文档库 最新最全的文档下载
当前位置:文档库 › 第六章 轴系及螺旋桨制造和安装检验

第六章 轴系及螺旋桨制造和安装检验

第六章 轴系及螺旋桨制造和安装检验
第六章 轴系及螺旋桨制造和安装检验

第二节轴系安装检验

一、尾轴管前后轴承安装检验

(一)巴氏合金轴承安装检验

1.检验内容

(1)安装前的检验。

(2)轴承压装检验。

2.检验方法与要求

(1)安装前的检验

①清洁检验。尾轴管内残留的铁屑、毛刺、型砂、焊接飞溅、焊渣以及油污等多余物和垃圾已清除,并用清洁的布擦干净。

②润滑油管已装好,并经密性试验。若有测温用的热电偶装置,则应装好、校准。

③对尾轴管前后轴承外圆直径及尾轴管内孔进行复测。复测时,环境温度与轴承及尾轴管的温度应相同,若温度不同,将会导致实际过盈配合量不真实,从而影响压入力的数据。

(2)轴承压装检验

大型船舶的螺旋桨轴轴承内孔大都采用巴氏合金材料,轴承与尾轴管为过盈配合,轴承安装普遍采用液压拉伸器将轴承压入尾轴管孔内,其压入方法见图6-9所示。

图6-9 用液压拉伸器压入轴承

1-尾轴管;2-半圆垫木;3-长丝杆;4-液压缸;5-尾轴承;6-油泵。

轴承压入时须认真检查轴承上的“TOP”标记,使“TOP”标记的部位向上,千万不能搞错。

用液压拉伸器压入轴承前,应测量环境温度、尾轴管及轴承温度,从开始压入起,每压入50mm应记录一次液压压力及压入距离。在正常情况下,随着压入面积的增加,其压入时的油压力也会随之上升,直至全部压入到位,其最终压入力应符合设计要求。压入力可以根据液压拉伸器的活塞面积与油压力计算得出。当图样没有规定压入力要求时,其压入力要求可参照表6-22规定的数值。

表6-22 尾轴管轴承安装压入力

必须注意,在压轴承的最后80mm时,应能连续压入,若瞬时压入力超过或低于设计值过多时,应停止压入,待查出原因并纠正后方可再次压入。

(3)检验记录

尾轴管前轴承压入测量记录参见表6-23所示,并绘制压入曲线图。

尾轴管后轴承压入测量记录参见表6-24所示,并绘制压入曲线图。

尾轴管轴承压入尾轴管后,轴承内孔直径测量记录参见表6-25所示。

表6-23 尾轴管前轴承压入记录表

表6-24 尾轴管后轴承压入记录表

前轴承温度:℃尾轴管温度:℃环境温度:℃

表6-25 尾轴管轴承压入尾轴管后轴承内径测量记录表

单位:mm

(二)整体式尾轴管安装检验

1.检查尾轴管上所作的“向上”标记位置是否正确,不得搞错。

2.检查尾轴管法兰处有否填入帆布垫片并涂上牛油白漆,尾轴管与尾柱平面连接处有否填入铅垫片。

3.尾轴管后端螺母旋紧后,用0.05mm塞尺检查平面贴合紧密性,不能插入,并安装螺母锁紧装置。

4.安装后,对尾轴管所通过的水舱进行密性试验。其方法是在水舱内放满水,舱壁与尾轴管连接处不允许有任何渗漏现象。

二、螺旋桨轴安装检验

(一)检验内容

1.安装前清洁检验。

2.安装后间隙测量。

(二)检验方法与要求

1.安装前清洁检查。尾轴管轴承内孔和螺旋桨轴表面应进行严格清洗,并在轴承内孔及螺旋桨轴表面均匀地涂上润滑油。

2.安装后间隙测量。螺旋桨轴安装到规定位置后,用塞尺检查尾轴管前后轴承端面上、下、左、右四个位置的间隙,要求上部间隙符合技术要求,下部间隙为零,左、右间隙应基本均匀,并作出测量记录。间隙要求可参照表6-26规定的数值。

表6-26 螺旋桨轴与轴承安装间隙单位:mm

(三)测量记录

螺旋桨轴与轴承间隙测量记录参见图6-10所示。

三、螺旋桨安装检验

螺旋桨安装在轴上的方式有两种,一种是有键安装,另一种是无键安装。

随着造船技术不断发展,由于螺旋桨与轴无键安装连接的结构,避免了螺旋桨轴上加工键槽而引起轴的应力集中,所以目前新建的万吨级以上船舶使用无键安装的越来越多,逐步替代有键安装。

图6-10 螺旋桨轴与轴承间隙测量示意图

(一)有键螺旋桨安装检验

1.检验内容

(1)安装前的检验;

(2)螺旋桨压时量的确定;

(3)螺旋桨压进量的检验。

2.检验方法与要求

(1)安装前的检验

①螺旋桨及轴的结合面清洁、干燥。

②螺旋桨轴键方向朝上,在螺旋桨中间部位凹腔处放入牛油。

(2)螺旋桨压进量的确定

按中国船级社《钢质海船入级与建造规范》的规定,对用键与螺旋桨轴连接的螺旋桨,一般应满足下列要求:

①在海水温度为35℃时,防止摩擦滑动的安全系数应大于1.0;

②在海水温度为15℃时,桨壳内表面压力不小于20MPa;

③在海水温度为0℃时,桨壳内表面主应力不大于其材料最小屈服强度的35%。螺旋桨安装时,由工厂技术部门按照规范要求计算出螺旋桨在0℃与35℃安装时的压进量,作为螺旋桨安装时的检验标准。

安装时,测量螺旋桨温度与螺旋桨轴的温度,要求温度基本上相同。若测得的温度略有相差时,可取两者温度的平均值作为压入时温度。根据技术部门提供的0℃与35℃时的压进量,绘出图6-11所示的螺旋桨桨壳温度与压进量曲线。

安装时,按测得的螺旋桨与螺旋桨轴的平均温度,从图6-11中,根据插入法求得有键螺桨安装的压进量值。

图6-11 螺旋桨桨壳温度与压进量曲线

(3)螺旋桨压进量的检验

螺旋桨是以手掀泵产生油压至液压螺帽的方法,使螺旋桨压入螺旋桨轴,见图6-12所示。检验方法如下:

图6-12 用液压螺帽安装螺旋桨

1-手掀泵;2-液压螺母;3-螺旋桨;4-螺旋桨轴;5-轴毂;6-隔舱壁;7-百分表①螺旋桨端面安装两只百分表,表头应垂直桨毂BOSS端面,在舱壁处放百分表一只(防止压装时螺旋桨轴移动时修正用),以检查螺旋桨压进量,见图6-12所示。

②向液压螺母泵压,当压力表读数P0=5MPa时将百分表调至零点,即X0=0;再加压,使X1=0.5mm得P1;由此类推,X2=1mm得P2,X3=1.5mm得P3,X4=2mm 得P4,……直至达到从图6-11中求得的规定压进量时停止泵压。记录各点的油压及百分表上的压进量,根据油压及液压螺母的受力面积计算出轴向推力,绘制

压进量与油压力曲线图(见图6-13所示),并将线延长到X轴得xa,则xa为实际压量的起始点,故螺旋桨实际压进量为x=a+xi,此值应符合技术要求(允许误差为+0.3mm),并向验船师和船东提交。

