文档库 最新最全的文档下载
当前位置:文档库 › 地源热泵供暖方案

地源热泵供暖方案

地源热泵供暖方案
地源热泵供暖方案

静海时运花园地源热泵供暖方案

某中学地源热泵技术

供暖方案

诚信务实创新

第一部分地源热泵项目设计

一、项目概况及设计依据

该总建筑面积约22916平方米,节能建筑,其中教学楼分别为2872㎡和2761㎡各一栋,综合教学楼3916㎡,专业教室2545㎡,学生公寓两栋计8722㎡,餐厅2100㎡,其中学生餐厅暂不考虑供暖,机组选用KLSH-160D两台,按照供热需求调剂使用以便节能;地源侧循环泵和用户端循环泵分别按照机组配置;水泵的启用模式与机组启用模式相同,可降低运行费用。地源热泵水源水系统来自室外地下埋管系统,其水系统在闭式PE管路中循环,无须自地下提取地下水。

设计依据

1、甲方提出的设计任务及相关专业提供的条件图;

2、《采暖通风与空气调节设计规范》(GB50019-2003)

3、《地源热泵系统工程技术规范》(GB50366-2005)

4、《民用建筑电气设计规范》JGJ16-2008

5、《民用建筑电气设计手册》

6、《智能建筑设计规范》GB/T50314-2000

7、《智能建筑弱电工程设计施工图集》GBBT-471

8、《建筑电气工程施工质量及验收规范》GB50303-2002

9、《建筑电气通用图集》92DQ1

10、暖通专业要求及暖通专业条件图

二、方案考虑原则

1、在条件允许的情况下,满足建筑物冬季采暖要求;

2、在保证安全可靠的情况下,尽量节省投资费用;

3、在满足使用效果的情况下,尽量节约运行费用;

1

4、尽量满足小区不同建筑物供暖效果一致,室外管网建议采用同程式连接方式;

5、对周边的环境不造成污染和破坏及地质改变。

三、方案设计参数

冬季供暖区域热水供回水温度根据我们过去工程实际运行经验,正常供暖供回水温度达到35/28℃即可满足室内18℃以上要求,实际系统供暖热水温度最高可达到45/40℃,完全满足冬季恶劣气候供暖需求。

四、方案设计说明

1、充分考虑建筑物的使用特点,合理配置冷热量。

2、根据建筑物的建筑特点,住宅楼采用地板采暖。

3、取暖热源由地源热泵机组提供,其特点如下:

标准设计按照国际标准,结合中国实际国情设计,切实满足用户要求;

部件优良进口压缩机及制冷部件,配合进口控制器,保证机组品质优良;

性能卓越计算机辅助优化设计,机组在任何工况下均处于最佳运行状态;

热泵技术可提供7-52 ℃系统冷热水;

节水性能地源侧进水温差可达5℃,较同行业产品节水20-30%;

水源技术可广泛采用各类地温条件;

操作简便全电脑控制,并有备用手动操作系统,不需专人值守;

安全可靠采用电脑控制和多重保护,整机运行安全可靠。

机组寿命长压缩机工作寿命达到50000小时。

4、合理利用地下水温度,采用地埋管方式,实现地埋管系统的长期安全使用,对系统无损害,安全,稳定。地埋管水平连接管部分最浅处离地平面1.5米,最深处一般2米,所以地埋管区域地上不受地面绿化或路面硬化影响。

2

3

用户

地埋管

地源热泵

五、负荷分析与设备选型

根据甲方提供图纸,各楼宇暖通设计参数如下:

照5~0℃工况设计,其机组选型及机组参数如下:

地源热泵机组参数如下: 负荷/功率单位:KW

机房主要设备参数表

1、空调形式分析

以地源热泵系统作为项目的热源,相较于传统的集中供暖来讲初投资少,运行费用低,可人性化供暖,系统运行过程不产生任何污染,是国家倡导的、节能环保的优质方案。

2、地源热泵机组冬季运行费用预测分析(略)

备注:冬季:按机组运行120天计算,循环泵每天运行24小时,机组满负荷运行时间为12小时/天,电费按照0.6元计算。

按照国家普通教育现行作息方式,寒假一般四周28天,且该时间一般为冬季最冷时间,由此测算运行费用为:12.15元/平方米。

3、钻孔数量及造价说明

根据工程经验及高青地质状况分析,在满足使用空间的前提下,此工程地埋管初步设计孔间距均为5m,共钻孔340眼,为机组提供换热源。

PE管材管件选用河北明珠公司PE100级1.6Mpa产品。钻孔由多年专业钻孔经验的

4

钻孔队伍专业施工。

4、水质处理

冷却水采用地下环路式,所有水均经过全自动软水器软化处理,无水量、水质和因使用地源热泵引起的低质改变担忧。地源侧、用户侧水系统进机组时一律加装过滤器,防止污物进入机组;地源侧、用户侧一律安装集、分水器,集分水器安装放气阀、压力表,保证系统排气和压力监测。

5、关于初投资分析列表

地埋管系统投资组成(略)

机房系统投资组成(略)

设备用电缆一律采用国标铜芯电缆,机房管材选用国标热镀锌管,管件采用国标管件。保温采用橡塑保温。

地源热泵系统投资总列表(略)

