文档库 最新最全的文档下载
当前位置:文档库 › 搬运机器人外文翻译

搬运机器人外文翻译

搬运机器人外文翻译
搬运机器人外文翻译

外文翻译

专业机械电子工程

学生姓名张华

班级 B机电092 学号 0910106205 指导教师袁健

外文资料名称:Research,design and

experiment of end effector

for wafer transfer robot

外文资料出处:Industrail Robot:An International

Journal

附件: 1.外文资料翻译译文

2.外文原文

晶片传送机器人末端效应器研究、设计和实验

刘延杰、徐梦、曹玉梅

张华译

摘要:目的——晶片传送机器人扮演一个重要角色IC制造行业并且末端执行器是一个重要的组成部分的机器人。本文的目的是使晶片传送机器人通过研究其末端执行器提高传输效率,同时减少晶片变形。

设计/方法/方法——有限元方法分析了晶片变形。对于在真空晶片传送机器人工作,首先,作者运用来自壁虎的超细纤维阵列的设计灵感研究机器人的末端执行器,和现在之间方程机器人的交通加速度和参数的超细纤维数组。基于这些研究,一种微阵列凹凸设计和应用到一个结构优化的末端执行器。对于晶片传送机器人工作在大气环境中,作者分析了不同因素的影响晶片变形。在吸收面积的压力分布的计算公式,提出了最大传输加速度。最后, 根据这些研究得到了一个新的种末端执行器设计大气机器人。

结果——实验结果表明, 通过本文研究应用晶片传送机器人的转换效率已经得到显著提高。并且晶片变形吸收力得到控制。

实际意义——通过实验可以看出,通过本文的研究,可以用来提高机器人传输能力, 在生产环境中减少晶片变形。还为进一步改进和研究末端执行器打下坚实的基础,。

创意/价值——这是第一次应用研究由壁虎启发了的超细纤维阵列真空晶片传送机器人。本文还通过有限元方法仔细分析不同因素在晶片变形的影响。

关键词:晶片传送机器人末端执行器、超细纤维数组、晶片

1.介绍

作为一个主要集成电路设备的制造行业,晶片机器人承担了精确定位,快速和稳定的传输晶片的任务。随着集成电路产业的快速发展(比如晶圆的直径增加到300毫米), 机械制造技术的更高的要求是为了提高生产力,因此,更高的晶片传送效率是必要的。同时,由于晶片变得越来越薄,因此晶片机器人的设计也要防止转移严重变形晶片。末端执行器是晶圆转移机器人一个重要的组件,它有一个很大的影响传输效率机器人的硅片变形。目前关于末端执行器的晶片传送机器人的研究很少。因此,它是非常必要的相关研究。发展至今有两种晶片传送机器人:真空晶片传送机器人和大气晶

片传送机器人。真空晶片传送机器人工作在真空环境而大气晶片传送机器人工作在大气环境。对于真空晶片传送机器人,过境晶片依赖摩擦力晶片和晶圆自己的重量的末端执行器之间生成的。虽然大气晶片传送机器人是使用真空泵在晶片和机器人的末端执行器之间产生真空。在大气压力和真空中有一种压力区别,这造成了相当大的正常压力,然后生成足够的摩擦力来维持晶圆在机器人的位置。

2.研究

对于大气晶片传送机器人

对于晶片传送机器人工作在大气环境,晶片的两面的主要的压力差会使得摩擦力大到足以影响晶片。晶片的自己的体重还有助于一代的摩擦力。严重的晶片变形可能是由于大量吸收力,这是完全不可接受的。因此,我们需要分析对晶片的变形产生影响各种因素。考虑到高转换效率的要求,我们还应该建立最大转移加速和晶片传送机器人的末端执行器工作在大气环境的参数之间的关系。

(1)我们采用有限元分析方法分析吸收毛孔对晶片的变形数量的影响对于晶片的变形下产生不同数量的吸收毛孔。这里我们假设吸收毛孔的半径3毫米均匀分布在一个圆半径为100毫米。吸收毛孔的数量范围从三到无限的并且用于分析的晶片是直径300毫米厚度100微米。分析结果显示在图1和表1。结果表明,晶片的变形和应力减少增加吸收毛孔的数量,但在减少程度上变得越来越小。考虑技术和经济可行性,我们最后选择四个吸收毛孔(图2)。