图6-13 螺旋旋压进量与油压力曲线

①缓慢地放掉液压螺母内油压,观察约15分钟,检查测距百分表有无变化,如无变化,即用扳手将螺帽扳紧,然后用锤敲紧,使螺帽再旋紧10°~15°,并安装好螺帽止动块。

②螺旋桨导流帽安装后,用0.05MPa压力空气检查连接面密封性,然后用牛油泵将牛油压入导流帽内,并安装好闷头螺栓。

(二)无键螺旋桨的安装检验

1.检验内容

(1)安装前的检验;

(2)螺旋桨压进量的确定;

(3)螺旋桨压进量的检验。

2.检验方法与要求

(1)安装前的检验。螺旋桨与轴结合面应清洁,其要求与有键连结相同。(2)压进量的确定。按中国船级社《钢质海船入级与建造规范》规定,无键螺旋桨安装压进量由技术部门按公式计算后,提供0℃与35℃时的压进量,并绘出类似图6-11所示的螺旋桨随温度变化的压进量曲线。在安装螺旋桨时,测量螺旋桨及螺旋桨轴的温度,并求得两者温度的平均值,作为压入时的温度,再从图6-11中,用插入法确定无键螺旋桨安装时的压进量。

(3)螺旋桨压进量检验。液压安装螺旋桨的压入方法可参照图6-12所示。其压进量分两个阶段完成,第一阶段为干装配压进螺旋桨,第二阶段为湿装配压进螺旋桨。

①干装配压进螺旋桨。按图6-12所示将A阀打开,并关闭B阀,用泵向液压螺母活塞加压,当压务表读数为P0=5Mpa时将百分表读数调至零点,即X0=0,再加压使X1=0.5mm得P1,X2=1mm得P2,X3=1.5mm得P3,X4=2mm得P4。用座标纸绘出p=f(x)曲线。将线延长交X轴于xa则点得a值,xa则为求得的实际压进量的起点,x4为干装配压入量终点,参见图6-14。

②湿装配压进螺旋桨。压装方法按图6-12所示:将A、B阀同时打开,使液压螺母轴向产生推力,此时螺旋桨锥体部分建立起的压力使桨毂径向膨胀。根据百分表读数,每推进0.5mm记录一次油泵压力,保持20分钟,待桨毂压紧轴颈,稳定后再将A阀关闭,逐步放掉轴向液压螺母内油压,直至全部油压泄放掉以后,检查测距百分表有无变化,在确认螺旋桨无滑动时即用扳手扳紧螺母,然后再用

Y12F型飞机螺旋桨的安装.doc

颁发专用条件哈飞航空工业股份有限公司Y12F型飞机螺旋桨的安装征求意见稿 编号:PSC-23-XX 反馈意见截止期:2015年XX月XX日 1.概述 本征求意见稿建议为哈飞航空工业股份有限公司Y12F型飞机颁发专用条件。Y12F审定基础中的CCAR 23部适航标准相当于FAR 23部至第55修正案,哈飞航空工业股份有限公司自愿符合FAR 23部第59修正案的相关要求。局方与申请人一致同意用此专用条件来要求与FAR 23部第59修正案等效的附加安全标准。 2.背景 Y12F飞机是哈飞航空工业股份有限公司(HAIC)研发的双发涡桨中短途支线飞机,属于23部通勤类飞机。飞机采用上单翼、下平尾、单垂尾、可收放式前三点起落架常规布局。其上安装了Hartzell公司的HC-B5MP-3D/M10876ANSK 螺旋桨。 CAAC于2005年8月17日正式受理了HAIC关于Y12F型飞机的型号合格申请,确定的审定基础适航要求按CCAR-23-R3《正常类、实用类、特技类和通勤类飞机适航规定》,环境要求按CCAR-34《涡轮发动机飞机燃油排泄和排气排出物规定》及CCAR-36-R1《航空器型号和适航合格审定噪声规定》。

在申请CAAC型号合格审定的同时,HAIC还向FAA提交了型号合格审定的申请,按照FAA审定要求,审定基础将包括FAR 23部第59修正案。为此,申请人要求在CAAC型号合格审定基础中,加入自愿符合FAR 23部第59修正案内容。经协调,审查组与申请人达成一致意见,根据FAR23部修正案23-59的要求,编制了关于Y12F飞机对螺旋桨的安装的附加要求的专用条件草案。 现根据适航司管理程序AP-21-AA-2012-21《颁发专用条件和批准豁免的程序》,编制此专用条件征求意见稿。 3.适用范围 本专用条件适用于Y12F型飞机上螺旋桨的安装,用于替代CCAR-23-R3中23.905、23.907条之要求。 4.专用条件草案 第23.905. 螺旋桨桨距操纵系统 (a) 可变桨距和可反桨螺旋桨 (1)螺旋桨系统的单个失效或故障,不会导致螺旋桨桨距低于正常飞行低距止动位置。任何有意低于正常飞行低距止动位置的范围,必须由申请人在适用的手册中表明。如果证明概率极小,结构元件的破损不必考虑。 (2)对于桨距可以低于飞行低距止动位置的螺旋桨,必须通过安装手册中的定义,使飞行机组能够感受并指示出桨叶是低于飞行低距止动位置的。感受和指示螺旋桨桨距位置的方法必须保证其失效不会影响螺旋桨操纵。 (b) 螺旋桨操纵系统 (1)螺旋桨操纵系统的设计、制造和验证必须表明:

螺旋桨扭角的设计依据是什么

螺旋桨扭角的设计依据是什么 螺旋桨 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。

螺旋桨和艉轴拂配预装安装工艺

江苏新世纪造船股份有限公司 螺旋桨和艉轴拂配 预装安装工艺 NCS 船舶设计研究所工艺室 2005-7-6

螺旋桨和艉轴拂配预装安装工艺 拂配预装的前提条件以及注意事项 螺旋桨与艉轴的拂配方式为立式,液压拆装方式为卧 式或立式。 艉轴应进行涂油保养,工作面应包橡皮。 螺旋桨平放应牢固可靠并用水平尺找平,桨叶保护不应拆除。 吊车吊钩应有安全装置,艉轴应有卡箍以备转动。 卧式液压拆卸时,艉轴平放搁置应合理,牢固可靠。操作人员液压施工时应注 意保护,穿戴眼睛保护罩和手套。 运输及施工中应防止螺旋桨和艉轴撞损。 拂配 拂配前检查螺旋桨和艉轴,其加工质量应符合图纸要求,并验收合格。用样板 检 查螺旋桨锥孔的拂配余量,来货径向留 0.15~0.25mm 拂配余量。 拂配应进行色油检查,接触均匀,接触面积不小于 75%,每25X 25mm 2 ,应不 小于 3 个着色点,在锥孔两端不得有间断。 拂配经报检合格,并在桨和轴上做好方向和位置标记。 内场预装和拆卸 准备下列工量具: 手摇泵几连接软管、接头、压力表 2套 百分表(带磁座) 3只 点温计 1只

计量器具应计量合格有效桨孔液压螺母与艉轴的配合面上应清洁,应涂上液压油。按桨和轴的标记,把桨吊到艉轴上,然后把液压螺母拧紧上艉轴。确定推入量。 测量桨和轴的表面温度Tp和Ts,二者应尽量一致。 按平均温度T= (Ts+Tp)/2,在T —D图上确定推入量。(见螺旋桨安装工艺)确定推入距离的起始点 按俯图,连接液压系统。 表 3 用于测量艉轴是否移动,示值应调到“ 0”位。向系统注油,放尽系统空气,并打开液压螺母和螺旋桨的放气螺塞,放尽空气,然后拧上各自的螺塞并拧紧。 用轴向手摇泵向液压螺母泵油,使油压上升到5Mpa时往往网,将表1和表2示值调到“ 0”位。 继续泵油,使推入量达至U 2mm,分别记录0.5mm、1.0mm、1.5mm禾口2.0mm时的压力P1、P2、P3、P4。 在坐标纸上作出P—D图,经过上述点的近似值CD与D轴的交点Ds为推入距离的起始点。此图表应提交厂检、船检和船东。 预装与拆落 用轴向和径向手摇泵同步缓慢地向螺母和螺旋桨压油,一次压到所需的推入量(按 序四之4确定值),每压入1mm记录轴向和径向油压。压入时,艉轴和支架应无移 动,即表 3 示值不变。 卸掉桨内油压,保持液压螺母油压20 分钟,表 1 和表 2 示值应不变 卸掉液压螺母内油压,靠一人之力上紧螺母,然后测出液压螺母后端距艉轴末端距 离L ,作好记录(L+5 )mm 作为保安帽配置尺寸。