注:该造价中不包括

1、机房自来水引入;

2、机房主电源引入;

3、机房建筑物的构建;

4、机房基础的预制;

5、工程配合费等其它费用。

5

第二部分、太阳能热水部分

6

一、太阳能方案设计

1. 基本条件及用户要求

1.1 基本情况及要求

学校热水系统将采用太阳能与热泵结合的方式提供热水,当太阳不能满足热水供应或冬季气候寒冷太阳能不足时将由热泵补充供热水或完全由热泵供应热水。

系统主要为教学楼、宿舍、专业教室提供热水,所以系统需考虑备用设备。

单栋宿舍楼共有宿舍104间,每个宿舍住8人,为学生卫生用水,则该系统每天的用水量为20.8T。

集热器和热水箱均放置在楼顶,为各学生提供45℃热水。

1.2 地理位置和气象条件

该地区位于北纬37.22度,东经118.02度附近。

根据美国国家宇航局提供的气象资料,该地区的十年来的平均气象条件为:

水平面上日平均辐射量(kWh/m2/d)

地区每月平均温度(℃)

2.方案设计

2.1 设计方案主要考虑的几个问题

方案设计应充分考虑用户的下列问题,科学设计热水系统,使其达到合理、可靠、先进。

1)根据用户要求,采用太阳能集热器和辅助能源结合为宿舍楼提供生活热水。

2)系统处在山东地区,冬季存在结冰问题,系统设计应充分考虑太阳能及管路的冬季防冻问题。

3)系统设计可实现优先利用太阳能加热;当太阳能不足时,再利用辅助能源补充热能,以达到节能降耗的目的。

7

4)系统设计充分考虑了可靠、耐用、方便管理等问题。

5)在保证工程质量和使用效果的前提下,最大可能降低工程造价。

2.2 本方案设计依据参考以下国家相关标准:

1)GB50364-2005 《民用建筑太阳能热水系统应用技术规范》

2)GB/T17049-1997《全玻璃真空太阳集热管》

3)GB/T17581-1998《真空管太阳集热器》

4)GB/T18713-2002《太阳热水系统设计、安装及工程验收技术规范》

5)GB/T18708-2002《家用太阳热水系统热性能试验方法》

6)NY/T343-1998《家用太阳热水器技术条件》

7)GBJ17-88《钢结构设计规范》

8)GBJ10-89《钢筋砼设计规范》

9)GBJ9-87《建筑载荷规范》

10)GB50015-2003《建筑给排水设计规范》

11)GBJ93—86《工业自动化仪表工程施工及验收规范》

12)GBJ242—82《采暖与卫生工程施工及验收规范》

13)JGJ/T16—92《民用建筑电气设计规范》

14)GBJ131—90《自动供热仪表安装工程质量检验评定标准》

15)《建筑给排水工程规范》(暖通空调规范)

16)GB50057—94《建筑物防雷设计规范》

17)JGJ116—98《建筑抗震加固技术规程》

2.3 系统基本设计

1)选用抗冻性强、热效率高、经济实惠的全玻璃真空管集热器。在零下25℃的条件下,仍可产生洗浴热水。

2) 太阳能集热器分别铺放在楼顶屋面。

3) 太阳能集热器的补水管直接由供水管网提供.

4) 每个热水回水管路安装循环泵,当热水主管道温度低于设定温度时,启动循环。

5) 冬季管路防冻采用防冻循环,防止管路结冰冻坏。

6) 采用北京公司生产的PLC控制器,实现热水系统的全自动化、智能化,确保控制系统的可靠性,实现自动化运行,并具有可以根据用户的实际需要,任意修改控制程序,使系统实现真正意义上的全自动控制和智能化管理。

8

9

2.4 太阳能部分的设计 2.4.1集热器产品主要技术数据:

2.4.2 根据屋顶结构和安装位置,集热器采用W-50/47-1500规格。安装角度为30-50度,此处按45度角计算.

太阳能集热器45度角平面上日平均辐射量(kWh/m 2/d )

Ac=

根据计算,设计安装W-1500/50型太阳能集热器60块,每块集热器集热面积为6.25平米,总集热面积为 平米.

两栋楼共需初投资 万元(不含室内系统投资)。 2.4.3水箱

水箱采用304/2B 进口不锈钢内胆水箱,外敷大于50mm 的聚氨脂发泡保温,并做镀铝锌板外壳。为方便观测储热水箱中水位及避免水箱从上端人孔溢水。

Q w C w (t end -t i )f

J T ηcd (1-ηL )

2.4.4、控制系统

利用独立设计的PLC智能控制柜,对热水系统进行自动化控制,实现各种功能,达到自动控制的要求。

2.4.5、辅助能源

采用热泵作为辅助能源,在太阳能不能够满足用户要求时自动启动辅助能源。

2.4.6、供水系统

太阳能系统作为一次热源,给水箱内的水加热,如果太阳能提供的水温足够,则不启动热泵,直接给用户端供水;如果太阳能提供的水温不能够满足热水温度要求,则启动热泵,把水箱内水加热后再供应给用水端。加装回水系统,保证每个水龙头“一开就有热水”。

2.4.7系统运行原理(附运行原理图)