图1 包含4个或6个吸收毛孔约束的晶片的变形模拟图

表1 仿真包含不同数量的吸收毛孔约束晶片的最大变形和应力

图2 包含不同数量的吸收毛孔最大变形和应力曲线

(2)吸收孔的位置也会影响的晶片变形。

通过同样的过程,我们分析晶片的变形和压力在行动与不同位置的吸收毛孔。吸收孔隙分布圈的半径范围从30到150毫米。分析结果显示在图3(a)。根据这个结果,我们可以得到的R =110毫米是最佳吸收孔位置以防止晶片的变形(图4)。

图3 (a)包含不同位置的毛孔约束晶片的变形模拟图;(b)吸收面接触等效原理图

图4 包含吸收毛孔的不同位置最大变形和应力曲线

(3)半径影响吸收毛孔在晶片的变形

作为吸收毛孔随其半径,吸收力它生成也会改变。所以我们需要分析半径之间的关系的吸附孔,晶片变形。结果显示在图5和表2。图6显示晶片变形显著增加随着规模的毛孔吸收更大。

图5 不同的吸收孔隙半径的晶片变形的曲线

表2 受到不同的半径吸收毛孔作用的最大的晶片变形

接触宽度在晶片的变形接触宽度末端执行器之间的影响,晶片也会影响晶片应力和变形。我们分析了晶片变形在不同接触宽度和结果如下所示(图6)。结果表明,晶片

变形和应力作为接触宽度的增加和减少的趋势线图7中所示。当接触宽度是20毫米,晶片最大变形是约1微米,它是可接受的。

图6 不同接触宽度的晶片变形模拟图

图7 不同接触宽度的最大变形和应力曲线

(4)在吸收区域压力分布

我们应该研究压力在吸收地区分布以防在晶圆上存在应力集中。如图3所示(b),当晶片是作用下吸收力F,它相当于,晶片接触一个球是在推动,力F。根据赫兹(1882)理论,当一个理想的球体接触一个平面,真正的接触面积可以拿到如下:

F -吸收力;Rs -半径的球体,这里我们假定它等于半径的吸收毛孔;Rk . -半径的实际的接触面积,E,n -弹性模量和泊松晶圆片的比例;Es,vs -弹性模量和泊松比的球体,这里我们假设它们是材料相当的末端执行器。如果某个地点之间的距离和中心的接触面积是r,然后上的压力这个特定的点是:

总体压力接触面积是:

对于典型的晶片和机器人工作在大气环境、材料参数是已知的。Vs= 0.33,Es = 68GPa,V=0.274,E=128.87的平均绩点。我们把压力分布函数的接触面积显示在方程:

图8显示,没有显著变化的压力值作为X1,X2的变化,这意味着压力是近均匀分布在整个吸收面积。因此没有应力集中在吸收区域。

图8 吸收面积压力分布图

3.设计

对于真空晶片传送机器

基于以上研究设计一种微阵列的肿块,我们尝试设计一种用于晶片传送微阵列凹凸。为了降低晶片变形,我们选择四个肿块联系方式并且四个肿块是完全相同的。从方便处理方面考虑,光刻胶苏8材料被用来制造了超细纤维数组并且采用光刻技术。原理和实际图的微阵列肿块如图12所示。超细纤维数组是均匀分布的面具,总面积5X5毫米。这个面具是固定的上表面一个玻璃基片面积6X6毫米,厚度3毫米。超细纤维数组、面具、玻璃衬底,三层组成的微阵列肿块。材料参数和尺寸参数数组和薄片是超细纤维显示在表3。

表3 超细纤维数组和晶片材料参数和尺寸参数

通过SEM照片我们可以看出,纤维的表面大约是一个圆形平面,所以真正的接触面积在防颤晶片和一个单纤维之间,面积接近πr2。基于表V,这些已知值替换得到方程:

当机器人采用这类超细纤维时最大传输加速度a=4.38 m /s2。

以直径300毫米并且厚度775毫米的晶圆的典型的转移为例。晶圆片的重量0.131公斤。通过方程,当机器人采用这种超细纤维肿块时我们可以得到最大附着力是Fad= 3.53mn。它可以看到最大的附着力晶片和末端执行器之间太小,阻碍了释放晶片。