螺旋桨知识

空气螺旋桨把发动机旋转作功形式转变为直线作功形式;把发动机的功率转变为拉动飞机前进的有效功率。它的工作效率及与发动机有配合程度,直接影响模型飞机的性能。在航模竞技比赛中,出于追求动力组极限水平的需要,对螺旋桨的要求更为“苛刻”;因此以“量体裁衣”手工方式制作螺旋桨的好处显而易见。航模初学者能够扎实地掌握这一手艺很有必要。 本文以一个直径(D)200mm、几何桨距(H)120mm的两叶等距螺旋桨(适用于装有1.5cc 压燃式发动机或2.5cc电热式发动机的特技模型飞机)为例,介绍削制螺旋桨的方法。一、螺旋桨的一些基础概念 当我们把螺旋桨看成是一个一面旋转一面前进的机翼时,就能借助已知的空气动力学常识,直观地理解螺旋桨的基本工作原理。 1.桨距、动力桨距和几何桨距 桨距:从广义而言,可以理解为螺旋桨旋转一周沿桨轴方向所通过的直线距离。习惯上螺旋桨70%半径处的桨距值为“称呼值”,它具有标示意义。 动力桨距(Hg):桨叶旋转一周模型飞机所通过的距离(见图1)。设计螺旋桨时首先要确定动力桨距值。 几何桨距:(H):桨叶弦线迎角为零时,螺旋桨旋转一周所前进的距离(也见图1)。它体现了桨叶角的实际大小,是“看得见、摸得着”的实际参数。航模图纸上一般都标出几何桨距,是消制螺旋桨的主要依据。 2.动力桨距和几何桨距的关系 由于螺旋桨工作在接近于有利迎角下,与零度迎角之间的角差的存在,因此动力桨距值必然小于几何桨距值。几何桨距和动力桨距的关系是:几何桨距(H)= 1.1 ~ 1.3倍动力桨距(Hg)。也就是说,设计模型飞机时,动力桨距确定后,可以通过上述公式概略估算出螺旋桨的几何桨距。 3.通常使用的螺旋桨是各段几何桨距值相等的所谓等距桨。它的优点是设计、制作比较容易;缺点是工作效率劣于不等距桨。由于不等距桨各段的几何桨距值和桨角均不一样,尽管其效率高,但制作的难度大。故初学者从削等距桨起步较为稳妥。 4.桨叶角(β):桨叶角是指桨叶剖面弦线与旋转平面之间的夹角。 5.几何桨距和桨叶角的关系 几何桨距和桨叶角直接关联,是同一个问题的两种表达方式。几何桨距强调的是总体,桨叶角强调的是局部。就等距螺旋桨而言,桨叶角随其在螺旋桨半径方向上所处位置的不同而异;随着由桨根到桨尖方向的逐渐位移,桨叶角渐渐有规律地减小。(图2)

螺旋桨手册

设置螺旋桨叶片倾斜度(角度) 你的螺旋桨已经由warp drive的专业量角器设置过叶片倾斜度。当正确使用量角器时,这个量角器它可以帮你设置螺旋桨倾斜度到四分之一度以内。它还可以用于其它各种地方,比如测量机翼表面,襟翼,尾翼表面或者需要测量度数的地方。 量角器上的外部刻度是以一个度数递增的方式标出的。内部刻度唯一的数字是中心轮上水平瓶顶部的零。侧面的白杆是通过使用2个翼型螺母将量角器加紧并固定到螺旋桨叶面的尖端。当你将量角器从一个叶片移动到另一个叶片时,红色旋钮可以锁紧轮毂。请见下面图3 图3:量角器 注意:检查或校准螺旋桨倾斜度之前,确保飞机启动系统是关闭的。 所需工具:标准英制扭矩扳手,socket(套筒),开口扳手。 1,确定你的起点。这个测量是确定安放在飞机螺旋桨桨毂上进行的。例如,如果你的飞机是拖尾式你可以在桨毂处测一下,找出桨毂垂直多少度,或者你可以把飞机尾部抬高直到桨毂垂直。如果你的飞机是牵引式配置,测量应该从支柱轮毂的前面开始。如果你的飞机是一个推杆式配置,测量应该从支柱桨毂的后面开始。请见下图4

图4:测量桨毂角度 2,旋转中心轮到你想要的桨叶的角度上。比如,你已经把飞机保持水平了,内部刻度上的零与外部刻度上的零成直线,并且你需要浆叶倾斜度为10度,旋转中心轮使内部刻度上的0和外部刻度上的10成直线。当你在量角器中设置了想要的角度,拧紧红色的锁定旋钮来锁定在浆叶上。 3,旋转螺旋桨使一个浆叶在水平位置。之后将量角器夹在浆叶的最前端,正方体位于浆叶平面(侧面)上,白色夹杆位于浆叶的翼面(前面)上。请见下图5.转动浆叶时,一只手抓住轴环区域并扭动叶片,另一只手抓住叶片尖端并前后推/拉叶尖。这将给予浆叶更小的调整量,而不是在浆叶上简单的扭动。 当你旋转叶片来调整角度时,向外拉动使轴环固定在桨毂上。

