文档库 最新最全的文档下载
当前位置:文档库 › PRO-E中的曲线公式及应用

PRO-E中的曲线公式及应用

PRO-E中的曲线公式及应用
PRO-E中的曲线公式及应用

PRO-E中的曲线公式及应用

各种曲线

名称:正弦曲线

建立环境:Pro/E软件、笛卡尔坐标系

x=50*t

y=10*sin(t*360)

z=0

名称:螺旋线(Helical curve)

建立环境:PRO/E;圆柱坐标(cylindrical)

r=t

theta=10+t*(20*360)

z=t*3

蝴蝶曲线

球坐标PRO/E

方程:rho = 8 * t

theta = 360 * t * 4

phi = -360 * t * 8

Rhodonea曲线

采用笛卡尔坐标系

theta=t*360*4

x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta) *********************************

圆内螺旋线

采用柱坐标系

theta=t*360

r=10+10*sin(6*theta)

z=2*sin(6*theta)

渐开线方程

r=1

ang=360*t

s=2*pi*r*t

x0=s*cos(ang)

y0=s*sin(ang)

x=x0+s*sin(ang)

y=y0-s*cos(ang)

z=0

对数曲线

z=0

x = 10*t

y = log(10*t+0.0001)

球面螺旋线(采用球坐标系)

rho=4

theta=t*180

phi=t*360*20

名称:双弧外摆线

笛卡尔坐标

方程:l=2.5

b=2.5

x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360)

名称:星行线

笛卡尔坐标

方程:

a=5

x=a*(cos(t*360))^3

y=a*(sin(t*360))^3

名稱:心脏线

建立環境:pro/e,圓柱坐标

a=10

r=a*(1+cos(theta))

theta=t*360

名稱:葉形線

建立環境:笛卡儿坐标

a=10

x=3*a*t/(1+(t^3))

y=3*a*(t^2)/(1+(t^3))

笛卡儿坐标下的螺旋线

x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360))

z = 10*t

一抛物线

笛卡儿坐标

x =(4 * t)

y =(3 * t) + (5 * t ^2)

z =0

名稱:碟形弹簧

建立環境:pro/e

圓柱坐

r = 5

theta = t*3600

z =(sin(3.5*theta-90))+24*t

pro/e关系式、函数的相关说明资料

一、关系中使用的函数

数学函数

下列运算符可用于关系(包括等式和条件语句)中。

关系中也可以包括下列数学函数:

cos () 余弦

tan () 正切

sin () 正弦

sqrt () 平方根

asin () 反正弦

acos () 反余弦

atan () 反正切

sinh () 双曲线正弦

cosh () 双曲线余弦

tanh () 双曲线正切

注释:所有三角函数都使用单位度。

log() 以10为底的对数

ln() 自然对数

exp() e的幂

abs() 绝对值

ceil() 不小于其值的最小整数

floor() 不超过其值的最大整数

可以给函数ceil和floor加一个可选的自变量,用它指定要圆整的小数字数。

带有圆整参数的这些函数的语法是:

ceil(parameter_name或number, number_of_dec_places)

floor (parameter_name 或 number, number_of_dec_places)

其中number_of_dec_places是可选值:

·可以被表示为一个数或一个使用者自定义参数。如果该参数值是一个实数,则被截尾成为一个整数。

·它的最大值是8。如果超过8,则不会舍入要舍入的数(第一个自变量),并使用其初值。

·如果不指定它,则功能同前期版本一样。

使用不指定小数部分位数的ceil和floor函数,其举例如下:

ceil (10.2) 值为11

floor (10.2) 值为 11

使用指定小数部分位数的ceil和floor函数,其举例如下:

ceil (10.255, 2) 等于10.26

ceil (10.255, 0) 等于11 [ 与ceil (10.255)相同 ]

floor (10.255, 1) 等于10.2

floor (10.255, 2) 等于10.26

二、曲线表计算

曲线表计算使使用者能用曲线表特征,通过关系来驱动尺寸。尺寸可以是草绘器、零件或组件尺寸。格式如下:

evalgraph("graph_name", x)

,其中graph_name是曲线表的名称,x是沿曲线表x-轴的值,返回y值。

对于混合特征,可以指定轨线参数trajpar作为该函数的第二个自变量。

注释:曲线表特征通常是用于计算x-轴上所定义范围内x值对应的y值。当超出范围时,y值是通过外推的方法来计算的。对于小于初始值的x值,系统通过从初始点延长切线的方法计算外推值。同样,对于大于终点值的x值,系统通过将切线从终点往外延伸计算