物理设计的末端执行器

在集成电路产业晶片盒的半标准大小的规定为300毫米晶圆。端效应的大小应该匹配晶圆框的大小,以正确工作。因此,有一个请求端效应的大小是长度不超过450毫米,宽度不超过250毫米,厚度没有更多的超过5毫米。基于请求,我们最后决定我们的结束效应是390毫米长,220毫米宽,4毫米厚度。

我们也优化了末端执行器的结构结合现有的样品,并想出了一个特殊的结构实现连接的凸起和微阵列末端执行器。最后形成的末端执行器显示在图13。末端执行器的振动将会导致严重的问题晶片传送。这将导致末端执行器之间的摩擦和晶片盒、甚至碰撞,这将损害晶片。也严重的振动将导致晶片脱离末端执行器并导致严重后果。所以共振的结束效应器和机器人臂必须避免。通过有限元素分析的末端执行器设计在本文,我们得到它的动态特性,如下所示表4。

表4 末端执行器设计的普通频率

我们已经知道通过实验(不包括在这纸),机器人臂的振动频率是23赫兹,虽然第一阶固有频率的末端执行器是72赫兹,远远超过臂的振动频率。输入的频率也低于1赫兹。所以最后的效应器设计是本文能够避免共振与机器人的手臂,满足请求的动态特征。对于大气晶片传送机器人

在前面研究结果的基础上,我们设计四个吸收毛孔最后效应是一致的分布在一个圆半径为110毫米。当前大气晶片传送机器人可以达到最大的传输加速度为1 g。这里我们把目标的末端执行器的加速度设计在达到一个加速度的1.1 g。然后通过方程

根据已知参数,半径吸收毛孔r可以计算为r=3毫米。根据尺寸要求末端执行器和引用对现有产品,我们终于设计末端执行器的大气晶片传送机器人如图9所示。它的接触宽度与晶片是20毫米。

图9 (a)大气晶片传送机器人末端执行器的前面原理图;(b)背面;(c)实物

在案例的共振的末端执行器和机器人手臂,我们还必须分析末端执行器的动态特征。他们见表5,从这可以看到,第一阶固有频率的结束效应是54302赫兹,比手臂的振动频率是23赫兹。同样的频率输入低于1赫兹。所以设计的末端执行器能够为了避免共振与机器人的手臂,来满足要求动态特性。

表5 大气机器人末端执行器的普通频率

4.结论

对于真空晶片传送机器人的末端执行器。首先,本文应用研究壁虎启发超细纤维阵列的设计末端执行器的真空晶片传输机器人。晶圆片的变形与不同的联系在真空条

件转移比较它显示4个凹凸接触是最合适的方法。超细纤维的研究数组用于晶片交通运输和关系在晶片传送加速度、附着力和材料、尺寸参数的超细纤维数组建立了。然后一种微阵列凹凸与纤维直径5毫米和纤维长度15毫米的设计和固定到一个结构优化的末端执行器。最后,实验结果表明,该机器人采用这种微阵列可以实现传输加速度撞4.155m/s2,远远大于传统疙瘩由不锈钢吗钢或橡胶。这意味着应用程序的超细纤维数组对真空转移机器人具有显著提高机器人的

传输效率和这个有着重要的意义来集成电路制造行业。还4.155m/s2基本上是符合理论价值4.38m/s2和它验证这项研究的正确性的超细纤维数组用于晶片过境。

对于末端执行器大气晶片传送机器人,我们已经分析了吸收毛孔的号码, 位置,半径和接触宽度在晶片变形影响。据分析,四个吸收毛孔一致分布在一个圆半径为110 mm被选择作为我们的设计方案。压力分布在吸收面积研究和结果显示没有压力集中在这个地区。考虑吸收力和末端执行器的结构、计算公式的最大转移加速建立大气机器人。基于这些研究大气机器人末端执行器,一种新的末端执行器满足请求的动态提出了特征。最后,实验结果验证研究的正确性末端执行器的前面大气机器人,我们已经成功地在吸收力方面提高了转移能力和控制晶片的大气机器人变形。

参考资料

[1] Autumn, K., Liang, Y., Hsieh, T., Zesch, W., Chan, W.-P.,Kenny, T., Fearing, R. and Full, R.J. (2000), “Adhesive force of a single gecko foot-hair”, Nature, Vol. 405, 8 June,pp. 681-5.

[2] Bonora, A.C. and Hine, R.G. (2006), “Ultra low contact area end effector”, United States Patent No. 2006/0181095 A1.