船舶舵系检修

船舶舵系检修 舵系是由那些将舵机动力传递到舵叶产生舵效的部件和构件组成,包括固定件——舵杆舵承(上、下舵承)、舵销轴承、舵轴等和运动件——舵杆、舵叶和舵销等。不包括舵机及其操纵系统。 舵系安装在船舶尾部螺旋桨的正后方,有单、双舵系之分。一般远洋及近海商船为单桨、单舵;客船、军舰及有的内河船舶为双桨、双舵。舵叶浸在水中,转动舵叶时,舵叶水动力对船舶产生力矩,迫使船舶改变航向或保持直线航行。 §12-1 舵系的检修 1 舵的分类 舵的种类很多,主要有以下几种: 1)按舵的旋转轴线位置分为平衡舵、半平衡舵和不平衡舵 (1)平衡舵:转动轴线在舵叶的中间,把舵叶分为两部分。舵叶转动时两部分均承受水压产生力矩。此二力矩方向相反,使转舵力矩降低,在某一舵角时为零,达到完全平衡。平衡舵所需舵机功率较小。图12-1a)为平衡舵。 (2)半平衡舵:仅舵的下半部起平衡作用,如图12-1b)。 (3)不平衡舵:舵的旋转轴线在舵叶的一边,即舵杆一侧有舵叶,对转舵力矩不起平衡作用,如图12-1c)。 2)按舵叶截面形状分为平板型舵和流线型舵 (1)平板型舵:一般用钢板或木板制成,两侧表面可适当加固。具有便于修造、成本低和舵效差的特点。可作成平衡舵、半平衡舵或不平衡舵。它只用于小船或非自航船。 (2)流线型舵:舵叶横截面呈机翼形,用钢板焊制,内部呈空心状并用钢板加强以增加舵叶刚性。流线型舵产生的水动力大、阻力小、强度高,但结构复杂,制造成本高。常作为平衡舵或半平衡舵,为大多数船舶采用。 3)按舵与船体的连接形式分类 (1)悬挂舵(吊舵):多数是平衡舵,完全由船体上的上舵承支承,中部通过下舵承,而下部整个舵叶悬空。 (2)半悬挂舵:多数是半平衡舵,其舵杆支承在船体上的上舵承,而舵叶支承在船尾支架上。 (3)多支承舵:该舵有两个以上的支承点,通过舵销将舵叶上的舵钮与船体尾柱上的舵承连接,如图12-1c),舵叶下部有舵底托支承。 (4)双支承舵:舵杆通过上、下舵承及舵底托支承,如图12-1a)。 (5)穿心舵轴平衡舵:除舵杆外,该舵还装有舵轴,它穿过舵叶并固定在船体尾柱上。舵杆与舵轴的轴线重合,转舵时,舵叶绕舵轴回转,如图12-2。 2 舵系结构 较为广泛应用的是穿心舵轴平衡舵。结构如图12-2所示。舵叶在舵杆转动轴线两侧非对称分布。舵叶上端面与舵杆6用法兰连接。舵轴7穿过舵叶,其中心线与舵杆中心线重合。舵叶随舵杆左右转动。舵杆支承在位于船体内部舵机房的上舵承1,使其承受部分舵叶的重量和舵杆的径向、轴向负荷。上舵承为滚动止推轴承。舵轴上端与尾柱用法兰连接,舵叶内设有2个铁梨木舵承以支承包有铜套的穿心舵轴,舵轴的下端锥体置于舵底托支承中(下舵承)。穿心舵轴平衡舵属

轴系安装工艺新

轴系安装工艺新

一、概述: 本工艺的制定是根据《中国造船质量标准》(2005)及相关规范、标准制定的。本工艺包括的 工作内 容:轴系、舵系放线、艉轴管及密封装置的安装、螺旋桨安装、中间轴安装、齿轮箱 安装、主柴油机安装;艉柱、吊舵臂、挂舵臂的安装,吊舵臂镗孔,下舵承、舵销承装配, 舵叶拂配,舵系装配等等;本工艺文件规定了上述内容的施工方法和技术要求。 1、基本工艺流程 轴系、舵系理论中 前支撑定位f 艉管定位f 艉轴承安装f 艉轴及密封装置安装 > 螺旋桨安装 中 舵系装配十 间轴 对中安装f 齿轮箱对中安装f 主柴油机对中安装 2、 放轴系中心线和舵系中心线 3. 1拉线前船台施工应具备的条件: 3. 1. 1拉线前应完成的工作主船体机舱段主甲板下全部完工及密性试验完成,尾部油、水 舱、柜密性试验完成,相关构件及外板装焊完工后,机舱前壁向船首的一条环形大接缝焊装 结束,大型机器设备预定位,船体基线以及横倾由船体部门确定并验收合格。 3. 1. 2主机及轴系的基座都已焊好,并交验合格。 3. 1. 3在确定轴系理论中心线、主机定位及校中轴系时,船上应停止冲击或振动作业。 3. 1. 4轴系校中安装应考虑和排除阳光照射引起船体变形的影响。一般在早晚或阴雨天进 行。 3. 2轴系和舵系理论中心线基准点的确定、检查: 编 制 描 打 校 对 描 校 审 核 标 检 审 疋 日 期 2011 -2-9 挂舵臂安装焊 接工艺 总面积 m 2 共12页 第1页 湖北江润造船有限公司 心线的确定 挂舵臂定位f 舵销套定位 吊舵臂镗孔 f 舵杆与舵叶拂配 f 下舵承、舵销承装配 吊舵臂、

螺旋桨的几何形体及制造工艺

第二章 螺旋桨几何形体与制造工艺 螺旋桨是目前应用最为广泛的一种推进器,因而也就成为“船舶推进”课程研究的主要对象。要研究螺旋桨的水动力特性,首先必须对螺旋桨的几何特性有所认识和了解。 § 2-1 螺旋桨的外形和名称 一、螺旋桨各部分名称 螺旋桨俗称车叶,其常见外观如图2-1所示。 螺旋桨通常装于船的尾部(但也有一些特殊船在首尾部都装有螺旋桨,如港口工作船及渡轮等),在船尾部中线处只装一只螺旋桨的船称为单螺旋桨船,左右各一者称为双螺旋桨船,也有三桨、四桨乃至五桨者。 螺旋桨通常由桨叶和桨毂构成(图2-2)。螺旋桨与尾轴联接部分称为桨毂,桨毂是一个截头的锥形体。为了减小水阻力,在桨毂后端加一整流罩,与桨毂形成一光顺流线形体,称为毂帽。 桨叶固定在桨毂上。普通螺旋桨常为三叶或四叶,二叶螺旋桨仅用于机帆船或小艇上,近来有些船舶(如大吨位大功率的油船),为避免振动而采用五叶或五叶以上的螺旋桨。 由船尾后面向前看时所见到的螺旋桨桨叶的一面 称为叶面,另一面称为叶背。桨叶与毂联接处称为叶根, 桨叶的外端称为叶梢。螺旋桨正车旋转时桨叶边缘在前 面者称为导边,另一边称为随边。 螺旋桨旋转时(设无前后运动)叶梢的圆形轨迹称为梢圆。梢圆的直径称为螺旋桨直径,以D 表示。梢圆的面积称为螺旋桨的盘面积,以A 0表示: A 0 =4 π2 D (2-1) 图2-1 ε x 叶面参考线 侧投影轮廓 桨叶 叶根 d 桨毂 O D K 转向 梢圆 螺旋 桨直径O D (b ) Z 导边 叶背 随边叶面叶根 毂帽 叶梢(端) x (a )ε 图2-2

当螺旋桨正车旋转时,由船后向前看去所见到的旋转方向为顺时针者称为右旋桨。反之,则为左旋桨。装于船尾两侧之螺旋桨,在正车旋转时其上部向船的中线方向转动者称为内旋桨。反之,则为外旋桨。 二、螺旋面及螺旋线 桨叶的叶面通常是螺旋面的一部分。为了清楚地了解螺旋桨的几何特征,有必要讨论一下螺旋面的形成及其特点。 设线段ab 与轴线oo 1成固定角度,并使ab 以等角速度绕轴oo 1旋转的同时以等线速度沿oo 1向上移动,则ab 线在空间所描绘的曲面即为等螺距螺旋面,如图2-3所示。线段ab 称为母线,母线绕行一周在轴向前进的距离称为螺距,以P 表示。 根据母线的形状及与轴线间夹角的变化可以得到不同形式的螺旋面。若母线为一直线且垂直于轴线,则所形成的螺旋面为正螺旋面如图2-4(a )所示。若母线为一直线但不垂直于轴线,则形成斜螺旋面,如图2-4(b )所示。当母线为曲线时,则形成扭曲的螺旋面如图2-4(c )及图2-4(d )所示。 母线上任一固定点在运动过程中所形成的轨迹为一螺旋线。任一共轴之圆柱面与螺旋面相交的交线也为螺旋线,图2-5(a )表示半径为R 的圆柱面与螺旋面相交所得的螺旋线BB 1B 2。如将此圆柱面展成平面,则此圆柱面即成一底长为2πR 高为P 的矩形,而螺旋 线变为斜线(矩形的对角线),此斜线称为节线。三角形B' B" B 2 " 称为螺距三角形,节线与底线间之夹角θ称为螺距角,如图2-5(b )所示。由图可知,螺距角可由下式来确定: tg θ = R P π2 (2-2) 三、螺旋桨的几何特性 1. 螺旋桨的面螺距 螺旋桨桨叶的叶面是螺旋面的一部分(图 2-6(a )),故任何与螺旋桨共轴的圆柱面与叶面的交线为螺旋线的一段,如图2-6(b )中的B 0C 0段。若将螺旋线段B 0C 0引长环绕轴线一周,则其两端之轴向距离等于此螺旋线的螺距P 。若螺旋桨的叶面为等螺距螺旋面之一部分,则P 即称为螺旋桨的面螺距。面螺距P 与直径 D 之比P /D 称为螺距比。将圆柱面展成平面后即得螺距三角形如图2-6(c )所示。 设上述圆柱面的半径为r ,则展开后螺距三角形的底边长为2πr ,节线与底线之间的夹角θ为半径r 处的螺距角,并可据下式来确定: (d ) (b ) (c )(a ) 图2-4 2" (b ) (a ) (b )(c ) (a )图2-6

