大,但是随着加工制造业的发展,中国对于机器视觉的需求将承上升趋势。 一、机器视觉的定义及特点简言之,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。在中国,这种应用也在逐渐被认知,且带来最直接的反应就是国内对于机器视觉的需求将越来越多。 二、机器视觉在国内外的应用现状在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%~50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。SMT表面贴装:SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等;再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路制造设备、元

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L和C R上的像点分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。 图1:立体视觉系统 3.双目立体视觉相关基本理论说明 3.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐

基于hancon双目立体视觉焊缝检测

基于halcon的双目立体视觉焊缝检测

基于halcon的双目立体视觉焊缝检测 1 前言 现代焊接生产中,对焊接技术和质量的要求愈来愈高。自动化和智能化在焊接生产上的应用日趋广泛。 近年来图像处理技术和机器视觉技术得到空前的发展,如果把机器视觉技术用在焊缝成形质量评判中,可以提高评判效率,为焊接质量评判的智能化打下基础。机器视觉是运用计算机来模拟人的视觉,从不同事物的图像中获取信息,进行相应处理并加以分析、理解,最终应用于实际的检测与测量等。机器视觉检测和测量方法不但可以有效提高生产效率与自动化程度,且易于实现信息的集成,从而满足数字化自动化生产的要求。 机器视觉中的立体视觉技术把二维景物的分析推广到了三维景物,该项技术可方便实现从图像获取到三维景物表面重建的完整体系,对于整个机器视觉的发展具有重要意义。双目立体视觉是立体视觉中的一个重要的分支,它直接模拟人视觉处理景物的方式,可以在各种条件下灵活地测量景的立体信息。

2 双目视觉检测 2.1 基本理论 如图1 所示,设点P为空间焊缝某一特征点,该点在两相机平面O1和O2的投影点依次为P1和P2。 图1 双目视觉原理 根据空间解析几何理论,很显然,式( 3) 中的4个方程均具有平面解析式的形式,前2 方程代表2平面相交,得到的是直线O1P1P 的方程,同理直线O2P2P 的方程由后2 个方程得出。两直线方程相交,即可求出P 点的空间三维坐标。 可见,若采用单相机模型,则理论上仅能解出一条直线的空间方程,无法得出空间点的准确三维坐标,而双目视觉理论则能够克服这个缺陷,从而使焊缝的精确测量有了可能。 2.2图像处理 为实现准确测量的目的,必须对采集到的图像进行数字化处理。首先,经过相机采集到的焊缝图像不可避免地存在一些污染痕迹,这

冲刷计算

4.4.1自然冲刷 河床演变是一个非常复杂的自然过程,目前尚无可靠的定量分析计算方法,根据《公路工程水文勘测设计规范》(JTG C30—2002)中7.2条的要求,河床的自然冲刷是河床逐年自然下切的深度。经深入调查,桥位处河段整体无明显自然下切现象,由于泥沙淤积,河床会逐年抬高,本次计算不考虑自然冲刷的情况。 4.4.2一般冲刷 大桥建成后,由于受桥墩阻水影响,桥位断面过水断面减小,从而引起断面流速增大,水流挟沙能力也随之增大,会造成桥位断面河床冲刷。 根据地质勘察报告,桥位处河床为砂卵石层,河床泥沙平均粒径为40(mm )。按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求, 非粘性土河床的一般冲刷可采用64—2简化公式计算: ()max 66 .029 .02104.1h B B Q Q A h c c p ??????-???? ? ?=μλ 公式中: h p ——桥下河槽一般冲刷后最大水深(m ); Q 2——桥下河槽部分通过的设计流量(m 3/s ); Q c ——天然状态下河槽流量(m 3/s ); A ——单宽流量集中系数 15 .0??? ? ??=H B A ; B C ——计算断面天然河床宽度(m ); λ——设计水位下,桥墩阻水面积与桥下过水面积比值;

μ——桥台前缘和桥墩两侧的漩涡区宽度与桥孔长度之比; B 2——桥下断面河床宽度(m ); h max ——桥下河槽最大水深(m )。 经计算:桥址处各设计频率一般冲刷深度成果见表4.4—1。 表4.4—1 XX 大桥一般冲刷计算成果表 4.4.3局部冲刷 根据XX 大桥桥型布置图,按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,局部冲刷计算采用65—1修正式中的公式进行计算: 当V >V 0时, 1 0,00, '006.011,b )(K n V V V V v B K h v ? ?????---=ηξ h b —桥墩局部冲刷深度(m )从一般冲刷后床面算起; K ξ—墩形系数,K ξ=1.05; K η1—河床颗粒影响系数; B 1—桥墩计算宽度; V —一般冲刷后墩前行近流速(m/s );