[3] Co ng, M., Du, Y. and Shen, B. (2007), “Robotic wafer handling systems for integrated circuit manufacturing: a review”, Robot, Vol. 29 No. 3, pp. 261-6.

[4] Fosnight, W., Martin, R., Bonora, A., Asyst Technologies and Milpitas,

C.A. (1996), “300mm wafer isolationtechnology:lessons from the 200mm generation”, Solid State Technology, February, pp. 77-81.

[5] Fransilla, S. (2010), Introduction to Microfabrication, Wiley, New York, NY, p. 36.

[6] Gan, W. (2007), “Research on kernel technology of a parallel wafer robot”, Master’s Degree Paper of Tianjin University,Tianjin, pp. 9-11.

[7] Hertz, H. (1882), “U¨ ber die beru¨hrung fester elastischerko¨ rper (on the contact of elastic solids)”, J reine undangewandte Mathematik, Vol. 94, pp. 156-71.

[8] Hu, S.C., C huah, Y.K. and Yen, M.C. (2002), “Design and evaluation of

a minienvironment for semiconductormanufacture processes”, Building and Evironment, Vol. 37,pp. 201-8.

[9] Johnson, K.L., Kendall, K. and Roberts, A.D. (1971),“Surface energy and the contact of ela stic solids”,Proc. R. Soc. Lond., Vol. A324, pp. 301-13.

[10]Kanetomo, M., Kashima, H. and Suzuki, T. (1997),“Wafer-transfer robot for use in ultrahigh vacuum”,American Vacuum Society, Vol. 15 No. 3, pp. 1385-8.

[11]Lee, J., Fearing, R.S. and Komvopolous, K.(2008a), “Directional adhesion of gecko-inspired angled microfiber arrays”, Applied Physics Letters, Vol. 93No. 191910.

[12]Lee, J., Majidi, C., Schubert, B. and Fearing, R.S. (2008b),“Sliding induced adhesion of stiff polymer microfiber arrays: 1. Macroscale behaviour”, Journal Royal Society,Interface, 22 January.

[13]Majidi, C., Groff, R.E., Autumn, K., Baek, S., Bush, B., Gravish, N.,

Maboudian, R., Maeno, Y., Schubert, B., Wilkinson, M. and Fearing, R.S. (2006), “Highfriction from a stiff polymer usin g micro-fiber arrays”, Physical Review Letters, Vol. 97 No. 076103.

[14]Marohl, D.A. and Jose, S. (1998), “End effector forsemiconductor wafer transfer device and method of moving a wafer with an end effector”, United States Patent No. 5746460.

[15]Quirk, M., Serda, J. and Han, Z.S. (2002), Semiconductor Fabrication Technology, Publishing House of ElectronicsIndustry, Beijing, pp. 4-15 (translated).

[16]RSJ (1998), Robot Technical Manual, Science Press, Beijing.

[17]Schubert, B., Lee, J., Majidi, C. and Fearing, R.S. (2008),“ Sliding induced adhesion of stiff polymer microfiberarrays: 2. Microscale behaviour”, Journal Royal Society, Interface, 22 January.

[18]Schubert, B., Majidi, C., Groff, R.E., Baek, S., Bush, B., Maboudian, R. and Fearing, R.S. (2007), “Towards frictionand adhesion from high modulus microfiber arrays”,Journal of Adhesion Science and Technology, Vol. 21 Nos 12/13, pp. 1297-315.

[19]Sitti, M. and Fearing, R.S. (2002), “Nanomolding based fabrication of synthetic gecko foot-hair micro/nan ostructures”, Proceedings of the IEEE Nanotechnology Conference, Washington, DC, USA, August, pp. 137-40.

[20]Sitti, M. and Fearing, R.S. (2003), “Synthetic gecko foot-hair micro/nano-structures for future wall climbing robots”, paper presented at IEEE International Conference on Robotics and Automation, Taiwan, May/September.

[21]Takashi, K. (2002), “Vacuum manipulator for semiconductor manufacturing equipment”, Industrial Robot, Vol. 29 No. 4,pp. 324-8.

[22]Tang, C.W., Chow, W.F. and Yi, W.L. (2007), “End effector for transferring a wafer”, United States Patent No. 2007/0177963 A1.

[23]Yang, G. and Cui, P. (2002), “Research of optimal time trajectory plan of manipulator”, China Mechanical Engineering Magazine, Vol. 13 No. 20,pp. 1715-17.