外推值。

三、复合曲线轨道函数

在关系中可以使用复合曲线的轨道参数trajpar_of_pnt。

下列函数返回一个0.0和1.0之间的值:

trajpar_of_pnt("trajname", "pointname")

其中trajname是复合曲线名,pointname是基准点名。

轨线是一个沿复合曲线的参数,在它上面垂直于曲线切线的平面通过基准点。因此,基准点不必位于曲线上;在曲线上距基准点最近

的点上计算该参数值。

如果复合曲线被用作多轨道扫瞄的骨架,则trajpar_of_pnt与trajpar或1.0 - trajpar一致(取决于为混合特征选择的起点)。

四、关于关系

关系(也被称为参数关系)是使用者自定义的符号尺寸和参数之间的等式。关系捕获特征之间、参数之间或组件组件之间的设计关系,

因此,允许使用者来控制对模型修改的影响作用。

关系是捕获设计知识和意图的一种方式。和参数一样,它们用于驱动模型-改变关系也就改变了模型。

关系可用于控制模型修改的影响作用、定义零件和组件中的尺寸值、为设计条件担当约束(例如,指定与零件的边相关的孔的位置)。它们用在设计过程中来描述模型或组件的不同部分之间的关系。关系可以是简单值(例如,d1=4)或复杂的条件分支语句。

关系类型

有两种类型的关系:

·等式 - 使等式左边的一个参数等于右边的表达式。这种关系用于给尺寸和参数赋值。例如:

简单的赋值:d1 = 4.75

复杂的赋值:d5 = d2*(SQRT(d7/3.0+d4))

·比较 - 比较左边的表达式和右边的表达式。这种关系通常用于作为一个约束或用于逻辑分支的条件语句中。例如:

作为约束:(d1 + d2) > (d3 + 2.5)

在条件语句中;IF (d1 + 2.5) >= d7

五、增加关系

可以把关系增加到:

·特征的截面(在草绘模式中,如果最初通过选择“草绘器”>“关系”>“增加”来创建截面)。

·特征(在零件或组件模式下)。

·零件(在零件或组件模式下)。

·组件(在组件模式下)。

当第一次选择关系菜单时,预设为查看或改变当前模型(例如,零件模式下的一个零件)中的关系。要获得对关系的访问,从“部件”

或“组件”菜单中选择“关系”,然后从“模型关系”菜单中选择下列命令之一:

·组件关系 - 使用组件中的关系。如果组件包含一个或多个子组件,“组件关系”菜单出现并带有下列命令:

─当前 - 缺省时是顶层组件。

─名称 - 键入组件名。

·骨架关系 - 使用组件中骨架模型的关系(只对组件适用)。

·零件关系 - 使用零件中的关系。

·特征关系 - 使用特征特有的关系。如果特征有一个截面,那么使用者就可选择:获得对截面(草绘器)中截面(草绘器)中关系的

访问,或者获得对作为一个整体的特征中的关系的访问。

·数组关系 - 使用数组所特有的关系。

注释:

─如果试图将截面之外的关系指派给已经由截面关系驱动的参数,则系统再生模型时给出错误信息。试图将关系指派给已经由截面之

外关系驱动的参数时也同样。删除关系之一并重新生成。

─如果组件试图给已经由零件或子组件关系驱动的尺寸变量指派值时,出现两个错误信息。删除关系之一并重新生成。

─修改模型的单位元可使关系无效,因为它们没有随该模型缩放。有关修改单位的详细信息,请参阅“关于公制和非公制度量单位”

帮助主题。

六、关系中使用参数符号

在关系中使用四种类型的参数符号:

·尺寸符号 - 支持下列尺寸符号类型:

─d# - 零件或组件模式下的尺寸。

─d#:# - 组件模式下的尺寸。组件或组件的进程标识添加为后缀。

─rd# - 零件或顶层组件中的参考尺寸。

─rd#:# - 组件模式中的参考尺寸(组件或组件的进程标识添加为后缀)。

─rsd# - 草绘器中(截面)的参考尺寸。

─kd# - 在草绘(截面)中的已知尺寸(在父零件或组件中)。

·公差 - 这些是与公差格式相关连的参数。当尺寸由数字的转向符号的时侯出项这些符号。

─tpm# - 加减对称格式中的公差;#是尺寸数。

─tp# - 加减格式中的正公差;#是尺寸数。

─tm# - 加减格式中的负公差;#是尺寸数。

·实例数 - 这些是整数参数,是数组方向上的实例个数。

─p# - 其中#是实例的个数。

注释:如果将实例数改变为一个非整数值,Pro/ENGINEER将截去其小数部分。例如,2.90将变为2。

·使用者参数 - 这些可以是由增加参数或关系所定义的参数。

例如:

Volume = d0*d1*d2

Vendor = "Stockton Corp."