视觉检测原理介绍

技术细节 本项目应用了嵌入式中央控制及工业级图像高速传输控制技术,基于CCD/CMOS与DSP/FPGA的图像识别与处理技术,成功建立了光电检测系统。应用模糊控制的精选参数自整定技术,使系统具有对精确检测的自适应调整,实现产品的自动分选功能。 图1 控制系统流程图 光电检测系统主要通过检测被检物的一些特征参数(灰度分布,RGB分值等),从而将缺陷信息从物体中准确地识别出来,通过后续的系统进行下一步操作,主要分为以下几部分 CCD/CMOS图像采集部分 系统图像数据采集处理板中光信号检测元件CCD/CMOS采用进口的适合于高精度检测的动态分析单路输出型、保证实际数据输出速率为320MB/s的面阵CCD/CMOS。像素分别为4000*3000和1600*1200,帧率达到10FPS。使用CCD/CMOS 作为输入图像传感器,从而实现了图像信息从空间域到时间域的变换。为了保证所需的检测精度,需要确定合理的分辨率。根据被检测产品的大小,初步确定系统设计分辨率为像素为0.2mm。将CCD/CMOS接收的光强信号转换成电压幅值,再经过A/D转换后由DSP/ FPGA芯片进行信号采集,即视频信号的量化处理过程,图像采集处理过程如图所示:

图2 图像采集处理过程 数据处理部分 在自动检测中,是利用基于分割的图像匹配算法来进行图像的配对为基础的。图像分割的任务是将图像分解成互不相交的一些区域,每一个区域都满足特定区域的一致性,且是连通的,不同的区域有某种显著的差异性。分割后根据每个区域的特征来进行图像匹配,基于特征的匹配方法一般分为四个步骤:特征检测、建立特征描述、特征匹配、利用匹配的“特征对”求取图像配准模型参数。 算法基本步骤如下: 1)利用图像的色彩、灰度、边缘、纹理等信息对异源图像分别进行分割,提取区域特征; 2)进行搜索匹配,在每一匹配位置将实时图与基准图的分割结果进行融合,得到综合分割结果; 3)利用分割相似度描述或最小新增边缘准则找出正确匹配位置。 设实时图像分割为m个区域,用符号{A1,A2,… Am}表示,其异源基准图像分割为n个区域,用符号{B1,B2,…Bn}表示。分割结果融合方法如下: 在每一个匹配位置,即假设的图像点对应关系成立时,图像点既位于实时图中,又位于其异源基准图像中,则融合后区域点的标识记为:(A1B1,A1B2,…,A2B1,A2B2,…)。标识AiBj表示该点在实时图中位于区域i,在基准图中位于区域j。算法匹配过程如下图所示:

双目视觉成像原理讲解学习

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L和C R上的像点分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。

图1:立体视觉系统 3.双目立体视觉相关基本理论说明 3.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目 立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b 。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f 处,这个虚拟的图像平面坐标系O1uv 的u 轴和v 轴与和摄像机坐标系的x 轴和y 轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P 在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P 图像坐标的Y 坐标相同,即v1=v2。由三角几何关系得到: c c 1z x f u = c c 2z )b -x (f u = v 1 c c 21z y f v v ==

基于OpenCV的双目立体视觉测距

基于OpenCV的双目立体视觉测距 基于OpenCV的双目立体视觉测距 论文导读:: 双目立体视觉模型。摄像机标定。立体匹配采用OpenCV库中的块匹配立体算法。目前的测距方法主要有主动测距和被动测距两种方法。论文 关键词: 双目立体视觉,摄像机标定,立体匹配,测距 (一)引言基于计算机视觉理论的视觉测距技术是今后发展的一个重要方向,它在机器人壁障系统、汽车导航防撞系统等领域有着广泛的应用前景。目前的测距方法主要有主动测距和被动测距两种方法。论文采用的是被动测距法。被动测距法是在自然光照条件下,根据被测物体本身发出的信号来测量距离,主要包括立体视觉测距法、单目测距法、测角被动测距法等。立体视觉测距法是仿照人类利用双目感知距离信息的一种测距方法,直接模拟人的双眼处理景物,简便可靠,但该方法的难点是选择合理的匹配特征和匹配准则。双目立体视觉系统采用两台摄像机同时从两个不同视点获取同一景物的多幅图像,即立体图像对,通过测量景物在立体图像对中的视差,再利用双目视觉成像原理就可以计算出目标到摄像机的距离。立体匹配采用OpenCV库中的块匹配立体算法,在得到摄像机参数和匹配点后再利用最小二乘法即可算出三维信息。 (二)双目立体视觉模型首先介绍双目视觉所涉及到三个坐标系: 世界坐标系、摄像机坐标系和图像坐标系。世界坐标系中的点坐标记为,摄像机坐标系用表示。图像坐标为摄像机所拍摄到的图像的二维坐标,一般有两种表示方法:

是以像素为单位的图像坐标,是以毫米为单位的图像坐标。建立以毫米为单位的图像坐标是因为坐标只表示了像素在数字图像中的行数和列数,并没有表示出该像素在数字图像中的物理位置论文范文。图1为平行双目视觉模型,即参数相同的两个摄像机平行放置,两光 轴互相平行且都平行于z 轴,x 轴共线摄像机标定,两摄像机光心的距离为 B(即基线距)。图中O 1、O2为左右两摄像机的焦点,I1 、I2为左右摄像机的像平面,P1 、P2 分 别是空间点P在左右像平面上的成像点,f是摄像机的焦距。若视差d 定义为?P1- P2?,则点P到立体视觉系统的距离为: 图1 平行双目视觉模型 (三)摄像机标定摄像机标定是为了建立三维世界坐标与二维图像坐标之间的 一种对应关系。系统采用两个摄像机进行图像采集,设定好两个摄像机之间的距离(即基线距),用摄像机同时采集放在摄像机前的标定物。摄像机标定采用的是张正友的标定方法,棋盘格大小为30mm30mm,角点数为117。标定板的规格如图2所示。图2 平面标定板规格张正友的标定方法需要摄像机从不同角度拍摄标定板 的多幅图像。由于两个摄像机是向前平行放置的,且基线距固定,所以只需摆放标定板的位置变化即可。摄像机为针孔成像模型,则空间点与图像点之间的映射关系为: 为方便计算,使标定板所在平面的Z坐标均为0,即Z=0的平面,则上式可变为: 其中,A为摄像机的内参矩阵,为摄像机外参矩阵,s为尺度因子。令,,则上 式可写为: 其中,为透视投影矩阵,它是标定板上的点和其像点之间的映射。在已知空 间点和其对应像点后,可根据最小二乘方程,采用Levenberg-Marquardt算法求解

双目视觉三维重构公式

双目视觉三维重构总结 1 照相机成像过程 数码照相机的成像过程可通过四个坐标系的三次转换来表达,这四个坐标系分别为:(1)世界坐标系—根据自然环境所选定的坐标系,坐标用(w w w Z Y X ,,)来表示。(2)光心坐标系(相机坐标系)—以相机的光心O 为坐标原点,c X 轴、c Y 轴分别平行于CCD 平面的两条垂直边,c Z 轴与相机的光轴重合,坐标用(c c c Z Y X ,,)来表示。 (3)图像坐标系—坐标原点l O 在CCD 图像片面的中心,X 轴、Y 轴分别为平行于CCD 平面的两条垂直边,坐标用(x ,y )表示。(4)像素坐标系—坐标原点o O 在CCD 图像平面的左上角,U 轴、V 轴分别平行于图像坐标系的X 轴、Y 轴,坐标用(u ,v )来表示,该坐标值为离散的整数值。 图表 1 数码相机成像坐标系 三个转换过程分别是:(1)将世界坐标系中的信息转换到光心坐标系。(2)光心坐标系中的信息按照针孔模型规律转换到图像坐标系。(3)

最后由图像坐标系转换成像素坐标系。 光学成像的理论模型是针孔模型,根据这个模型,空间任一点P 由光心坐标系向图像坐标系的转换过程符合中心射影或透视投影理论,在图像坐标系中的投影P 可以用光心O 与P 点的连线与图像坐标系平面的交点来表示,数学表达如下: c c z x f x ?= c c z y f y ?= 其中(x,y )是P 点的图像坐标,(c c c Z Y X ,,)为空间点P 在光心坐标系下的坐标,f 为相机焦距。可以用齐次坐标与矩阵表示上述中心影射关系: ????? ?????????????????=??????????101 000000 1c c c c z y x f f y x z 图像坐标系与像素坐标系之间的转换关系如下: 0u dx x u += 0v dy y v += 其中dx 、dy 分别是表示CCD 在x 和y 方向的像素点间距。齐次坐标及矩阵表示如下: ?? ???????????????? ??????? ?=??????????1100 100 1100y x v dy u dx v u