2.4.8控制系统的功能

(1、水温水位显示:集热器顶部温度处显示集热器顶部温度T1,集热器底部温度处显示集热水箱温度T3,水箱温度处显示恒温水箱温度T4,按向下键一次集热器顶部温度处显示温度T6,集热器底部温度处显示集热器底部温度T2,水箱温度处显示用户管路温度T5,时钟处显示实时时钟,定时时间处显示定时加热时间和定时上水时间,状态显示区显示各种外接负载的运行状态。

(2、温差循环:当集热器顶部温度与集热水箱温度之差T1-T3>7℃(可调)时,水泵P1打开,进行循环,当T1-T3<3℃(可调)时,水泵P1关闭,停止循环。

(3、定温进水:当恒温水箱温度T4大于定温进水温度1且水位小于6格时,电磁阀E1打开,定温补水;到恒温水箱温度T4小于等于此设定温度-2或水位达到6格时,电磁阀E1关闭,停止上水。

(4、集热水箱向恒温水箱定温进水:当集热水箱温度T3大于定温进水温度2

且水位小于6格时,且电磁阀E1不启动,启动泵P3;到T3小于等于此设定温度-2或水位达到6格或电磁阀E1启动时,停止泵P3。

(5、手动上水:电磁阀E1不启动时,手动上水到设定的水位自动停止。

(6、定时上水:电磁阀E1不启动时,自动在设定的时间上水到设定的水位,并自动停止。

(7、自动上水:通过自动上水键启动循环上水功能,当恒温水箱水位低于设定下限水位时且电磁阀E1不启动时,启动泵P3上水到设定上限水位值或电磁阀E1启动时,关闭泵P3停止上水。

10

(8、恒温水箱手动加热:手动启动辅助加热,把恒温水箱内的水加热到电加热设定温度1后停止加热。

(9、恒温水箱定时加热:可任意设定辅助加热定时启动时间(建议设定在下午3时至5时之间)。当恒温水箱温度T4在设定时间前达到电加热设定温度1时,辅助加热自动取消;而当恒温水箱温度在设定时间前未达到此设定温度时,辅助加热自动启动,直到恒温水箱温度T4大于设定值+2时停止加热。真正做到光电互补,既节电又保证全天候使用。

(10、恒温水箱自动加热:可用辅助加热反复循环加热,使恒温水箱温度恒定在电加热设定温度1附近。当恒温水箱温度T4低于此设定温度时,自动启动辅助加热,到恒温水箱温度高于此设定温度+2后停止。

(11、防冻电热带:当温度T6小于防冻设定温度时,防冻电热带启动;当温度T6大于此设定温度+3℃后防冻循环停止。

(12、自动管路循环:若管路温度T5低于设定温度,且恒温水箱温度T4高于此设定值+5℃,启动管路循环泵P2,当T5高于此设定温度+3℃或T4低于此设定温度+3℃,停止P2。

(13、防冻循环功能:当集热器底部温度T2小于设定温度时,水泵P1启动,进行循环防冻;当集热器底部温度T2大于此设定温度+3℃,延时2分钟后防冻循环停止。

(14、高温度保护:当集热器顶部温度T1小于设定温度时,P1不启动(按泵循环按键可启动P1,5分钟后停);当T1小于此设定温度时,恢复启动P1。

(15、低水位保护:当水位为0格时,H2、P2不启动。

(16、停电保持:停电时,控制器内置电池可以维持系统时钟继续运行,可以连续运行1年以上,系统运行参数可以永久保存。

(17、故障报警:将可能发生的故障显示在屏幕上,便于故障确认及维修。

(18、宽电压工作:可以承受较宽的电压波动,耐高压、耐低压幅度较大。

(19、安全防护:设有短路、过流、漏电、过温断电四种安全防护功能。

3、建筑需提供条件

1)太阳能基础需要设置在承重梁上,因此须提供承重梁的位置,集热器部分承重要求为75kgf/m2;

2)提供足够的太阳能集热器的安装面积;

11

12

3)需要提供压力大于0.2Mpa 的水源;

4)控制部分需要提供功率大于20KW 的电源,提供足够功能的辅助能源; 5)提供控制柜的放置位置。

二、经济性能分析

集中供水时燃煤、电和太阳热水系统对比(以宿舍楼太阳能热水系统为例) 1、年费用分析表

燃料热值KJ/公斤(M3)

热效率

日供水量(吨)

161616日能源消耗量(公斤、M3)

能源价格

设备总投资(万元)201532设备使用寿命(年)5615年能源消耗费用(万元)12.230.1 6.0年设备折旧费用(万元)4 2.5 2.1年人工费用(万元)320.5年运输费用(万元) 1.600年设备运行费用(万元)0.30.160.16年维修费用(万元)

0.320.160.08年费用合计(不含设备折旧)17.432.5 6.8年费用合计(含设备折旧)21.4

35.0

8.9

2、经济分析对比图

3、回收年限(Ne)

一般三年左右回收太阳能系统成本。

以上数据均为理论值,部分参考于《民用建筑太阳能热水系统工程技术手册》(由国家发改委、建设部组织编写),仅供参考.