螺旋桨螺距的测量方法

螺旋桨螺距的测量方法 龙叶新造螺旋桨由于铸造误差,其毛坯件的螺距往往与图纸要求有一定误差,因此必须进行螺距测量以检验其是否合格。误差不大的可经加工后消除,误差较大经加工后虽可消除,但却叶片厚度减薄。为防止厚度较薄这一不良后果,对某些用铸铜、钢板制造的螺旋桨可以先进行校正,误差太大而有无法校正的则应重铸。 螺距测量的原理是:“沿着叶片压力面半径R处的螺旋线上取一线段PQ,其相应的角度为a,测出P、Q口两点在螺旋桨轴线方向h的高度h,通过换算即可求得该位置上的螺距。”测量螺距的方法很多,有用螺距测最仪侧量螺距、螺距三角板检验螺距、螺距板测量螺距和量角和量角仪测量螺距等万法,目前通常采用的是用螺距仪测量螺距等方法量螺距,有立式测量和水平测量。 1、用螺距仪测量螺距 螺距仪是由三爪卡盘、中心轴、刻度盘、转臂、量杆等所组成。在刻度盘上刻有一周360°的刻度,每一度又可分成若干角度等分。转臂绕中心轴转动后,即可由指针在刻板盘上指示出所转过的角度。在转臂和量杆上都有表示距离的刻度,以毫米为单位。量杆可在转臂上沿叶面作径向移动,每移动到一定位置即表示叶面上的某一半径,量杆本身还可作上下移动。测量螺距的操作步骤测量螺距的操作步骤有如下几点: (1)将桨毂锥孔和两端面已加工过的螺旋桨,大端朝下平放在平台上。如无平台也可放在平整的地面上。 (2)将螺距仪装在螺旋桨上端面上,三爪卡盘装人锥孔内并卡紧,使平面与桨毂上端面贴平。以保证三爪卡盘中心线与桨毂中心线重合。 (3)在各叶片压力面上刷上白粉,移动量杆的径向距离,分别以0.95R,0.8R,0.6R...(或按图纸规定)为半径,转动转臂,在各叶片的压力面上划出各半径圆线。 (4)以测量半径线AB圆弧上的螺距为例,将量杆放在O点位置上调整到0°位置。这时由量杆上所测得的读数为L1,,并记录之。再将转臂转过一个角度到a点位置(此角度为计算方便起见,应取整数如15°、20°、30°等),记录从O点到a点转过的角度α,并同时测得量杆在a点位置上的读数L2。 (5)螺距h称为局部螺距。在一般测量中,每个叶片在同一半径上的局部螺距至少要测量。也可直接测得Oa上的螺距。 (6)将该叶片同一半径的不同线段上测得的各局部螺距,计算其算术平均值。 (7)计算叶片螺距从,对于等螺距螺旋桨,叶片螺距H、为该叶片各半径上截面螺距h的算术平均值。 (8)计算总平均螺距H。 (9)把以上测量和计算的数值记人专门的表格内,并交检验人员验收。

舵系镗孔工艺规范1

35000DWT散货船舵系拉线镗孔工艺规范 本船编号:YH0709 本工艺以CSQS中国造船质量标准(1998)为依据,并参考沿海船厂之相关工艺文件,结合CCS规范与本船的实际情况编制而成。 1 范围 本工艺规定了船舶舵系拉线镗孔工艺的工艺准备、人员、工艺要求、工艺过程及检验。 本工艺适用于万吨级以上钢质船舶的舵系镗孔。其他钢质船舶亦可参照使用。 2 工艺规范性引用文件 CSQS中国造船质量标准(1998) 3 工艺准备 3.1必须认真阅读并熟悉该船的艉轴系总图,推进轴系统布置图,中间轴座架 图,舵系布置图,主机安装图等及相关工艺技术文件,施工时需带到现场。 3.2拉线镗孔工具准备 a)镗孔专用设备; f ) 拉线架2付半(5只); b)校中用划针盘及弹性接头;g ) 木角尺一把; c)月牙扳手;h ) 线锤2只,桩头16只; d)刀具;I ) 万用表1只,内经分厘卡; e)钢丝线100米(○0﹒5MM);j ) 木制洋棒2根等工具。 3.3检查镗孔工装设备完好性。 3.4 依照上舵承座和上下舵销座,制作镗孔架。 3.5 确认上舵承座、工艺法兰及上下舵销座上下端面镗孔所需的校圆线,镗削 圆线及提高校中精度的工艺基准螺丝钉。 4 人员 4.1 操作人员和检验人员应具备专业知识,并经过相关专业培训、考试或考核 取得合格证书,方可上岗操作。 4.2 操作人员和检验人员应熟悉本船工艺规范要求,并严格遵守工艺纪律。 5 工艺要求

5.1 镗孔的圆度、圆柱度公差符合CSQS中国造船质量标准(1998),见表1。 表1 镗孔圆度、圆柱度公差值 单位为毫米 孔径 D 公差标准范围 ≤120 ≤0.015 >120~180 ≤0.020 >180~260 ≤0.025 >260~360 ≤0.030 >360~500 ≤0.035 >500~700 ≤0.040 >700~900 ≤0.050 >900~1100 ≤0.060 >1100~1300 ≤0.070 >1300~1500 ≤0.080 5.2 5.3 5.4 5.5 6 工艺过程 6.1镗杆安装时,应按上舵承座及工艺法兰、上舵销座上端面与下舵销座下端 面上的校圆线和工艺基准螺钉为校中依据,用内径千分尺调整镗杆与工艺基准间的距离,使镗杆与舵系中心重合,误差不大于0.02mm。镗杆与舵系中心重合见图1