基于双目立体视觉三维重建系统的制作流程

本技术公开了一种基于双目立体视觉三维重建系统,涉及三维重建系统技术领域;机箱的底部四角处均固定安装有行走轮,机箱的内部分别固定安装有蓄电池与处理计算机,机箱的上端分别固定安装有显示器与安装架,安装架上通过轴承座固定安装有主轴,主轴的下端固定安装有安装齿轮,安装齿轮与驱动齿轮相啮合,驱动齿轮固定安装有驱动电机的轴上,驱动电机通过螺栓安装在安装架上,主轴的上端固定安装有连接轴,连接轴为横向设置,连接轴的两端固定安装有双摄像头,连接轴的中上端固定安装有照明灯;本技术能够实现快速控制,稳定性高,且控制准确,操作简便,能够节省时间;使用方便,结构简单,且效率高,能够在检测时进行补光。 技术要求

1.一种基于双目立体视觉三维重建系统,其特征在于:包括机箱、行走轮、蓄电池、处理计算机、显示器、安装架、驱动齿轮、驱动电机、安装齿轮、主轴、连接轴、双摄像头、照明灯;机箱的底部四角处均固定安装有行走轮,机箱的内部分别固定安装有蓄电池与处理计算机,机箱的上端分别固定安装有显示器与安装架,安装架上通过轴承座固定安装有主轴,主轴的下端固定安装有安装齿轮,安装齿轮与驱动齿轮相啮合,驱动齿轮固定安装有驱动电机的轴上,驱动电机通过螺栓安装在安装架上,主轴的上端固定安装有连接轴,连接轴为横向设置,连接轴的两端固定安装有双摄像头,连接轴的中上端固定安装有照明灯,蓄电池通过导线与处理计算机、显示器的电源端电连接,双摄像头通过导线与处理计算机的输入端电连接,处理计算机的输出端分别与驱动电机、照明灯电连接,显示器与处理计算机的输入、输出端电连接。 2.根据权利要求1所述的一种基于双目立体视觉三维重建系统,其特征在于:所述显示器为触摸式显示屏。 3.根据权利要求1所述的一种基于双目立体视觉三维重建系统,其特征在于:所述行走轮为减震式万向行走轮。 4.根据权利要求1所述的一种基于双目立体视觉三维重建系统,其特征在于:所述驱动电机为低速电机。 5.根据权利要求1所述的一种基于双目立体视觉三维重建系统,其特征在于:所述照明灯为LED灯。 技术说明书 一种基于双目立体视觉三维重建系统 技术领域 本技术属于三维重建系统技术领域,具体涉及一种基于双目立体视觉三维重建系统。 背景技术

机器视觉检测分解

研究背景: 产品表面质量是产品质量的重要组成部分,也是产品商业价值的重要保障。产品表面缺陷检测技术从最初的依靠人工目视检测到现在以CCD 和数字图像处理技术为代表的计算机视觉检测技术,大致经历了三个阶段,分别是传统检测技术阶段、无损检测技术阶段、计算机视觉检测技术阶段。[] 传统检测技术 (1)人工目视检测法 (2)频闪检测法 无损检测技术 (1)涡流检测法 (2)红外检测法 (3)漏磁检测法 计算机视觉检测技术 (1)激光扫描检测法 (2)CCD 检测法 采用荧光管等照明设备,以一定方向照射到物体表面上,使用CCD摄像机来扫描物体表面,并将获得的图像信号输入计算机,通过图像预处理、缺陷区域的边缘检测、缺陷图像二值化等图像处理后,提取图像中的表面缺陷的相关特征参数,再进行缺陷图像识别,从而判断出是否存在缺陷及缺陷的种类信息等。 优点:实时性好,精确度高,灵活性好,用途易于扩充,非接触式无损检测。 基于机器视觉的缺陷检测系统优点: 集成化生产缩短产品进入市场时间改进生产流程100%质量保证实时过程监控提高产量精确检测100%检测 由于经济和技术原因国内绝大多数图像处理技术公司都以代理国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统集成上,对需要进行大数据量的实时在线检测的研究很少也很少有成功案例,但是随着国内经济发展和技术手段不断提高对产品质量检测要求就更高,对在线检测设备的需求也就更大具有巨大的市场潜力。 机器视觉图像处理技术是视觉检测的核心技术 铸件常见缺陷:砂眼气孔缩孔披缝粘砂冷隔掉砂毛刺浇不足缺陷变形 问题的提出: 1.水渍、污迹等不属于铸件缺陷,但由于其外观形貌与缺陷非常类似, 因此易被检测系统误识为缺陷。从目前发表的文献来看,对于伪缺陷的识别率较低。 2.不同种缺陷之间可能存在形状、纹理等方面的相似性,造成缺陷误判。 国外研究发展现状: 20 世纪90 年代后,基于机器视觉检测系统的自动化功能和实用化水平得到了进一步的提高。 1990 年芬兰Rautaruukki New Technology公司研制了Smartivis表面检测系统[],该系统具有自学习分类功能,应用机器学习方法对决策树结构进行自动设计优化。 1996 年美国Cognex公司研发了一套iLearn自学习分类器软件系统并应用于其研制了iS-2000 自动检测系统。通过这两套系统的无缝衔接,极大地提高了检测系统实时的运算速度,有效的改进了传统自学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征自动选择等方面的不足之处[]。 2004 年Parsytec公司发布了新一代表面质量检测产品Parsytec5i,该系统运用了自学习神经