注释:

─使用者参数名必须以字母开头(如果它们要用于关系的话)。

─不能使用d#、kd#、rd#、tm#、tp#、或tpm#作为使用者参数名,因为它们是由尺寸保留使用的。

─使用者参数名不能包含非字母数字字符,诸如!、@、#、$。

(完整word版)缓和曲线计算原理

1.2道路线形的基本介绍 道路运输在整个国民经济生活中起着重要作用。道路的新建和改建,测量工作必须先行,所以公路施工测量所承担的任务也是非常大的,为了更好的进行道路施工工作,下面就道路线形进行一下简单的介绍。 一般所说的路线,是指道路中线的空间位置。中线在水平面上的投影称作路线的平面;沿中线竖直剖切再行展开则是路线的纵断面;中线上任一点法向切面是道路在该点的横断面。 无论是铁路、公路还是地铁隧道和轻轨,由于受到地形、地物、地质及其他因素的限制,经常要改变线路前进的方向。当线路方向改变时,在转向处需用曲线将两直线连接起来。因此,线路工程总是由直线和曲线所组成。曲线按其线形可分为:圆曲线、缓和曲线、复曲线和竖曲线等。 公路中线应满足的几何条件是:线形连续平滑;线形曲率连续(中线上任一点不出现两个曲率值);线形曲率变化率连续(中线上任一点不出现两个曲率变化值)。考虑上述几何条件,顾及计算与敷设方便,现代公路平面线形要素由直线、圆曲线和缓和曲线构成,称之为平面线形三要素。其中缓和曲线的曲率半径是从∞逐渐变到圆曲线半径R 的变量。在与直线连接处半径为∞,与圆曲线连接处半径为R ,曲线上任一点的曲率半径与该点至起点的曲线长成反比。 目前公路线形设计已开始使用非对称线形(成为非对称平曲线)设计,特别是在互通立交匝道和山区高速高速公路线形设计中,这种线形设计使用得较多。非对称线形分为完全非对称线形和非对称非完整线形两种,所谓“完全非对称曲线”的含义就是第一缓和曲线和第二缓和曲线起点处(ZH 或HZ )的半径为∞,圆半径为R ,第一缓和曲线长1s l ,第二缓和曲线长为2s l ,12s s l l ≠。所谓“非完整”的含义是第一缓和曲线和第二缓和曲线的半径不是∞,而是1 R 、2 R 。而坐标法成为高速公路放样的主要方法,坐标法放样 线路中线的这个操作过程中,最重要的一部就是计算线路放样点的坐标。 2 路线中桩坐标计算原理 在实际工程中,线路的设计由专门的设计方完成,在线路完成设计得到审批后设计方便把所设计线路的线路要素(或者称为曲线要素)提供给施工方。所提供的曲线要素一般包括:线路中各曲线段的起点坐标、起点里程、起点半径、终点坐标、终点里程、终点半径、交点坐标、曲线参数、转角(包括用一定的符号表示左右转)、两条切线长(起点与终点各所对应的两条切线)、曲线长。当然不同的工程项目所提供的曲线要素也不一样,以上所述的要素是大多数设计方会提供的,有的设计方在提供上述要素的前提下,还提供曲线段的外距、中点坐标、弦长或者走向方位角等要素,供施工方在计算

格林公式及其在曲线积分求解中的应用

南昌工程学院 《数分选讲》课程设计题目格林公式及其在曲线积分求解中的应用 课程名称数分选讲 系院理学院 专业信息与计算科学 班级2012级1班 学生姓名魏志辉 学号2012101316 指导教师禹海雄 设计起止时间:2015年6月11日至2015年6月15日