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

人形机器人论文中英文资料对照外文翻译

中英文资料对照外文翻译 最小化传感级别不确定性联合策略的机械手控制 摘要:人形机器人的应用应该要求机器人的行为和举止表现得象人。下面的决定和控制自己在很大程度上的不确定性并存在于获取信息感觉器官的非结构化动态环境中的软件计算方法人一样能想得到。在机器人领域,关键问题之一是在感官数据中提取有用的知识,然后对信息以及感觉的不确定性划分为各个层次。本文提出了一种基于广义融合杂交分类(人工神经网络的力量,论坛渔业局)已制定和申请验证的生成合成数据观测模型,以及从实际硬件机器人。选择这个融合,主要的目标是根据内部(联合传感器)和外部( Vision 摄像头)感觉信息最大限度地减少不确定性机器人操纵的任务。目前已被广泛有效的一种方法论就是研究专门配置5个自由度的实验室机器人和模型模拟视觉控制的机械手。在最近调查的主要不确定性的处理方法包括加权参数选择(几何融合),并指出经过训练在标准操纵机器人控制器的设计的神经网络是无法使用的。这些方法在混合配置,大大减少了更快和更精确不同级别的机械手控制的不确定性,这中方法已经通过了严格的模拟仿真和试验。 关键词:传感器融合,频分双工,游离脂肪酸,人工神经网络,软计算,机械手,可重复性,准确性,协方差矩阵,不确定性,不确定性椭球。 1 引言 各种各样的机器人的应用(工业,军事,科学,医药,社会福利,家庭和娱乐)已涌现了越来越多产品,它们操作范围大并呢那个在非结构化环境中运行 [ 3,12,15]。在大多数情况下,如何认识环境正在发生变化且每个瞬间最优控制机器人的动作是至关重要的。移动机器人也基本上都有定位和操作非常大的非结构化的动态环境和处理重大的不确定性的能力[ 1,9,19 ]。每当机器人操作在随意性自然环境时,在给定的工作将做完的条件下总是存在着某种程

工业机器人外文翻译

附录外文文献 原文 Industrial Robots Definition “A robot is a reprogrammable,multifunctional machine designed to manipulate materials,parts,tools,or specialized devices,through variable programmed motions for the performance of a variety of tasks.” --Robotics Industries Association “A robot is an automatic device that performs functions normally ascribrd to humans or a machine in orm of a human.” --Websters Dictionary The industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society . The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off . The basic terminology of robotic systems is introduced in the following :

机器人结构论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献 FEM Optimization for Robot Structure Abstract In optimal design for robot structures, design models need to he modified and computed repeatedly. Because modifying usually can not automatically be run, it consumes a lot of time. This paper gives a method that uses APDL language of ANSYS 5.5 software to generate an optimal control program, which mike optimal procedure run automatically and optimal efficiency be improved. 1)Introduction Industrial robot is a kind of machine, which is controlled by computers. Because efficiency and maneuverability are higher than traditional machines, industrial robot is used extensively in industry. For the sake of efficiency and maneuverability, reducing mass and increasing stiffness is more important than traditional machines, in structure design of industrial robot. A lot of methods are used in optimization design of structure. Finite element method is a much effective method. In general, modeling and modifying are manual, which is feasible when model is simple. When model is complicated, optimization time is longer. In the longer optimization time, calculation time is usually very little, a majority of time is used for modeling and modifying. It is key of improving efficiency of structure optimization how to reduce modeling and modifying time. APDL language is an interactive development tool, which is based on ANSYS and is offered to program users. APDL language has typical function of some large computer languages. For example, parameter definition similar to constant and variable definition, branch and loop control, and macro call similar to function and subroutine call, etc. Besides these, it possesses powerful capability of mathematical calculation. The capability of mathematical calculation includes arithmetic calculation, comparison, rounding, and trigonometric function, exponential function and hyperbola function of standard FORTRAN language, etc. By means of APDL language, the data can be read and then calculated, which is in database of ANSYS program, and running process of ANSYS program can be controlled.