三、售后服务保证

北京公司近年来在全国完成了多个个大面积真空集热管太阳能热水工程项目,以优良的工程质量、良好的产品性能、及时的售后服务赢得了用户的一致好评,公司拥有强大的设计、施工力量,并一直坚持不外包工程,自己施工,确保工程质量。本公司拥有多支对大中型太阳能系统工程具有丰富的安装维修经验和奉献精神的专业施工服务队伍,在全国重点县级市设有专门的维修服务机构。本公司安装的系统在保修期内,属产品质量问题,免费维修;系统保修期过后,酌情收费。因此,我们可以保证:

1.将严格按照用户的要求和国家相关安装工程施工及验收规范如期完成所有的工程安装、调试等工程任务;完工后,由双方分别对太阳能主体工程、供水、补水装置和避雷装置及辅助燃电加热系统等工作情况逐项进行调试及系统试水;各项调试合格后,进行系统总调试。最后取得验收,并交付甲方使用。同时提供相关的工程图纸、产品说明书、使用说明书、操作指南、保修卡等工程资料。

2.建立专门的用户档案,常年专人跟踪售后服务。

3.太阳能中央热水工程的真空管、连箱免费保修五年,其它工程设备免费保修期为一年。工程设备及设备附件在保修期内,因质量问题导致损坏,免费维修、调换。保修期后,维修及部件更换,均优惠收费,只收配件材料费,免收人工费。并提供终身优惠维修保养。

4.专门为甲方免费培训二名技术人员,使该技术人员能处理日常系统维护与维修事宜。在工程系统完工验收合格后,保证贵方能熟练并正确掌握使用和正常维护方法,我方派专职售后服务人员定期进入小区免费监控整个系统运行情况,负责整个系统的维护和管理及时处理各种相关问题。直到贵方相关技术人员能熟练并正确掌握相关管理和维护方法为止。

5.甲方的技术人员不能解决的一般系统故障,将由公司山西长治市服务中心安排售后服务技术人员在接到报修电话半小时内赶到现场,5小时内排除故障。

6.如果遇到重大故障或紧急抢修,本公司保证派技术人员24小时之内随叫随到。

7.零部件从预订至到货的时间期限为24小时。

13

水源热泵机组在供暖系统中的应用

水源热泵机组在供暖系统中的应用 [摘要] 针对目前地热供暖应用的现状,介绍了一种全新的地热+高温水源热泵的供暖方案。在比较了各种常规的供暖模式的经济及环保效益的同时,为低温地热水、地热尾水中低品位余热水资源提供了一种高效、合理的利用途径。 [关键词] 水源热泵地热供暖地热尾水节能环保 一、概述 1、项目简介 某干休所共有建筑面积6万平方米,为满足冬季供热及生活热水的需求,建设方拟采用地热井水+水源热泵技术联合供暖方式为住宅小区冬季采暖提供热源,根据当地的地质结构及有关技术资料,现计划打地热井1口(井深3800米),单井出水量55T/h,温度90℃。综合考虑初投资及运行费用,并本着最大限度利用地热水资源的原则,拟定采暖方式为:用地热水给小区一次供暖,供热后的尾水由水源热泵进行能量提升为采暖系统再次供热,从而降低尾水排放温度适合生活用热水要求,最大限度的利用水资源。从长期运行的角度出发,对该方案的节能效益进行以下技术经济分析。 2、热泵技术原理 热泵是一种能从自然界的空气、水或者土壤中获取低品位热量,经过电力做功,输出可用的高品位热能的设备。热泵可以把消耗的高品位电能转换为3倍甚至3倍以上的热能,是一种高效供能技术。本文所要叙述的热泵系统是利用水源热泵机组从中低温水中吸收热量供采暖用热,可以实现能源的二次利用,大大提高能源利用率,节约地热水的用量,是一条变废为宝的节能途径。 由于热泵是取之自然界中的能量,效率高,没有任何污染物排放,是当今最清洁、经济的能源方式。在资源越来越匮乏的今天,作为人类利用低温热能的最先进方式,热泵技术已在全世界范围内受到广泛关注和重视。在我国热泵技术是国家重点推广的能源技术之一,目前在国内已经获得了广泛的应用。 二、技术方案 小区建筑冬季采暖热负荷为3000KW,生活热水负荷为1200KW。采暖末端使用地幅热,因此要求供水温度为55℃,回水温度为45℃。采用水源热泵供暖系统的原理示意图如图1所示。 本系统中,地热井出来的90℃、55T/h的地热水由除砂器处理后,经过供暖一级板式换热器和生活热水换热器换热后的水温降为46℃;再经过采暖二级板式换热器换热后出水温度降为20℃排出。活塞式水源热泵机组水源侧进水温度