螺旋桨拆装工艺

螺旋桨安装工艺 一.拆卸 1.准备下列工量具: a.手摇泵及连接软管、接头、压力表2套 b.百分表(带磁座)1只 c.点温计1只 d.直角尺和千分尺各1套 计量器具应计量合格有效 2.将军帽拆卸后,保险板,螺栓的保险丝拆除,将军帽内的液压螺母清洁。 3.直角尺和千分尺测量尾轴端面至桨叶尾端面的距离L,作为回装桨叶的参考。 4.在桨毂前的桨轴上安装百分表(用于观察轴向移动);液压螺母的油孔丝堵取下, 连接手摇泵1台(用于轴向压油);桨叶的油孔丝堵取下,连接手摇泵1台(用于径向压油)。 5.2台手摇泵同步缓慢地向螺母和桨叶压油,观察百分表;在桨叶与螺母间隙约0.5mm 时(此时2台手摇泵的压力均约为60-70mpa),桨叶的手摇泵泄压,使桨叶与桨轴抱紧;然后螺母的手摇泵泄压,手动盘动螺母,拆下螺母,塑料布覆盖保护。 6.桨叶手摇泵再次缓慢的压油,油压超过推入量到位油压时,螺旋桨能砰然跳开,记 录跳开油压。 7.在施工过程中,螺旋桨的吊钩不能脱开,防止跌落。 二·回装 8.确定推入量。 a.测量桨和轴的表面温度Cb和Cs。 b.根据公式计算推入量的上限和下限数值(见船方的桨叶安装说明书),对比拆桨 叶前的数值L。 9.确定推入距离的起始点 a.连接桨叶和液压螺母的手摇泵。 b.百分表安装桨毂前的桨轴上(用于测量艉轴是否移动)。 c.用轴向手摇泵向液压螺母泵油,使油压上升到2Mpa时,将百分表示值调到“0” 位。 10.轴向继续泵油,干压推入量达到2mm(或者3mm),分别记录0.5mm、1.0mm、1.5mm 和2.0mm时的压力。 11.在坐标纸上作出P—D图,经过上述点(2mm)的P与D轴的交点Ds为推入距离的 起始点。此图表应提交厂检、船检和船东。 12.径向手摇泵开始同时与轴向手摇泵缓慢压油(开始涨毂),此时径向与轴向的压力 应尽量相同,每压入1mm记录下将径向和轴向的压力,直至压到推入量的上下限之间的数值,并对比拆桨叶前的数值L。 13.先拆下径向手摇泵,再拆下轴向的手摇泵,丝堵回装。螺母回装直至与桨叶贴紧, 液压螺母的保险安装,将军帽内加入黄油,回装将军帽。

螺旋桨的工作原理

螺旋桨的工作原理 上次课给大家介绍了船艇 水阻力的三种主要成分的形成原因及影响其大小的主要因素。(那么这三种阻力是哪三种?选其中一种提问其成因)。我们知道,船艇在水中运动要受到阻力的影响。那么船艇为什么能在水中运动?它是靠什么推动的呢?它又是怎样推动的呢?这就是我们这次课要给大家介绍的内容。 我们把推动船艇运动的装置称为推进器。推进器的种类很多,我们常见的有明轮推进器、喷水推进器、平旋推进器和螺旋桨等。目前应用最广泛的推进器是螺旋桨,它的特点是:推进效 率高,结构 简单,工作可靠。下面我 们就来看一看 一、螺旋桨的结构、 配置和螺旋桨水流 (一)螺旋桨的结构

螺旋桨由桨毂、桨叶和整 流罩等组成,并通过桨毂与尾轴相连。一般螺旋桨有3?5个桨叶,有的则多达6个。下面给大家介绍几个有关螺旋桨的几何名词。(结合幻灯片) 螺距一一螺旋桨绕轴旋转一圈,沿轴向前进的几何距离。(P) 螺旋桨按旋转方向可分为左旋螺旋桨和右旋螺旋桨两种,从艇尾向前看,进车时顺时针旋转的称右旋螺旋桨;反时针旋转 的 称左旋螺旋桨。我们怎样判断一个静止的螺旋桨是左旋还是右旋呢?将螺旋桨平放,从侧面看,桨叶向右上方倾斜的为右旋螺旋桨;桨叶向左上方倾斜的为左旋螺旋桨。

(二)螺旋桨的配置螺旋桨的配置一般有 单螺旋桨、双螺旋桨、三螺旋桨和四螺旋桨等。地 方商船一般采用单螺旋 桨,且多数为右旋螺旋桨; 公边船艇一般采用双螺旋 桨或四螺旋桨配置,且多采用外旋式(即右舷安装 右旋螺旋桨,左舷安装左旋螺旋桨;若右舷安装左旋螺旋桨,左舷安装右旋螺旋桨,则称为内旋式)三螺旋桨船相对较少。 (三)螺旋桨工作时的水流 排出流、吸入流、顶流、伴流 这四种水流只有排出流和吸入流与螺旋桨直接相关。而顶

螺旋桨与尾轴拂配工艺

螺旋桨与尾轴拂配 螺旋桨与尾轴锥面,经检查发现下列情况之一者必须进行拂配:a配合面接触不良,没有达到技木标准CB/T 3420—92船舶轴系装配技术要求的要求; b螺旋桨锥孔和尾轴锥体经过机加工; c螺旋桨、尾轴、键其中之一换新。 有键螺旋桨与尾轴拂配 拂配前,必须检查桨叶和轴、键与键槽的配合情况,如需修正,应达到有关技术标准要求。 1、竖拂 1.1、采用竖拂工艺必须具备相应的地坑和足够的吊重设施。吊重设施的吊钩有效高度必须大于尾轴的竖立高度。 1.2、螺旋桨锥孔大端朝上,水平牢固地臵于专用地坑内。 1.3、尾轴的键槽内配臵一根假键,其长度不少于键槽长度的1/4。宽度比键槽松0.10~0.15mm。 1.4、保护好尾轴螺纹或尾轴法兰螺孔,穿妥起吊钢索,装上专用吊环,将尾轴垂直吊起,对准螺旋桨锥孔,并转动尾轴下方固定卡环的手柄,使尾轴的假键对准螺旋桨桨毂内键槽。 1.5、在尾轴锥体均匀地涂上一层色油后,缓慢放下尾轴。当锥体

距锥孔100~200mm时,松开起重机具刹车,使尾轴迅速自由降落插入锥孔。 1.6、利用地坑内千斤顶将尾轴顶升,松开锥体配合面,利用起重机具将尾轴吊离。 1.7、检查螺旋桨锥孔内沾油情况,用风磨机磨削配合面。如此反复拂配至锥孔接触面积达70%左右时。将尾轴假键拆下,装上真键,同时研配键与键槽两侧,直至CB/T3420-92规定的标准,且锥体大端接触面较硬。 1.8、量取尾轴铜套下端面与螺旋桨水封圈止口的距离。该距离应为螺旋桨桨毂长度的2~3%,且不小于12mm。必要时,可车削尾轴铜套下端面,以确保上述尺寸。 1.9、经拂配后尾轴螺纹应在螺旋桨锥孔内。其尺寸至少应为桨毂长度的2~3%,且不少于10mm。 1.10、若达不到 2.8条要求,允许在螺旋桨的小端平面加垫衬片。衬片的材料应与螺旋桨基本相同,其厚度应大于10mm,厚薄不均匀允差小于0.05mm。衬片与桨毂端面刮配,并用沉头螺钉固定。平面内塞尺检查应小于0.05mm。 2、横拂(1) 2.1、采用横拂工艺必须具备相应的沙坑、轨道式平板车、油泵等专用设施。

螺旋桨加工工艺.doc

1.螺旋桨的加工 1.1机械加工 1.1.1 除掉桨毂两端的冒口,浇口等多余的部分,造成两个基准面,其光洁 度为 5,不平行度小于0.1mm。 1.1.2 在桨毂中心镗出或车出轴孔,光洁度为 25,不垂直度不超过0.15mm/M。 1.1.3 沿轴孔内侧插出镀槽,键槽两侧应与锥孔轴心行平行,装配后与键的 接触面不少于75%。 1.1.4 锥体与键孔的连接,亦可以分为有粘合和无缝粘合两中情形。有键和 无键时,对轴毂和轴的要求均不同。有键环痒粘合,要求锥孔大小端 各留有 30~70mm长度的配合面。其余则低 0.2`~0.3mm,以便研配,对 轴上锥体中无空腔(图 1.B 示意)。{ 两种粘合装配螺旋桨情况见图一 } 当采用环痒粘合时,键和键槽的加工要求和结合要求均可降低,减少了研 配的工作量。 1.1.5 环氧粘合剂的配方(重量比)见下表(供参考) 表一 粘合剂增型剂充填材料固化剂 环氧树脂二丁脂15 份熟石膏粉75 份乙二胺 6.5~6.6 (B101)100 份份 1.2手工加工 手工加工的内容有:桨叶轮毂,叶片,桨毂表面加工以及修刮轴孔,消除静不平衡,采用风铲,砂轮几锉刀等工具。 步骤是:根据测量的结果,划出加工线,批凿桨叶轮廓,铲除毛坯上多余