管道机器人外文翻译

一款使用离合器连接类型的内窥管道机器人 摘要-这篇论文展示了一款使用离合器的新型内窥管道机器人,用于直径小于或等于100mmde 管道内窥。这款机器人拥有三条驱动轴,且每条驱动轴各有一个离合器,离合器的设计依据平行联动原理。内窥管道机器人牢固的模型机构已经过驱动,原型机也被制作出来。机器人系统已经过一系列的仿真软件模拟和实验验证。 1.简介 管内机器人经过漫长的发展,根据运动模型可分为几种基本类型,比如轮驱动、蠕动、自动足、螺旋驱动、爬行、PIG和惰性运行等类型。在这些类型之中,轮式驱动应用最为广泛。在过去的十年时间间,机器人各式各样的驱动类型研究呈现井喷式增长。不同的驱动类型的机器人一般会有三个驱动轴,依靠单独控制各轴的速度,可以让机器人实现通过关节或者T型管道。而且这种类型机器人与轮式驱动、螺旋驱动和PIG等类型比较起来会有较大的可折叠区域,比较节省空间。 近来,随着小型化管道机器人市场的扩大,对直径小于100mm的管道机器人的关注同时愈来愈热。因为室内管道的清洁程度会直接影响到人的健康,因此,对室内管道的清洁与监测变得愈加重要,同时直径小于100mm的机器人也将主要用于室内管道清洁。机械装置使用的是平行连杆机构,有助于实现装置

减速功能。减速器与其他使用两个底板的典型减速器不同,第二部分将会详细介绍机器人系统的特征。第三部分将会讲解机构的运动学分析。机构的有效性将会通过软件仿真与实验验证,这些会在第四部分展示出来。最后,同时也是至关重要的是总结。 2.机器人特征 A机器人硬件设备及系统 如例1所示,机器人系统包括控制盒与机器人装备。根据模块化设置,控制盒与机器人硬件设备室分开的。 机器人硬件设备包含主体,三条链轮和如例2显示的三个离合轮部分。机器人长80mm,外扩至100mm。机械联动装置可确保制动功能的实现,这是因为装置有效避免了电磁制动器的缺点,比如滑移、电力不足以及规格限制。 例1.装备有机械离合装置的管道检测机器人系统 机器人装置可实现两种不同的操作模式:驱动模式与制动模式。驱动模式下的机器人会运行,制动模式会使机器人停止运行并且

外文翻译:机器人本科生外文翻译资料

外文翻译资料原文 学院 专业班级 学生姓名 指导教师

Robot Darrick Addison (dtadd95@https://www.wendangku.net/doc/aa5345612.html,), Senior Software Engineer/Consultant, ASC Technologies Inc. 01 Sep 2001 "A re-programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks." -- From the Robot Institute of America, 1979 Darrick Addison, an experienced developer in databases, networks, user interfaces, and embedded systems, introduces the field of robotics and the issues surrounding robotic systems. He covers mechanical design, sensory systems, electronic control, and software. He also discusses microcontroller systems, including serial and memory-mapped interfacing, and talks about some of the available open source software options. The word "robot" originates from the Czech word for forced labor, or serf. It was introduced by playwright Karel Capek, whose fictional robotic inventions were much like Dr. Frankenstein's monster -- creatures created by chemical and biological, rather than mechanical, methods. But the current mechanical robots of popular culture are not much different from these fictional biological creations. Basically a robots consists of: ? A mechanical device, such as a wheeled platform, arm, or other construction, capable of interacting with its environment ?Sensors on or around the device that are able to sense the environment and give useful feedback to the device ?Systems that process sensory input in the context of the device's current situation and instruct the device to perform actions in response to the situation In the manufacturing field, robot development has focused on engineering robotic arms that perform manufacturing processes. In the space industry, robotics focuses on highly specialized, one-of-kind planetary rovers. Unlike a highly automated manufacturing plant, a planetary rover operating on the dark side of the moon -- without radio communication -- might run into unexpected situations. At a minimum, a planetary rover must have some source of sensory input, some way of interpreting that input, and a way of modifying its actions to respond to a changing world. Furthermore, the need to sense and adapt to a partially unknown environment requires intelligence (in other words, artificial intelligence).