空气源热泵项目设计方案

空气源热泵项目设计方案公司是集科研、生产、销售、服务于一体的专业制作中央空调、净化空调的高科技技术企业。先后与全国著名高等学府、通用机械研究院等单位进行技术合作,科研攻关,通过把高科技成果产品化,坚持技术创新,发展具有自主知识产权的专利技术,生产研发出了高效能的中央空调系列产品。 公司定位于节能减排的可再生能源和新能源产业领域。公司主导产品地源热泵、污水源热泵、工业废热余热型热泵、海水源热泵、水冷冷水机组、水冷离心机组、空气源热泵机组等热泵系列产品及中央空调、净化空调末端系列产品,是利用浅层地热能、污水热能、工业废热余热、海洋热能、空气能等低品位的可再生能源和新能源的重要技术装备产品。公司生产制造的热泵系列产品已为超过4000万平方米的建筑提供可再生能源供热热源和供冷冷源,年运行节能量超过40万吨标准煤。 十二五期间,公司将为社会提供10000台热泵机组,以年节约100万吨标准煤为目标,有效降低温室气体和有害气体的排放,为祖国节能减排事业贡献力量! 我们珍惜每一个客户的选择和认可,敬重每一个客户的批评和建议,感关心和支持世纪昌龙的每一个朋友和合作伙伴。我们将继续以优良的售后服务,巩固并拓展销售市场,真诚地希望与您携手共创辉煌。 2、产品简介 公司专业生产经营热泵型中央空调系列,目前公司产品已发展到第四代、拥

有十大系列一百五十多个型号。 公司产品主要分为中央空调主机和空调末端设备两大单元; 中央空调主机单元主要包括:水源热泵、地源热泵和空气源热泵三大板块; 空调末端设备单元主要包括:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调等。 (1)中央空调主机单元 从热源利用上:既可利用地下水,又可利用河水、湖水等地表水、工业废水、城市污水、洗浴污水以及油田回注水等;从压缩机选型上:既有半封闭螺杆式机组、全封闭涡旋式机组,又有离心式机组;从换热器选型上:既有钎焊板式换热器、干式、满液式换热器,又有套管换热器。从形式上:既有风冷式,也有水冷式。 (2)空调末端单元 公司空调末端设备单元共分为四大系列,两百多个产品规格,从形式上可分为:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调器等;从送风方式上分为:独立送风设备和集中送风设备;从送风质量上分为:室自然风循环设备和净化加湿设备;从静音方式上可分为:普通型和高静音型;

污水源热泵用于集中供暖的技术经济分析

污水源热泵用于集中供暖的技术经济分析 摘要:污水源热泵技术正在越来越得到人们的关注。本文提出了利用污水源热泵技术代替传统供热锅炉方案用于集中供暖的方案。并且以武汉某居住小区为例,评价了污水源热泵用于冬季集中供暖的经济性,和其它供暖形式相比较得出了乐观的结论。并且根据污水源热泵的特点对污水源热泵技术应用于集中供暖提出了具体可行的改进方法,以进一步提高污水源热泵机组的经济性和可行性。 关键词: 污水源热泵;集中供暖;技术经济分析 0 引言 年来,在暖通空调领域,污水源热泵的发展越来越得到人们的关注。虽然污水源热泵技术在国外早有应用[1],但其在国内也是近年来才有了长足的发展。污水源热泵是利用城市污水作为冷热源的水源热泵,由于城市污水的一系列特点[2],使得污水源热泵在节能性和环保性等方面较传统热泵机组形式有较大的优势。 由于城市污水在冬季的温度较其它热泵空调的热源要高很多,在使用高温水源热泵机组的情况下,热泵机组出水温度可达到直接供暖的要求,所以在冬季利用污水源热泵供暖是一项非常有潜力的技术。本文以在冬季利用污水源热作为小区供暖热源方案,和普通供暖锅炉方案作一个定量的技术经济分析。比较对象为现在比较常用的几种集中采暖形式:燃煤锅炉、燃气锅炉和燃油锅炉。 1集中供暖条件的确定 1.1集中供暖概况 武汉市是我国著名的重工业特大城市,每年污水排放量非常大。而且武汉市气候特征为夏季炎热,冬季湿冷。但是由于武汉市一般累年日平均温度低于或等于5℃的日数为59天[3],没有达到60天的最低供暖要求,所以不属于国家强制冬季集中采暖城市。但是随着人民生活水平的日益提高,对冬季采暖的要求也日渐强烈。在当前大规模的城市供热管网没有修建之前,在各小区建设集中供暖使用的锅炉房或热泵房是最佳选择。 本章以武汉市已建成的某小区为研究对象,该小区总供暖面积为50000m 2,供暖热指标按60W/m 2计算[4]。 1.2计算供暖热负荷 为正确计算该小区在采暖时期的热负荷,采用绘制热负荷延续时间图[5]的方法。供暖热负荷延续时间图的数学表达式如下。 () ?????-='0'1n n Q R Q Q b n n β zh N N N ≤<≤55 (1) ' ' 05w n w t t t --=β (2)

水源热泵供暖制冷系统运维管理合同

***********新能源开发有限责任公司 ******人民医院水源热泵供热供冷系统 投资运维管理合同 协议编号: 签署日期: 签署地点:

甲方: 乙方:**********新能源开发有限责任公司 依据《中华人民共和国合同法》和其他有关法规,经甲、乙双方协商,就有关事项达成如下合同,双方同意严格执行本合同规定的所有条款。 一、建设经营范围 1、乙方投资范围 (1)热泵机房:热泵机房内水源热泵机组、循环水泵组等主要设备及辅助设施的购置及安装;热泵机房内管道及附件等的购置及安装;设备配电及自控系统的安装; (2)室外水源井换热系统:水源井钻凿施工以及水源井至机房联络管线的敷设施工; (3)室外冷却塔系统:冷却塔设备及其附属管线的购置及安装。 2、甲方负责建设内容 (1)热泵机房土建,热泵机房内的设备基础,冷却塔设备基础,及机房内通风、给排水、消防、照明等配套设施建设; (2)出机房后1米的供回水管线、建筑内的空调末端系统的建设和运营管理; (3)电力电源引入建设; (4)其它协调工作。 二、维护运营时间 经营时间为20年,即由乙方对本项目进行投资、设计、建设、