的金属,使螺旋桨具有所需要的光洁度。 1.2.1 叶面的加工 在制作叶面样板时,一般将全部加工余量都放在叶背上,认为叶面朝下,浇铸质量容易保证表面光顺,所以叶面的加工只是消除铸成面个别不平部分,但是在多数情况下,桨叶面的几何形状总有偏差。叶面加工的任 务是修正铸造时造成的偏差。加工时,根据铸件的测量结果,在桨叶每个半径切面上标出必须除去金属层的厚度的若干点,再在各点钻出除厚刚 好等于要除去金属层的厚度的孔。光沿桨叶半径切面铲去多余的金属而 得若干光顺的螺旋桨线,再以这些螺旋桨线为基准,沿桨叶径向铲去多余的金属,便可完成叶面加工。 1.2.2 叶背加工(对叶面不加工的工厂,仅在此面消除静不平衡) 叶背加工以叶面为基准面,在叶面加工后,重新测量桨叶厚度,并根 图纸要求,决定需要从叶背铲除金属的厚度,与叶面加工一样,先钻 孔,铲除各切面形状曲线,然后再沿桨叶径向铲除多余的金属。 2.螺旋桨的静平衡 螺旋桨的静平衡是其加工中不可缺少的一道工序,用来消除不平衡的离心力,以减少振动。静平衡的步骤和要求如下: 在螺旋桨锥孔中装一心轴,将心轴的两端搁置在有水平刀口或滚珠轴承的支架上,使螺旋桨能自由的转动,并能自由停止。这时较重的桨叶总是向下。若在轻的桨叶上加某一重物,(一般粘贴橡皮泥使螺旋桨得到平衡)则加上的重量就是较重桨叶多出的重量,铲除此重量就能等到平衡(但应注意相应位置)。多余的重量要从叶背铲除,面积要广,剔除后表面应光

船用螺旋桨小知识集锦

船用螺旋桨小知识集锦 螺旋桨简介 由桨毂和若干径向地固定于毂上的桨叶所组成的推进器,俗称车叶。螺旋桨安装于船尾水线以下,由主机获得动力而旋转,将水推向船后,利用水的反作用力推船前进。螺旋桨构造简单、重量轻、效率高,在水线以下而受到保护。 普通运输船舶有1~2个螺旋桨。推进功率大的船,可增加螺旋桨数目。大型快速客船有双桨至四桨。螺旋桨一般有3~4片桨叶,直径根据船的马力和吃水而定,以下端不触及水底,上端不超过满载水线为准。螺旋桨转速不宜太高,海洋货船为每分钟100转左右,小型快艇转速高达每分钟400~500转,但效率将受到影响。螺旋桨材料一般用锰青铜或耐腐蚀合金,也可用不锈钢、镍铝青铜或铸铁。 驱动船前进的一种盘形螺旋面的推进装置。由桨叶及与其相连结的桨毂构成。常用的是三叶、四叶和五叶。包括单体螺旋桨、龙叶导管螺旋桨、对转螺旋桨、串列螺旋桨、可调螺距螺旋桨、超空泡螺旋桨、大侧斜螺旋桨等。螺旋桨一般安装在船尾(水下)。船用螺旋桨多由铜合金制成,也有铸钢,铸铁,钛合金或非金属材料制成。对船用螺旋桨的研究分理论和试验两个方面。理论方面现已有动量定理、叶元体理论、升力线理论、升力面理论、边界元方法等理论和分析方法,能较准确地预报螺旋桨的水动力性能并进行理论设计。试验方面的研究主要是通过模型试验研究螺旋桨性能,绘制螺旋桨设计图谱。船用螺旋桨的设计方法分两大类,即理论设计方法和图谱设计方法。 60年代以来,船舶趋于大型化,使用大功率的主机后,螺旋桨激振造成的船尾振动、结构损坏、噪声、剥蚀等问题引起各国的重视。螺旋桨激振的根本原因在于螺旋桨叶负荷加重,在船后不均匀尾流中工作时容易产生局部的不稳定空泡,从而导致螺旋桨作用于船体的压力、振幅和相位都不断变化。 螺旋桨的分类 在普通螺旋桨的基础上,为了改善性能,更好地适应各种航行条件和充分利用主机功率,发展了以下几种特种螺旋桨。 可调螺距螺旋桨 简称调距桨,可按需要调节螺距,充分发挥主机功率;提高推进效率,船倒退时可不改变主机旋转方向。螺距是通过机械或液力操纵桨毂中的机构转动各桨叶来调节的。调距桨对于桨叶负荷变化的适应性较好,在拖船和渔船上应用较多。对于一般运输船舶,可使船-机-桨处于良好的匹配状态。但调距桨的毂径比普通螺旋桨的大得多,叶根的截面厚而窄,在正常操作条件下,其效率要比普通螺旋桨低,而且价格昂贵,维修保养复杂。 导管螺旋桨 在普通螺旋桨外缘加装一机翼形截面的圆形导管而成。此导管又称柯氏导管。导管与船体固接的称固定导管,导管被连接在转动的舵杆上兼起舵叶作用的称可转导管。导管可提高螺旋桨的推进效率,这是因为导管内部流速高、压力低,导管内外的压力差在管壁上形成了附加推力;导管和螺旋桨叶间的间隙很小,限制了桨叶尖的绕流损失;导管可以减少螺旋桨后的尾流收缩,使能量损失减少。但导管螺旋桨的倒车性能较差。固定导管螺旋桨使船舶回转直径增大,可转导管能改善船的回转性能。导管螺旋桨多用于推船。

螺旋桨概述

螺旋桨概述 1.概念 1.1结构 图1 螺旋桨示意图 图2 螺旋桨结构 螺旋桨由桨叶、浆毂、、整流帽和尾轴组成,如上图所示。 滑失:如果螺旋桨旋转一周,同时前进的距离等于螺旋桨的螺距P,设螺旋桨转速为n,则理论前进速度为nP。也就是说将不产生水被螺旋桨前后拨动的现象,然而事实上,螺旋桨总是随船一起以低于nP的进速V s对水作前进运动。那么螺旋桨旋转一周在轴向上前进的实际距离为h p(=V s/n),称为进距。于是我们把P与h p之差(P-h p)称为滑失。 滑失与螺距P之比为滑失比: S r=(P-h p)/P=(nP-V s)/nP=1-V s/nP