一种快速双目立体匹配方法

邮局订阅号:82-946120元/年技术创新 软件时空 《PLC 技术应用200例》 您的论文得到两院院士关注 一种快速双目立体匹配方法 A Fast Stereo Matching Method for Binocular Images (苏州大学) 梅金燕龚声蓉赵勋杰 MEI Jin-yan GONG Sheng-rong ZHAO Xun-jie 摘要:在双目立体视觉中立体匹配是关键技术之一。为了提高匹配速度,提出一种新的立体匹配方法。首先根据极线约束条件限定同名点搜索区域,然后在极线约束区域使用活动轮廓分割出物体区域,进一步缩小匹配点搜索范围。在匹配算法方面,使用了邻域差值模板匹配方法。实验证明,提出的方法能够显著地提高匹配速度,并有较好的匹配精度。关键词:立体匹配;极线约束;活动轮廓;领域差值模板中图分类号:TP391文献标识码:A Abstract:Stereo matching is crucial for the distance measurement with binocular stereo system.Since the two cameras are hardly to be strictly parallel,matching based on epipolar constraint can not be applied directly.Analysing the system ’s module,a new mach -ing method was proposed in this paper.Firstly,the correct loaction area was selected based on the epipolar constraint.Secondly,the background was excluded out of the former area by active counter model.Finaly,the corresponding point is matched via feature tem -plate which is formed of neighborhood difference.The experimental results show that the proposed algorithm can improve stereo matching speed and it is more effective in the situation of detecting more than one point on the surface of the same object.Key words:Stereo matching;Epipolar constraint;Active counter;Neighborhood difference template 文章编号:1008-0570(2012)10-0415-03 引言 双目立体视觉是计算机视觉的一个重要分支,它是一种由两幅图像获取物体三维几何信息的方法。它利用两个摄像机对同一景物从不同的视角成像,然后根据视差和投影模型来获取景物的三维信息。双目立体视觉由于直接模拟了人类双眼视觉的生理构造,因此,在许多领域有着广阔的应用前景,如微操作系统的位姿检测与控制、机器人导航与航测、三维测量学及虚拟现实等。 在双目立体视觉中,通过立体匹配方法寻找空间同一物点在左、右两幅图像上对应的投影点(同名点)进而获得视差。立体匹配方法大体可以分为基于区域灰度和基于特征两类匹配方法。基于区域灰度的匹配方法简单,容易实现,但对于左图像中的每一像点,都要与右图像中所有点进行相 关运算,计算量大,实时性差,且对光照因素比较敏感。通过极线约束,可以沿物点对应极线搜索同名点,将二维搜索限制到一维搜索,提高匹配的速度。但是,在两图极线不平行时这种匹配方法不适合。针对这种情况,文献对整个图像平面投影进行校正,使两个图像重投影后极线平行,对校正后的图像进行相关匹配。然而,平面投影校正忽略了极线的方向性,在极点距离图像较近时图像失真严重,方法比较复杂。文献提出了基于极线局部校正的匹配算法,使基于灰度的匹配方法可以得到有效的应用,然而,该方法匹配时间较长,效率较低。文献在分析双目成像形成极线约束的基础上,从行和列两个方向上缩小第二幅图像待 匹配特征点坐标的搜索范围,提高了匹配速度,但是搜索范围通常包括前景和后景,匹配正确与否易受后景影响。 针对上述问题,本文提出了一种快速立体匹配方法。首先根据极线约束限定同名点搜索区域,然后通过检测物体轮廓去除背景区域,进一步约束搜索区域。最后,采用邻域差值模板进行匹配,将特征匹配和区域匹配两种方法结合起来,减小光照因素的影响。 1极线约束原理 在如图1所示的双目立体视觉系统中,假设三维空间点P 是两个摄像机均可见的空间场景物上的一点,点P 在光心点为 C L 和C R 相机像面I L 、I R 上的投影分别为P L 、P R ,由光心、 像点和空间点形成的平面称为极平面。两光心连线与像平面的交点分别为E L 、E R 。极平面与左像面I L 的交线P L E L 图1双目立体视觉中的极线几何关系 称为点P R 在图像I L 中的极线,交线P R E R 也有同样的定义。无论与P L 对应的P 点距离远近,它在右图上的投影点总是在P L 的极线P R E R 上。对于任意P L ,只需要在它的极线上寻找对应点 P R ;反之亦然。 这是双目视觉的一个重要特点,称之为极线约束。通过极线约束,我们可以由一个投影点知道其对应的极线,但不知道它对应点的具体位置,即极限约束是点与直线的对应,而不是点与点的对应。尽管如此,极限约束给出了对应点重要的约束条件,它将对应点匹配从整幅图像寻找限定在一条直线上需找对应点。因此,极大地减小了搜索地范围,对点的匹配具有 梅金燕:硕士研究生 基金项目:基金申请人:龚声蓉;项目名称:基于二型模糊概率图模型的多摄像头目标检测研究;基金颁发部门:国家自然科学基金委员会(61170124) 415--