运营、收费,并对项目拥有所有权。运营即收费年限为20年(不含建设期)。 三、合同价款及付款方式 1、方案一 免收冬、夏季配套费。 由36元/m2让利至30元/m2(采暖季每天0.25元/m2,比县定标准0.26元/m2降低1分;制冷收费标准由45元/m2让利至40元/m2。(按照每个供暖、制冷季为120天)。 供暖收费参考标准标准:****市收费标准为:36元/m2(采暖季每天每平方米0.30元);汝阳县收费标准为31.2元(每天每平方米0.26元)。 2、方案二 免夏季配套费,冬季接口费标准由50元/m2让利至40元/m2,则共计507万元。 供暖收费标准由由36元/m2让利至27.6元/m2(采暖季每天0.23元/m2,比县定标准0.26元/m2降低3分;制冷收费标准由45元/m2让利至35元/m2。(按照每个供暖、制冷季为120天)。 3、付款时间 付款以人民币通过银行给付,统一汇至中标人的基本银行账户。具体付款幅度如下: 每个供暖/供冷季前十日内支付供暖费。

地源热泵工作原理 供暖、制冷

地源热泵工作原理地源热泵原理图 舒适100网2010-7-9 12:00:38 .shushi100. 地源热泵是一种绿色技术,地源热泵工作原理是利用地热资源将低位能量转化成高位能量从而达到节能的目的,地源热泵能效比一般可以达到5以上,比普通的中央空调要节能40%以上,目前我国也在大力倡导地源热泵中央空调系统,很多专家认为,地源热泵将是中央空调的未来和趋势。 地源热泵为什么如此节能呢,这要从地源热泵工作原理说起,地源热泵主要是利用了地能和水能,和太阳能一样,他们都是免费可再生能源。下面我们通过地源热泵原理图为大家详细介绍一下地源热泵工作原理,看看地源热泵是如何节能的。 地源热泵原理简述 作为自然现象,正如水由高处流向低处那样,热量也总是从高温流向低温,用著名的热力学第二定律准确表述:“热量不可能自发由低温传递到高温”。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以地源热泵实质上是一种热量提升装置,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这就是地源热泵节能的原理。

地源热泵原理图 地源热泵工作原理 地源热泵系统是从常温土壤或地表水(地下水),冬季从地下提取热量,夏季把建筑的热量又存入地下,从而解决冬夏两季采暖和空调的冷热源。 夏季通过机组将房间的热量转移到地下,对房间进行降温,同时储存热量,以备冬用。冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。 地源热泵原理图

地热联合水源热泵供暖工程设计方案

地热联合水源热泵供暖工程设计方案 二0一九年十二月

目录 前言 (3) 第一章工程基本情况 (4) 一、工程概况 (4) 二、方案设计理念 (4) 三、热泵的优良特性 (5) 第二章地源热泵工程配置设计 (9) 一、方案设计依据 (9) 二、负荷计算 (9) 三、机房设备配置 (9) 四、系统自动化控制 (10) 第三章系统投资预算及运行成本分析 (12) 一、机房系统整体投资概算 (12) 三、系统运行成本分析 (13) 第四章工程设计施工与售后服务保障 (14) 一、产品质量保障 (14) 二、技术服务保障................................................... 错误!未定义书签。

前言 本工程是地热水联合水源热泵采暖工程,工程位于********。 本方案按本工程特点,采用地热水和地下水式地源热泵实现整体供暖的设计方案。通过总体技术方案论证与分析,主要经济技术指标如下:

第一章工程基本情况 一、工程概况 1、项目简介 本工程为位于******,总建筑面积为130000㎡,末端采用地板辐射采暖。根据甲方提供的信息,现有65℃的地热井水80m3/h可供使用,为小区供暖。 2、气候条件 清苑区年平均气温12℃,年降水量550毫米,属于温带季风性气候。四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,秋季凉爽舒适。冬冷夏热,雨热同期,来此旅游一般以夏秋季为宜。 3、工程要求 设计冬季室温18℃-20℃。 二、方案设计理念 本工程为居住建筑,设计与施工必须符合我国现行建筑节能措施的节能型建筑规范。按地质条件,本工程具备采用热泵新能源绿色环保空调采暖供热的热源条件,在保证室内环境舒适度的条件下,保障小区清洁与低碳人文环境。因此,本工程设计方针是环保、节能、高效、稳定、耐用。设计原则是充分、合理、安全利用岩土层自然资源。设计宗旨是实现国家可再生能源综合应用绿色建筑要求,达到最佳投资性价比。 依据地理位置、气象条件、建筑类型、建筑规模、岩土层、舒适度条件等要求:第一,按照负荷指标法计算冷热负荷;第二,按地下水源热泵系统特有的比压、比焓、比熵参量计算热泵机组理论循环焓值与理论动力配置,计算热泵机组理论能效比。系统方案将全程贯穿科学有据、节能节省、实效优化的设计理念,达到用户满意的最佳设计与施工效果。