什么是曲线积分?? 1.设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插 入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σf(x,y)i*ds,记λ=max(ds) ,若Σf(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ; 其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2.曲线积分的类别: 曲线积分分为:对弧长的曲线积分(第一类曲线积分) 对坐标轴的曲线积分(第二类曲线积分) 两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。 3.两种曲线积分的联系: 对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx; 或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对 坐标轴的曲线积分了。

三角函数公式大全81739

三角函数公式大全三角函数定义 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系:

公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系: 记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数

名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项 数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

缓和曲线计算公式

缓和曲线计算公式 缓和曲线计算公式: 缓和曲线参数: 0=A L R ? 缓和曲线长度R A L ÷=20 缓和曲线半径÷=2A R 0L 所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A 及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

高中三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) = cot(A+B) =cot(A-B) = 倍角公式 tan2A =Sin2A=2SinA?CosA Cos2A =Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式 sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosA tan3a = tana·tan(+a)·tan(-a) 半角公式 sin()=cos()= tan()=cot()= tan()== 和差化积 sina+sinb=2sincossina-sinb=2cossin cosa+cosb = 2coscoscosa-cosb = -2sinsin tana+tanb= 积化和差 sinasinb = -[cos(a+b)-cos(a-b)]cosacosb = [cos(a+b)+cos(a-b)] sinacosb = [sin(a+b)+sin(a-b)]cosasinb = [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sinacos(-a) = cosa sin(-a) = cosacos(-a) = sina sin(+a) = cosacos(+a) = -sina sin(π-a) = sinacos(π-a) = -cosa sin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =

缓和曲线计算公式

高速公路的线路(缓和曲线)计算公式 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角: α ⑥点ZH 的坐标:x Z ,y Z 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 x Z ,y Z 为点HZ的坐标 ? 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l

②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: 当只知道HZ 点的坐标时,则:

l为到点HZ的长度 α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反 x Z ,y Z 为点HZ的坐标 ? 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)——第一缓和曲线长度 l 1 ——第二缓和曲线长度 l 2 l ——对应的缓和曲线长度 R——圆曲线半径

R ——曲线起点处的半径 1 ——曲线终点处的半径 R 2 P ——曲线起点处的曲率 1 P ——曲线终点处的曲率 2 α——曲线转角值 四、竖曲线上高程计算 (上坡为“+”,下坡为“-”)已知:①第一坡度:i 1 (上坡为“+”,下坡为“-”) ②第二坡度:i 2 ③变坡点桩号:S Z ④变坡点高程:H Z ⑤竖曲线的切线长度:T ⑥待求点桩号:S

缓和曲线要素及计算公式

缓和曲线要素及计算公式 缓和曲线:在直线与圆曲线之间加入一段半径由无穷大逐渐变化到圆曲线半径的曲线,这种曲线称为缓和曲线。 缓和曲线的主要曲线元素 缓和曲线主要有ZH 、HY 、QZ 、YH 、HZ 5个主点。 由此可得: q P R q T T h ++=+=2 tan )(α R P R E h -+=2 sec )(α s h L R L 2180)2(0+-=πβα 180 )2(0R L y πβα-= 式中:h T -缓和曲线切线长 h E -缓和曲线外矢距 h L -缓和曲线中曲线总长 y L -缓和曲线中圆曲线长度

缓和曲线与圆曲线区别: 1. 因为缓和曲线起始端分别和直线与圆曲线顺滑的相接,因此必须将原来的圆曲线向内移动一段距离才能够接顺,故曲线发生了内移(即设置缓和曲线后有内移值P 产生) 2. 缓和曲线的一部分在直线段,另一部分插入了圆曲线,因此有切线增长值q; 3. 由于有缓和曲线的存在,因此有缓和曲线角0β。 缓和曲线角 0β的计算: R L S 2/0=β(弧度)= R L S π90 (度) 内移值P 的计算: ()m R L P S 242 = 切线增长值q 的计算: )(240223 m R L L q S S -= P -缓和曲线内移值 q -缓和曲线切线增长值 0β-缓和曲线首或尾所采用的缓和曲线段分别的总缓和曲线角。 S L -缓和曲线两端各自的缓和曲线长。 R -缓和曲线中的主圆曲线半径 α-偏转角