双目视觉的图像立体匹配系统-说明文档

双目视觉的图像立体匹配系统文档 1 引言 计算机视觉技术的发展将光与影的艺术和计算机的逻辑性紧密结合起来,而双目立体视觉技术更将这种结合从平面二次元上升到立体的角度,为我们的生产生活提供了新的技术和工具,例如已经被普遍运用的3D电影技术,研发中的虚拟现实、谷歌视觉眼镜、汽车自动驾驶技术,即将上市的淘宝虚拟实景购物等,不断改变着我们的生活,另外双目立体视觉在军事、医学、工业等领域都有其重要的作用,是机器感知物体几何层级的基础,因此对双目视觉的理论研究成为推动立体视觉乃至计算机视觉技术在各个领域创造更高价值的重要因素。 在双目视觉的研究和运用中,最重要的一个阶段无疑为将平面图像转化为可计算机可识别的立体模型,这里将用到立体匹配技术,目前双目视觉研究领域用到的立体匹配算法及其衍生算法有很多种,算法的效率和匹配精度将直接影响到算法运用的响应时间和准确度[1],当今各种视觉智能设备的发展需要将立体匹配过程直接嵌入到单片机中,这种场景下,算法的效率和匹配精度将直接决定不同运算性能的嵌入式设备的选择和产品推广后的用户体验度,也将直接决定设备成本,因此研究出更加速度快、精度高的立体匹配算法在各领域都具有划时代的重要意义。 2 系统方案设计 2.1 双目视觉的图像立体匹配系统 说起立体视觉系统,要从人的双眼说起,人眼是一个典型的双目视觉系统,每只眼睛是一个摄像机,两只平行的眼睛是两台平行的摄像机,因为两只眼睛的位置不同,看到的图像是有差异的,这个差异就是立体视觉的基础,视觉信号传入大脑,大脑利用其强大的匹配能力,就可以基本确定图像中的物体的立体信息,或者叫做图像的深度信息。随着人们知识和生产生活的发展,需要通过仿真立体视觉的原理,让计算机获取到图像从2D向3D发展,即获取图像的深度信息,以实现一些和空间视觉有关的需求,这就出现了机器立体视觉技术。

双目立体视觉

双目立体视觉 双目立体视觉的研究一直是机器视觉中的热点和难点。使用双目立体视觉系统可以确定任意物体的三维轮廓,并且可以得到轮廓上任意点的三维坐标。因此双目立体视觉系统可以应用在多个领域。现说明介绍如何基于HALCON实现双目立体视觉系统,以及立体视觉的基本理论、方法和相关技术,为搭建双目立体视觉系统和提高算法效率。 双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并由多幅图像获取物体三维几何信息的方法。双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像,或由单摄像机在不同时刻从不同角度获得被测物的两幅数字图像,并基于视差原理恢复出物体的三维几何信息,重建物体三维轮廓及位置。双目立体视觉系统在机器视觉领域有着广泛的应用前景。 HALCON是在世界范围内广泛使用的机器视觉软件。它拥有满足您各类机器视觉应用需求的完善的开发库。HALCON也包含Blob分析、形态学、模式识别、测量、三维摄像机定标、双目立体视觉等杰出的高级算法。HALCON支持Linux和Windows,并且可以通过C、C++、C#、Visual Basic和Delphi 语言访问。另外HALCON与硬件无关,支持大多数图像采集卡及带有DirectShow和IEEE 1394驱动的采集设备,用户可以利用其开放式结构快速开发图像处理和机器视觉应用软件。 一.双目立体视觉相关基本理论说明 1.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图1所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图1所示。事实上摄像机的成像平面在镜头的光心后,图1中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P图像坐标的Y坐标相同,即v1=v2。由三角几何关系得到: 上式中(xc,yc,zc)为点P在左摄像机坐标系中的坐标,b为基线距,f为两个摄像机的焦距,(u1,v1)和(u2,v2)分别为点P在左图像和右图像中的坐标。 视差定义为某一点在两幅图像中相应点的位置差: 图1 双目立体成像原理图图3 一般双目立体视觉系统原理图