式中V s/nP称为进距比。 从式中可以得出,当V s=nP时,S r=0。即P=h,也就是螺旋桨将不产生对水前后拨动的现象,螺旋桨给水的推力为零。 因此我们可以得出结论:滑失越大,滑失比越高,则螺旋桨推水的速度也就越高,所得到的推力就越大。 1.2工作原理 船用螺旋桨工作原理可以从两种不同的观点来解释,一种是动量的变化,另一种则是压力的变化。在动量变化的观点上,简单地说,就是螺旋桨通过加速通过的水,造成水动量增加,产生反作用力而推动船舶。由于动量是质量与速度的乘积,因此不同的质量配合上不同的速度变化,可以造成不同程度的动量变化。 另一方面,由压力变化的观点可以更清楚地说明螺旋桨作动的原理。螺旋桨是由一群翼面构建而成,因此它的作动原理与机翼相似。机翼是靠翼面的几何变化与入流的攻角,使流经翼面上下的流体有不同的速度,且由伯努利定律可知速度的不同会造成翼面上下表面压力的不同,因而产生升力。而构成螺旋桨叶片的翼面,它的运动是由螺旋桨的前进与旋转所合成的。若不考虑流体与表面间摩擦力的影响,翼面的升力在前进方向的分量就是螺旋桨的推力,而在旋转方向的分量就是船舶主机须克服的转矩力。 1.3推力和阻力 以一片桨叶的截面为例:当船艇静止时,螺旋桨开始工作,把螺旋桨看成不动,则水流以攻角α流向桨叶,其速度为2πnr(n为转速;r为该截面半径)。根据水翼原理,桨叶要受升力和阻力的作用,推动螺旋桨前进,即推动船艇前进。船艇运动会产生顶流和伴流。继续把船艇看成不动,则顶流以与艇速大小相等,方向相反的流速向螺旋桨流来,而伴流则以与艇速方向相同,流速为u r向螺旋桨流来。通过速度合成,我们可以得到与螺旋桨成攻角α,向桨叶流来的合水流。则桨叶受到合水流升力dL和阻力dD的作用,将升力和阻力分解,则得到平行和垂直艇首尾线的分力:

螺旋桨知识

当前位置:首页> 网络课堂> 第八章> 螺旋桨的工作原理 螺旋桨的几何特征 鱼雷螺旋桨位于鱼雷的尾部,由发动机带动以产生推力,利用该推力克服鱼雷运动时的阻力,使鱼雷以既定的速度航行。不难理解,为了经商鱼雷的速度,不仅要求鱼雷具有阻力最小的雷体外形,还须要配置效率较高的螺旋桨,才能获得较好的推进效果。 螺旋桨通过推进轴直接由发动机驱动,当螺旋桨旋转时,将水流推向鱼雷后方。根据作用与反作用原理,水便对螺旋桨产生反作用力,该反作用力即称为螺旋桨的推力。 我们研究螺旋桨的几何特征时,首先要对螺旋面有所了解。 设有一水平线AB(图8-1),匀速地绕线EE旋转,同时又以均匀速度向上移动,则线AB上每一个点就形成一条螺旋线,由这些螺旋线所组成的面叫做螺旋面。线段AB称为螺旋面的母线,它可以是直线或曲线。 展开了的螺旋线与圆柱体底线间的角度称为螺旋角,以表示,其值可按下式求得 (8-1)式中H为螺距。 图8-1 螺旋面的形成 (螺旋面的形成演示动画) 当母线的圆周运动和直线运动均为匀速运动时,所得到的螺旋面称为等螺距螺旋面。其螺旋线的展开图形如图8-1所示,不同半径处具有相同的螺距。

图8-2a 径向变螺距螺旋面螺旋线的展开图 螺旋面也可以由不同螺距的螺旋线组成。例如母线AB以均匀的速度绕EE轴线旋转。也以均匀速度直线上升,只是在不同的半径上具有不同的上升速度,则得到径向变螺距螺旋面,不同的半径处螺距是不同的,其螺旋线的展开图如图8-2(a)所示。假若母线的旋转运动和前进运动不是均匀的.或者其中任一种运动不是均匀的,则得到轴向变螺距螺旋面,其螺旋线的展开图如图8-2(b)所示。 图8-2b 轴向变螺距螺旋面螺旋线的展开图

简要论述船舶舵系制造安装与检验的要点

简要论述船舶舵系制造安装与检验的要点 ――摘要:《船舶检验》《船舶设备与系统》关键词:舵叶舵杆舵柄焊接胎架照光构架铸钢件安装检验一.舵的主要功能:船舶在航行过程中,舵是用来保持和改变航向的。是船舶的主要操纵设备。二.舵叶结构的介绍:船舶在航行的过程中是依靠舵叶的转动来控制航向的,舵叶的结构强度,面积,对称性和水密性是考核舵叶的四大因素。根据舵的形状和尺寸制作相应的胎架,在胎架铺板,对接,焊接在旁板上画内部加强筋纵横装配线,再装内部的加强筋,焊接完成后最后再装另一侧旁板,塞焊。三.舵叶的制造工艺简介如下: 1. 按照图纸进行水平构件及垂直构件与垫板预先组装焊接,并进行火攻矫平。 2. 按照提供的刚模板制造舵叶胎架,并测量胎架水平,误差小于2mm,并在胎架的四周设置水平标杆,报专检验收。 3. 铺设外板并与胎架用马板贴合固定,外板理论线位置在舵叶外表面,开CO2焊接坡口。并打磨光滑后进行焊接。焊接结束划出垂直构件及水平构件,舵顶外板及舵底外板的安装定位线。 4. 安装舵顶及舵底封板一级水平构件,插装垂直纵横构件,并调整垂直。注意水平方向的线型光顺,垂向构件的垫板水平方向平齐,按照水平标杆画出上下舵封板的中截面线,并用洋冲作好标记。 5. 安装铸钢件 6. 安装放水塞 7. 内部结构交专检确认后进行焊接。其顺序如下 a. 铸钢件焊接应预先开坡口,并打磨光滑,并进行预热,预热温度低于125℃-150℃,叫质检,船东,船检检验后进行焊接。 b. 整个焊接过程中,质检科派专人予以严C格的控制。并记录预热温度和焊接工艺参数。 c. 铸钢件焊接结束后,需保持2小时以上,且72小时以上后进行UT及表面探伤。 d. 先进行铸钢件与本体结构的立角焊,后进行平焊。 e. 铸钢件焊接结束后进行舵叶本体内部结构焊接,先立角焊后平焊,并从中间向两头,双人对称施焊。 f. 最后焊接舵顶及舵底封板以及外板与尾端材的焊接。 8. 内部结构焊接结束后,应对铸钢件的对接焊缝进行UT及表面探伤检查,舵叶内部焊缝打磨清洁交质检及船东,船检验收。 9. 内部拉毛涂装。 10. 舵叶另一侧外板预装,并划出余量线,然后外板平铺地面预开坡口后在板缝的背面贴装圆钢及垫板,注意圆钢处于焊缝中心。勘划放水塞安装位置。并按图纸画出外板上的塞焊孔的孔线用仿形割进行塞焊孔的开孔,并打磨光滑并对外板的内表面进行拉毛油漆。(注:塞孔焊的附业禁止油漆) 11. 贴装外板α角及焊缝位置适当加强,从中间向两头焊接塞焊及α角垫板的焊缝。 12. 脱胎翻身垫高,进行外板的批,补,磨等工作,并测量α角。中截面的水平及舵叶的主尺度,其舵叶的高度≤±4mm,高度≤±4mm,上下封板中截面的水平度的误差≤±2mm,必须进行适当的火工矫正。13. 舵叶护罩按与本体预测预装,并开设坡口,打磨光滑且与舵承铸钢件焊接的垫板装焊结束,进行内部拉毛油漆。 14. 舵杆护罩板专板确认后进行内部拉毛油漆。 15. 按照图纸进行气密试验及完整性试验。四.舵叶制造质量检验标准如下表:舵叶质量标准:单位mm项目标准范围极限范围舵叶旁板与胎架模板间隙0 2 构件安

相关文档
相关文档 最新文档