缓和曲线主点桩号: ZH 桩号=JD 桩号-h T HY 桩号=ZH 桩号+S L QZ 桩号=HY 桩号+2y L YH 桩号=QZ 桩号+ 2 y L HZ 桩号=ZH 桩号+h L 另外、QZ 桩号、YH 桩号、HZ 桩号还可以用以下方式推导: QZ 桩号=ZH 桩号+ 2 h L YH 桩号=HZ 桩号-S L HZ 桩号=YH 桩号+S L 切线支距法计算坐标: 缓和曲线段内坐标计算如式: 2 2540S P p L R L L -=X s P RL L Y 63 = 进入净圆曲线段内坐标计算如式: ?? ??????- ?? ???+=R L L R q X s p π1802 sin ? ??????????- ?? ? ?? -???+=R L L R P Y s p π1802cos 1

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

曲线积分与曲面积分

第十章 曲线积分与曲面积分 一、 基本内容要求 1. 理解线、面积分的概念,了解线、面积分的几何意义及物理意义,能用线、 面积分表达一些几何量和物理量; 2. 掌握线、面积分的计算法; 3. 知道两类曲线积分及两类曲面积分的联系; 4. 掌握格林公式,并能将沿闭曲线正向的积分化为该曲线所围闭区域上的二重 积分; 5. 掌握曲线积分与路径无关的充要条件,并能求全微分为已知的某个原函数, 注意此时所讨论问题单连通域的条件不可缺少; 6. 掌握高斯公式,并能将闭曲面Σ外侧上的一个曲面积分化为由其所围空间闭 区间Ω上的三重积分。 二、 选择 1.设OM 是从O (0,0)到点M (1,1)的直线段,则与曲线积分I=ds e om y x ? +2 2不相等的积分是:( ) A)dx e x 21 2? B) dy e y 21 02? C) dt e t ? 2 D) dr e r 21 ? 2.设L 是从点O(0,0)沿折线y=1-|x-1| 至点A(2,0) 的折线段,则曲线积分I= ? +-L xdy ydx 等于( ) A)0 B)-1 C)2 D)-2 3.设L 为下半圆周)0(222≤=+y R y x ,将曲线积分I= ds y x L ? +)2(化为定

积分的正确结果是:( ) A) dt t t R )sin 2(cos 0 2+? -π B) dt t t R )sin 2(cos 0 2 +?π C) dt t t R )cos 2sin (0 2+-?- π D) dt t t R )cos 2sin (232 2+-?π π 4.设L 是以A(-1,0) ,B(-3,2) ,C(3,0) 为顶点的三角形域的周界沿ABCA 方向, 则 ? -+-L dy y x dx y x )2()3(等于:( ) A) -8 B) 0 C) 8 D) 20 5.设AEB 是由点A(-1,0) 沿上半圆 21x y -=经点E(0,1)到点B(1,0), 则曲线积分I= dx y AEB ? 3等于:( ) A) 0 B)dx y BE ? 32 C) dx y EB ? 32 D) dx y EA ? 32 三、 填空 1.γβαcos ,cos ,cos 是光滑闭曲面Σ的外法向量的方向余弦,又Σ所围的空间闭区域为Ω;设函数P(x,y,z),Q(x,y,z)和R(x,y,z)在Ω上具有二阶连续偏导数,则由高斯公式,有 ds y P x Q x R z P z Q y R ]cos )(cos )(cos )[( γβα??-??+??-??+??-???? ∑ = 。 2.设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,且

缓和曲线圆曲线计算公式

缓和曲线、竖曲线、圆曲线、匝道(计算公式) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ

计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ

缓和曲线要素及公式介绍

11.2.1 带缓和曲线的圆曲线的测设 为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。 目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。数学表达为: ρ∝1/l 或ρ·l = k ( k为常数) 若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有: ρ·l = R·l0 = k 目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R , 铁路缓和曲线的长度为:l0 = 0.09808V3/R 。 11.2.2 带缓和曲线的圆曲线的主点及主元素的计算 带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。

带缓和曲线的圆曲线的主元素及计算公式: 切线长 T h = q+(R+p)·tan(α/2) 曲线长 L h = 2l0+R·(α-2β0)·π/180° 外矢距 E h = (R+p)·sec(α/2)-R 切线加长 q = l0/2-l03/(240R2) 圆曲线相对切线内移量 p = l02/(24R) 切曲差 D h = 2T h -L h 式中:α为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。 11.2.3 缓和曲线参数推导 dβ = dl/ρ = l/k·dl 两边分别积分,得: β= l2/(2k) = l/(2ρ)