地源热泵方案书

地源热泵 一、地源热泵介绍 实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。2004年国家发展和改革委员会发布了中国第一个《节能中长期专项规划》:加快太阳能、地热等可再生能源在建筑物的利用。2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。 地源热泵技术是利用地能或地表浅层地热资源的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低这一特点进行能量转换的空调系统。地源热泵通过输入少量的高品位能源(电能),即可实现能量从低温热源向高温热源的转移。在冬季,把土壤中的热量“取”出来,提高温度后供给室内用于采暖;在夏季,把室内的热量“取”出来释放到土壤中去,并且常年能保证地下温度的均衡。 地源热泵在结构上的特点是有一个由地下埋管组成的地热换热器,它通过循环液(水或以水为主要成分的防冻液)在封闭地下埋管中的流动,实现系统与大地之间的能量转换。 因为地源热泵只使用电力,没有燃烧过程,对周围环境无污染排放;不需使用冷却塔,没有外挂机,不向周围环境排热,没有热岛效应,没有噪音;不抽取地下水,不破坏地下水资源,所以在最新颁布的《中国应对气候变化国家方案》中提出:积极扶持风能、太阳能、地热能、海洋能等的开发和利用。积极推进地热能的开发利用,推广满足环境和水资源保护要求的地热供暖、供热水和地源热泵技术。

二、地源热泵系统构成与原理 地源热泵(也称地热泵)是利用地下常温土壤和地下水相对稳定的特性,通过深埋于建筑物周围的管路系统或地下水,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移与建筑物完成热交换的一种技术。 地球是一个巨大的蓄热体,一年四季其地表5m以下的土壤温度十分稳定,是一种取之不尽、用之不竭的可再生能源。地源热泵机组工作原理就是在夏季从土壤或地下水中提取冷量,由热泵原理通过空气或水作为载热剂降低温度后送到建筑物中,而冬季,则从土壤或地下水中提取热量,由热泵原理通过空气或水作为载冷剂提升温度后送到建筑物中,从而实现的热交换过程。需要特别指出的是:地热泵中的冷热源不是指地下的热汽或热水,而是指一般的常温土壤、地表水、地下水。 地埋管热泵系统以导热好、抗腐蚀、强度高且可绕曲的材料制成

地源热泵在解决农村采暖问题中大显身手

地源热泵在解决农村采暖问题中大显身手 2009-3-14 农村冬季采暖现状的分析 冬季采暖的方式从某种意义上来说,可以认为是衡量居民生活质量高低的标准之一。对于生活在农村的居民来说,采暖的投入是占了家庭支出中比例较大的一部分。在何谓新农村建设的解释中,新房舍是“五新”之一,那新房舍的采暖及选择什么样的能源实现供暖也就必然成为了一个重要的现实问题。 北京英沣特能源技术有限公司总经理庄永卫在接受记者采访时说,他们公司曾对农村采暖市场进行过一些调研,在总结调研结果时他们认为,目前,我国农村广大地区居民的采暖形式还是比较落后,以燃煤为主,甚至一些地区仍然烧柴。因为目前适合农村选用的新型采暖技术不多,有相当一部分农民家中选用燃煤的土制采暖炉采暖(土暖气),甚至很多地区仍靠小煤炉、火炕等取暖。 北京市科委的一份调查报告也说明了此情况:2006年,北京市科委在北京市10个远郊区县组织开展了农村能源调研工作,共走访1000户农民家庭,获得有效调研问卷900余份,初步摸清了农村能源利用的“家底”。 调研结果显示:北京农村居民家庭能源消费基本上完成由初级能源向商品能源的转化。农村家庭平均年用煤2.9吨,用电920kW?h ,液化气3~4罐。在家庭总能源消费中,煤炭占74%,电力占13%,液化气占8%,秸秆等生物质能源仅占5%。农村居民家庭能源消费2.9吨煤中用于采暖的达到2.3吨,比例接近80%。按照热量折算,家庭能源消费中的60%左右用于冬季采暖,78%的家庭认为采暖负担重。北京10个远郊区县农业户籍家庭年总燃煤量高达300万吨(折标煤215万吨),用于采暖240万吨(折标煤170万吨、CO2445万吨、SO21.45万吨、NOx1.26万吨)。 通过以上调查报告中数据分析看出:在北京近郊的农村家庭尚如此,在边远地区和经济不发达地区的农村里,居民采暖问题更是迫切需要改变的。由此,我们认为,解决农村的采暖问题应是新农村建设中能源问题的重点方向。 地源热泵技术在农村推广应用的瓶颈