双目立体视觉技术简介

双目立体视觉技术简介 1. 什么是视觉 视觉是一个古老的研究课题,同时又是人类观察世界、认知世界的重要功能和手段。人类从外界获得的信息约有75%来自视觉系统,用机器模拟人类的视觉功能是人们多年的梦想。视觉神经生理学,视觉心里学,特别是计算机技术、数字图像处理、计算机图形学、人工智能等学科的发展,为利用计算机实现模拟人类的视觉成为可能。在现代工业自动化生产过程中,计算机视觉正成为一种提高生产效率和检验产品质量的关键技术之一,如机器零件的自动检测、智能机器人控制、生产线的自动监控等;在国防和航天等领域,计算机视觉也具有较重要的意义,如运动目标的自动跟踪与识别、自主车导航及空间机器人的视觉控制等。人类视觉过程可以看作是一个从感觉到知觉的复杂过程,从狭义上来说视觉的最终目的是要对场景作出对观察者有意义的解释和描述;从广义上说,是根据周围的环境和观察者的意愿,在解释和描述的基础上做出行为规划或行为决策。计算机视觉研究的目的使计算机具有通过二维图像信息来认知三维环境信息的能力,这种能力不仅使机器能感知三维环境中物体的几何信息(如形状、位置、姿态运动等),而且能进一步对它们进行描述、存储、识别与理解,计算机视觉己经发展起一套独立的计算理论与算法。 2. 什么是计算机双目立体视觉 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图像,如图一。 图一、视差(Disparity)图像 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。 双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 双目立体视觉的开创性工作始于上世纪的60年代中期。美国MIT的Roberts通过从数字图像中提取立方体、楔形体和棱柱体等简单规则多面体的三维结构,并对物体的形状和空间关系

双目立体视觉

计算机双目立体视觉 双目立体视觉技术是仿照人类利用双目线索感知深度信息的方法,实现对三维信息的感知。为解决智能机器人抓取物体、视觉导航、目标跟踪等奠定基础。 双目立体视觉(Binocular Stereo Vision )是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点之间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获取的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作为视差(Disparity )图像。 双目立体视觉系统 立体视觉系统由左右两部摄像机组成,如图,世界空间中的一点A(X,Y ,Z)在左右摄像机的成 像面1C 和r C 上的像点分别为)(111,v u a 和) (r r r v u a ,。这两个像点是世界空间中同一个对象点A 的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心1O 和r O 的连线,即投影线11O a 和r r O a ,它们的交点即为世界空间中的对象点A 。这就是立体视觉的基本原理。 双目立体视觉智能视频分析技术 恢复场景的3D 信息是立体视觉研究中最基本的目标,为实现这一目标,一个完整的立体视觉系统通常包含六个模块:图像获取、摄像机标定、特征提取、立体匹配、三维恢复和视频