当ρ = R时,则β =β0 β0 = l0/(2R) 若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则: dx = dl·cosβ = cos[l2/(2k)]·dl dy = dl·sinβ = sin[l2/(2k)]·dl 考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线 长度l为参数的缓和曲线方程式: X = l-l5/(40R2l02)+…… Y = l3/(6Rl0)+…… 通常应用上式时,只取前一、二项,即: X = l-l5/(40R2l02) Y = l3/(6Rl0) 另外,由图可知, q = X HY-R·sinβ0 p = Y HY-R(1-cosβ0) 以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2) p = l02/(24R) 若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为: Xi = R·sinψi+q Yi = R·(1-cosψi)+p 11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核

三角函数公式推导和应用大全

三角函数公式推导和应用大全 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数看似很多、很复杂,但只要掌握了三角函数的本质及部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的部规律及本质也是学好三角函数的关键所在 中文名 三角函数公式 外文名 Formulas of trigonometric functions 应用学科 数学、物理、地理、天文等 适用领域围 几何,代数变换,数学、物理、地理、天文等 适用领域围 高考复习 目录 1 定义式 2 函数关系 3 诱导公式 4 基本公式 ?和差角公式 ?和差化积 ?积化和差 ?倍角公式 ?半角公式 ?万能公式 ?辅助角公式 5 三角形定理 ?正弦定理 ?余弦定理 三角函数公式定义式 编辑 锐角三角函数任意角三角函数 图形 直角三角形

任意角三角函数正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典. 三角函数公式函数关系 编辑 倒数关系: ; ; 商数关系: ; . 平方关系: ; ; . 三角函数公式诱导公式 编辑 公式一:设 为任意角,终边相同的角的同一三角函数的值相等:

公式二:设 为任意角, 与 的三角函数值之间的关系: 公式三:任意角 与 的三角函数值之间的关系: 公式四: 与 的三角函数值之间的关系: 公式五: 与 的三角函数值之间的关系:

第十一章曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (),(βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ α d r r r r f ds y x f L )()()sin ,cos (),(22'+=??

缓和曲线计算公式

当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设 第四节圆曲线加缓和曲线及其主点测设 §11—4 圆 曲线加缓 和曲线及 其主点测 设 一、缓和曲 线的概念 二、缓和曲线方程 三、缓和曲线常数 四、圆曲线加缓和曲线的综合要素及主点测设 一、缓和曲线的概念 1、为什麽要加入缓和曲线? (1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。 图11-10(a).(b)为采用外轨超高前、后的情况。 外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线. 缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。 2、缓和曲线必要的前提条件(性质): 在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为: ρ ∝1l 或ρ. l = C (11-4) 式中: C 为常数,称曲线半径变更率。 当l= l o时,ρ= R ,按(11-4)式,应有 C = ρ.l= R .l o (11-5) 符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 3、加入缓和曲线后的铁路曲线示意图(见图11-J)

二、缓和曲线方程 1、加入缓和曲线后的切线坐标系 坐标原点:以直缓(ZH)点或缓直(HZ)点为原点; X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向; Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。 其中:x、y 为P点的坐标;x o、y o为HY点的坐标; ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径 l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长; 2、缓和曲线方程式: 根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为 实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:

三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式汇总 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A 邻边 A C A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。依据: ①边的关系:2 22c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注 意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度( 坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-s inαsinβ cos (α-β)=cosαcosβ+sinαsinβ 三角函数公式汇总1 :i h l =h l α

最新曲线积分与曲面积分习题及答案

第十章 曲线积分与曲面积分 (A) 1.计算()?+L dx y x ,其中L 为连接()0,1及()1,0两点的连直线段。 2.计算? +L ds y x 22,其中L 为圆周ax y x =+22。 3.计算()?+L ds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=, ()π20≤≤t 。 4.计算?+L y x ds e 2 2,其中L 为圆周222a y x =+,直线x y =及x 轴在第一 角限内所围成的扇形的整个边界。 5.计算???? ? ??+L ds y x 34 34,其中L 为内摆线t a x 3cos =,t a y 3sin =??? ??≤≤20πt 在第一象限内的一段弧。 6.计算 ? +L ds y x z 2 22 ,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。 7.计算?L xydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。 8.计算?-+L ydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线 段AB 。 9.计算()?-+++L dz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直 线。 10.计算()()?---L dy y a dx y a 2,其中L 为摆线()t t a x sin -=,() t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧): 11.计算()()?-++L dy x y dx y x ,其中L 是: 1)抛物线x y =2上从点()1,1到点()2,4的一段弧; 2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。