智能避障机器人设计外文翻译

INTELLIGENT VEHICLE Our society is awash in “machine intelligence” of various kinds.Over the last century, we have witnessed more and more of the “drudgery” of daily living being replaced by devices such as washing machines. One remaining area of both drudgery and danger, however, is the daily act ofdriving automobiles 1.2 million people were killed in traffic crashes in 2002, which was 2.1% of all globaldeaths and the 11th ranked cause of death . If this trend continues, an estimated 8.5 million people will be dying every year in road crashes by 2020. In fact, the U.S. Department of Transportation has estimated the overall societal cost of road crashes annually in the United States at greater than $230 billion. When hundreds or thousands of vehicles are sharing the same roads at the same time, leading to the all too familiar experience of congested traffic. Traffic congestion undermines our quality of life in the same way air pollution undermines public health.Around 1990, road transportation professionals began to apply them to traffic and road management. Thus was born the intelligent transportation system(ITS). Starting in the late 1990s, ITS systems were developed and deployed. In developed countries, travelers today have access to signifi-cant amounts of information about travel conditions, whether they are driving their own vehicle or riding on public transit systems. As the world energy crisis, and the war and the energy

搬运机器人外文翻译

外文翻译 专业机械电子工程 学生姓名张华 班级 B机电092 学号 05 指导教师袁健

外文资料名称:Research,design and experiment of end effector for wafer transfer robot 外文资料出处:Industrail Robot:An International Journal 附件: 1.外文资料翻译译文 2.外文原文

晶片传送机器人末端效应器研究、设计和实验 刘延杰、徐梦、曹玉梅 张华译 摘要:目的——晶片传送机器人扮演一个重要角色IC制造行业并且末端执行器是一个重要的组成部分的机器人。本文的目的是使晶片传送机器人通过研究其末端执行器提高传输效率,同时减少晶片变形。 设计/方法/方法——有限元方法分析了晶片变形。对于在真空晶片传送机器人工作,首先,作者运用来自壁虎的超细纤维阵列的设计灵感研究机器人的末端执行器,和现在之间方程机器人的交通加速度和参数的超细纤维数组。基于这些研究,一种微阵列凹凸设计和应用到一个结构优化的末端执行器。对于晶片传送机器人工作在大气环境中,作者分析了不同因素的影响晶片变形。在吸收面积的压力分布的计算公式,提出了最大传输加速度。最后, 根据这些研究得到了一个新的种末端执行器设计大气机器人。 结果——实验结果表明, 通过本文研究应用晶片传送机器人的转换效率已经得到显着提高。并且晶片变形吸收力得到控制。 实际意义——通过实验可以看出,通过本文的研究,可以用来提高机器人传输能力, 在生产环境中减少晶片变形。还为进一步改进和研究末端执行器打下坚实的基础,。 创意/价值——这是第一次应用研究由壁虎启发了的超细纤维阵列真空晶片传送机器人。本文还通过有限元方法仔细分析不同因素在晶片变形的影响。关键词:晶片传送机器人末端执行器、超细纤维数组、晶片 1.介绍

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

管道机器人(英文)

A SIMPLE ARCHITECTURE FOR IN-PIPE INSPECTION ROBOTS Mihaita HORODINCA, Ioan DOROFTEI, Emmanuel MIGNON, André PREUMONT Active Structures Laboratory UNIVERSITE LIBRE DE BRUXELLES Av. F. D. Roosevelt 50, cp 165/42, Brussels, Belgium Phone: (32)2-6504663 Fax: (32)2-6504660 e-mail: andre.preumont@ulb.ac.be Abstract: The paper presents an original robot architecture for in-pipe inspection. The robot consists of two parts articulated with a universal joint. One part is guided along the pipe by a set of wheels moving parallel to the axis of the pipe, while the other part is forced to follow an helical motion thanks to tilted wheels rotating about the axis of the pipe. A single motor is placed between the two bodies to produce the motion. All the wheels are mounted on a suspension to accommodate for changing tube diameter and curves in the pipe. The robot is autonomous and carries its own batteries and radio link. Four different prototypes have been constructed for pipe diameters of 170, 70 and 40 mm, respectively. For smaller diameters, the batteries and the radio receiver may be placed on an additional body attached to the others. The autonomy of the prototypes is about 2 hours. This architecture is very simple and the rotary motion can be exploited to carry out scrubbing or inspection tasks. Keywords: Autonomous mobile robot, In-pipe inspection, Helical motion Introduction Pipe inspection robots have been studied for a long time, and many original locomotion concepts have been proposed to solve the numerous technical difficulties associated with the change in pipe diameter, curves and energy supply. Although an exhaustive review of the literature is impossible due to the limited space available, a few broad categories can be identified: (i) For small size, many projects follow the earthworm principle consisting of a central part moving axially while the two end parts are provided with blocking devices connected temporarily to the pipe. Pneumatic versions of this concept have been proposed (e.g. [1]), but they require an umbilical for power. For smaller diameter (10 mm or less), a piezoelectric actuation has been considered, according to the inchworm principle, or according to an inertial locomotion driven by a saw-tooth wave voltage [2], or using vibrating fins with differential friction coefficients [3]. (ii) For medium size piping, classical electromechanical systems have been proposed with various architectures involving wheels and tracks, with more or less complicated kinematical structures, depending on the diameter adaptability and turning capability (e.g. [4,5]). (iii) For large pipes, walking tube crawlers have also been proposed [6].