分析(运动检测、运动跟踪、规则判断、报警处理)。 图像获取(Image Acquisition ) 数字图像的获取是立体视觉的信息来源。常用的立体视觉图像一般为双目图像,有的采用夺目图像。图像的获取方式有很多种,主要有具体运用的场合和目的决定。立体图像的获取不仅要满足应用要求,而且考虑视点差异、光照条件、摄像机的性能和场景特点等方面的影像。 摄像机标定(Camera Calibration ) 图像上每一点的亮度反映了空间物体表面某点反射光的强度,而该点在图像上的位置则与空 间物体表面相应点的几何位置有关。这些位置的相互关系由摄像机成像几何模型来决定。该几何模型的参数称为摄像机参数,这些参数必须由实验与计算来确定,实验与计算的过程称为摄像机定标。 立体视觉系统摄像机标定是指对三维场景中对象点在左右摄像机图像平面上的坐标位置)(111,v u a 和) (r r r v u a ,与其世界空间坐标A (X, Y , Z )之间的映射关系的确立,是实现立体视觉三维模型重构中基本且关键的一步。 特征提取(Feature Acquisition ) 特征提取的目的是获取匹配得以进行的图像特征,图像特征的性质与图像匹配的方法选择有着密切的联系。目前,还没有建立起一种普遍适用的获取图像特征的理论,因此导致了立体视觉研究领域中匹配特征的多样化。像素相位匹配是近二十年才发展起来的一类匹配算法。相位作为匹配基元,本身反映着信号的结构信息,对图像的高频噪声有很好的一直作用,适于并行处理,能获得亚像素级精度的致密视差。但存在相位奇点和相位卷绕的问题,需加入自适应滤波器解决。或者是像素的集合,也可以是它们的抽象表达,如图像的结构、图像的目标和关系结构等。常用的匹配特征主要有点状特征、线装特征和区特征等几种情形。 一般而言,尺度较大的图像特征蕴含较多的图片信息,且特征本身的数目较少,匹配效率高;但特征提取和描述过程存在较大的困难,定位精度也较差。而对于尺度较小的图像特征来说,对其进行表达和描述相对简单,定位的精度高;但由于特征本身数码较多,所包含的图像信息少,在匹配时需要采用较为严格的约束条件和匹配策略,一尽可能的减少匹配歧义和提高匹配效率。总的来说,好的匹配特征应该具有要可区分性、不变性、唯一性以及有效解决匹配歧义的能力。 图像匹配(Image Matching ) 在立体视觉中,图像匹配是指将三维空间中一点A (X, Y , Z )在左右摄像机的成像面1C 和r C 上的像点)(111,v u a 和) (r r r v u a ,对应起来。图像匹配是立体视觉中最重要也是最困难的问题,一直是立体视觉研究的焦点。当空间三维场景经过透视投影(Perspective Projection )变换为二维图像时,同一场景在不同视点的摄像机图像平面上成像会发生不同程度的扭曲和变形,而且场景中的光照条件、被测对象的几何形状和表面特性、噪声干扰和畸变、摄像机特性等诸多因素的影响都被集中体现在单一的图像灰度值中。显然,要包含了如此之多不利因素的图像进行精准的匹配是很不容易的。

机器视觉检测技术简介及其特点

机器视觉检测技术简介及其特点 中国纸板商城https://www.wendangku.net/doc/a89152250.html,2012年3月2日机器视觉印刷质量检测是一种模拟人工检测方法和判断逻辑,但同时又具有更高检测精度和更好一致性的自动化检测方法。 一、机器视觉检测的特点 1、机器视觉检测技术简介 机器视觉,简而言之就是利用机器代替人工进行目标识别、判断与测量。它是现代光学、电子学、软件工程、信号处理与系统控制技术等多学科的交叉与融合。 光学采集设备:由工业摄像机、光源及配套图像采集卡等硬件组成。主要作用是获取通过采集位置的标签的数字图像,为后续的分析与处理提供素材,相当于人工检测的眼睛。 判断识别:由工业控制计算机及植入的图像处理与分析软件、控制软件构成。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。 自动控制:最终将检测系统的结果变换成具体操作的硬件,比如常见的声光报警器、废品剔除装置或作标记的装置(如喷墨机、贴标机等)。 除此之外,印刷检测设备还必须有一套稳定的机械传输控制平台,对于安装在印刷机上的在线检测系统而言,传输平台就是印刷机;而对于离线检测系统,则需要单独配置传输平台,如复卷机、单张传输平台等。 2、印刷缺陷检测原理 印刷缺陷检测主要依靠图像比对的方法进行。如图2所示,上部图像是通过相机采集到的实时图像,而下部图像为事先采集并存储下来的标准图像。检测时,首先将两幅图像通过定位等方法使其重合,然后进行逐点(逐像素)对比颜色(或亮度差异)。当他们之间的差异超出事先设定的范围时即判为缺陷。 3、机器视觉检测特点 一套高品质的机器视觉检测系统,必须具备以下几个必备条件: 1)高品质的成像系统 成像系统被称为视觉检测设备的“眼睛”,因此“眼睛”识别能力的好坏是评价成像系统的最关键指标。通常,成像系统的评价指标主要体现在三个方面: 能否发现存在的缺陷 基于图像方法进行的检测,所能够依据的最原始也是唯一的资料即是所采到的图像上的颜色(或者亮度)变化,除此之外,没有其他资料可供参考。所以,一个高品质的成像系统首先应该是一个能充分表现被检

相关文档
相关文档 最新文档