公路缓和曲线原理及缓和曲线计算公式

一、缓和曲线 缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。 1.缓和曲线的作用 1)便于驾驶员操纵方向盘 2)乘客的舒适与稳定,减小离心力变化 3)满足超高、加宽缓和段的过渡,利于平稳行车 4)与圆曲线配合得当,增加线形美观 2.缓和曲线的性质 为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。 S=A2/ρ(A:与汽车有关的参数) ρ=C/s C=A2 由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。 3.回旋线基本方程 即用回旋线作为缓和曲线的数学模型。 令:ρ=R,l h=s 则 l h=A2/R

4.缓和曲线最小长度 缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。a1=0,a2=v2/ρ,a s=Δa/t≤0.6 2)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s) 3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度 超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。 发布日期:2012-01-31 作者:李秋生浏览次数:149 4)从视觉上应有平顺感的要求计算缓和曲线最小长度 缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。 《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。 5.直角坐标及要素计算

缓和曲线的坐标公式及推导

第一章缓和曲线的坐标公式 如图1-1所示,其坐标系是以缓和曲线起点ZH为原点O,以切线为x轴,以过原点的曲线半径为y轴。若原点O至P点的缓和曲线长度为,过P点切线与x轴的交角为β(即半径由∞变至的中心角)。若P有微小变化至P′时,则增长,(x,y)增长(),则有以下关系, 图 1-1 得, (2-1) 由公式(常数)得知,故有

则 将上式代入(1-1)式中,得 即 (2-2) 以及的关系代入上式得 即

以代入上式得 (2-3) 上式即为缓和曲线上任一点直角坐标(x,y)的计算公式。 缓和曲线上任一点P的切线与x轴的交角,称为缓和曲线螺旋角,或称缓和曲线角。其计算可由前面公式得 (弧 度)(2-4) 若将代入(2-4)及(2-3)式中,则有以下结果: (2-5) 上式即为缓和曲线终点HZ(ZH)的坐标及螺旋角的计算公式。

第二章圆曲线要素及计算公式 如图2-1所示,两相邻直线偏角(线路转向角)为,选定其 图 2-1 连接曲线圆曲线的半径为R,这样,圆曲线和两直线段的切点位置ZY点、YZ点便被确定下来,我们称为对圆曲线相对位置起控制作用的直圆点ZY、圆直点YZ 和曲中点QZ为圆曲线三主要点。我们称R、α以及具体体现三主要点几何位置的切线长T、曲线长L、外矢距E和切曲差(切线长和曲线长之差)D为曲线6要素。只要知道了曲线6要素,便可于实地测放出圆曲线。现将圆曲线的元素列下: :转向角(实地测出) R:曲率半径(设计给出)

T:切线长(计算得出) L:曲线长(计算得出) D:切曲差(计算得出) 偏角是在线路祥测时测放出的,圆曲线半径R是在设计中根据线路的等级以及现场地形条件等因素选定的,其余要素可根据以下公式计算: 第三章偏角法测设介绍 偏角法是一种极坐标标定点位的方法,它是用偏角和弦长来测设圆曲线细部。 如图3-1所示,1,2…,,…,n为设计之详测点,邻点间距均为c,弦长 c所对应的圆心角为。当放样至详测点时,可在ZY点置镜,后视JD方向, 拨出偏角,再自-1点量距C和拨出的视线方向交会,即得出点。

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分 定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分. 第一节 对弧长的曲线积分 一、 对弧长的曲线积分的概念与性质 在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ. 如图13-1我们可以将物体分为n 段,分点为 n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ???.取其中的一小段弧i i M M 1-来分 析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点 (),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于 (),i i i s ρξη?.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即 ()∑=?≈n i i i i s y x M 1,ρ. 用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到 1 lim (,).n i i i i M s λρξη→∞ ==?∑ 即这个极限就是该物体的质量.这种和的极限在研究其它问题时也会遇到. 上述结果是经过分割、求和、取极限等步骤而得到的一种和数得极限,这意味着我们已经得到了又一种类型的积分. 抛开问题的具体含义,一般的来研究这一类型的极限,便引入如下定义: 定义13.1 设L 是xoy 面内的一条光滑曲线,函数()y x f ,在L 上有界,用L 上任意插入 图13-1

相关文档
相关文档 最新文档