外文翻译-多自由度步行机器人

多自由度步行机器人 摘要在现实生活中设计一款不仅可以倒下而且还可以站起来的机器人灵活智能机器人很重要。本文提出了一种两臂两足机器人,即一个模仿机器人,它可以步行、滚动和站起来。该机器人由一个头,两个胳膊和两条腿组成。基于远程控制,设计了双足机器人的控制系统,解决了机器人大脑内的机构无法与无线电联系的问题。这种远程控制使机器人具有强大的计算头脑和有多个关节轻盈的身体。该机器人能够保持平衡并长期使用跟踪视觉,通过一组垂直传感器检测是否跌倒,并通过两个手臂和两条腿履行起立动作。用实际例子对所开发的系统和实验结果进行了描述。 1 引言随着人类儿童的娱乐,对于设计的双足运动的机器人具有有站起来动作的能力是必不可少。 为了建立一个可以实现两足自动步行的机器人,设计中感知是站立还是否躺着的传感器必不可少。两足步行机器人它主要集中在动态步行,作为一种先进的控制问题来对待它。然而,在现实世界中把注意力集中在智能反应,更重要的是创想,而不是一个不会倒下的机器人,是一个倒下来可以站起来的机器人。 为了建立一个既能倒下又能站起来的机器人,机器人需要传感系统就要知道它是否跌倒或没有跌倒。虽然视觉是一个机器人最重要的遥感功能,但由于视觉系统规模和实力的限制,建立一个强大的视觉系统在机器人自己的身体上是困难的。如果我们想进一步要求动态反应和智能推理经验的基础上基于视觉的机器人行为研究,那么机器人机构要轻巧足以够迅速作出迅速反应,并有许多自由度为了显示驱动各种智能行为。至于有腿机器人,只有一个以视觉为基础的

小小的研究。面临的困难是在基于视觉有腿机器人实验研究上由硬件的显示所限制。在有限的硬件基础上是很难继续发展先进的视觉软件。为了解决这些问题和推进基于视觉的行为研究,可以通过建立远程脑的办法。身体和大脑相连的无线链路使用无线照相机和远程控制机器人,因为机体并不需要电脑板,所以它变得更加容易建立一个有许多自由度驱动的轻盈机身。 在这项研究中,我们制定了一个使用远程脑机器人的环境并且使它执行平衡的视觉和起立的手扶两足机器人,通过胳膊和腿的合作,该系统和实验结果说明如下。图 1 远程脑系统的硬件配置图 2 两组机器人的身体结构 2 远程脑系统 远程控制机器人不使用自己大脑内的机构。它留大脑在控制系统中并且与它用无线电联系。这使我们能够建立一个自由的身体和沉重大脑的机器人。身体和大脑的定义软件和硬件之间连接的接口。身体是为了适应每个研究项目和任务而设计的。这使我们提前进行研究各种真实机器人系统。 一个主要利用远程脑机器人是基于超级并行计算机上有一个大型及重型颅脑。虽然硬件技术已经先进了并拥有生产功能强大的紧凑型视觉系统的规模,但是硬件仍然很大。摄像头和视觉处理器的无线连接已经成为一种研究工具。远程脑的做法使我们在基于视觉机器人技术各种实验问题的研究上取得进展。 另一个远程脑的做法的优点是机器人机体轻巧。这开辟了与有腿移动机器人合作的可能性。至于动物,一个机器人有 4 个可以行走的四肢。我们的重点是基于视觉的适应行为的4肢机器人、机械动物,在外地进行试验还没有太多的研究。 大脑是提出的在母体环境中通过接代遗传。大脑和母体可以分享新设计

智能机器人外文翻译

Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission

相关文档
相关文档 最新文档