水源热泵分析

水源热泵供暖系统供水温度的确定 因为水源热泵供暖系统能够将通常情况下不能被直接利用的低位热能从水源中取出,提升后并加以利用,具有良好的节能环保特性。现针对利用水源热泵系统进行供暖时,其供水温度的选择问题进行分析。 1、供水温度对水源热泵机组运行的影响 在冬季供暖工况下,如果水源热泵低温热源侧的进出口水温不变,则水源热泵的供水温度越高,其制热性能系数(cop值)就越低,提供相同的热量所需的运行费用就越高。COP=38.126△t-0.633,△t=(th.i+th.o)/2-(tc.i+tc.o)/2 2、合理的供水温度选择 通过上面的计算可知,利用水源热泵机组进行冬季供暖时,供水温度越低,机组的cop值就越大,经济性越好,但供水温度也不能太低,否则将导致末端散热设备过大或无法满足散热设备对供水温度的内在要求。显然合理的供水温度应该是既能满足用户的用热需求,同时又有最佳的经济性。 3、如果水源热泵机组供水温度过高,水流量不变的情况下,蒸发压力即吸气压力会增加,同样的对应的制热量也会增加,消耗功率也会增加。,主要原因是因为对机组而言,过高的蒸发器水体温度,会导致蒸发压力过高,而对特定的冷煤系统在应用过程中,冷凝压力是一个定值,这个时候压差比就比较小,压差比小就意味着压缩机而言回油会受到很大的影响,无法保证热泵系统的正常工作,温度过高也会烧坏压缩机。

解决设想方案 日本在1980年代开展了超级热泵计划,开发出4类热泵,其中有利用45度余热水,制热出水温度85的中高温热泵,以及利用80度余热水,产出150度蒸汽的高温热泵。 欧洲有采用改进离心压缩机性能技术路线的高温热泵,采用R134a制冷剂,三级离心压缩模式,制热出水温度可以达到85度。 一般需要解决以下几个关键技术问题。 1.压缩机的选择:热泵设备常用的压缩机类型主要是螺杆压缩机、全封闭涡旋压缩机与半封闭活塞压缩机等,经过对不同类型压缩机工作特性进行比较研究,高温热泵设备一般选用全封闭涡旋压缩机。 2.工质的选择:为保证高温热泵设备在稳定的可允许的工作压力下运用,采用特殊的制冷剂为工质,换热效率高并对环境无污染,对臭氧层无破坏作用。 3.氟路系统控制的优化:保证整体机组的长时间高温稳定运行和使用寿命,并根据环境温度和蒸发温度,自动调节高温空气热泵设备运行工作状态和调件。

热泵测试验收方案及标准

热泵测试验收方案及标准-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

热泵测试验收方案及标准 1、验收参考规范: GB50300-2001《建筑工程施工质量验收统一标准》 GB50242-2002《建筑给水排水及采暖工程施工质量验收规范》 GB50235-《工业金属、管道工程施工及验收规范》 GBJ126-89《工业设备及管道绝热工程施工及验收规范》 JBJ29-96《压缩机、风机、泵安装工程施工及验收规范》 GB50150-91《电气装置安装工程电气设备交接试验标准》 2、测试项目: (1)、室内热水设备安装是否合符规范,安装是否水平、垂直,是否存在渗水、漏水,运行是否正常。 (2)、管道安装、保温安装是否合符规范,是否水平;管道是否存在热桥效应,是否存在渗水、漏水;保温是否严密,有无出现遗漏未保温管段。 (3)、控制系统、监视系统安装是否符合规范,是否达标书安装要求。 3、测试工具: 试压泵,压力表,温度表,垂线坠,皮尺,水平尺,钳形表,欧姆表,计时表等4、测试方法: 观察,尺量,计时测温,计时测压,水压试验,测电流电压,运行观察。 5、验收手段、验收方法、验收标准 (1)、水压试验:在管道安装完工即保温之前,将水管充满水后密封,采用增压设备,往系统管道加压至,10min内压力降不不超过;然后降至工作压力进行检查,压力不降,不渗、不漏;观察检查,不得有残余变形.受压元件金属壁和焊缝上不不得有水珠和水雾;视为合格。 (2)、启动所有的系统,检测系统设计是否合理,并能保证每个系统能达到招标文件或投标文件的要求; (3)、设备调试后,启动热泵,开机运行24小时,检测: A、设备运行是否正常,有无故障; B、记录当时的气温、冷水温度t1、加热水量M、耗电量K、停机时热水温度 t2,然后根据下列公式计算热泵在对应的环境温度下的COP值,检测实际的COP值是否与投标数据一致:

地源热泵系统与传统供热对比分析

一、什么是地源热泵 我们先来简单的认识一下什么的地源热泵,地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种,热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备。地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方。通常热泵都是用来做为空调制冷或者采暖用的。地源热泵还利用了地下土壤巨大的蓄热蓄冷能力,冬季地源把热量从地下土壤中转移到建筑物内,夏季再把地下的冷量转移到建筑物内,一个年度形成一个冷热循环。 二、一般比较: 地源热泵中央空调和传统中央空调相比,最大的特点就在于它的节能性,这也是很多用户不顾高额初投资选择地源热泵中央空调的原因,地源热泵除了节能外,还有很多的优点,我们可以通过与传统中央空调的对比来分析地源热泵到底具有哪些优势,为什么如此深受用户青睐。 地源热泵中央空调与传统中央空调对比:环境保护 从土壤源热泵的整个运行原理来看,土壤源热泵系统实际是真正意义的绿色环保空调,不管是冬季还是夏季的运行,都不会对建筑外大气环境造成不良影响。而普通中央空调系统,将废热气或水蒸气排向室外环境,无一例外的都对环境造成了极大的污染。以地球表 面浅层地热资源作为冷热源,利用清洁的、近乎无限可再生的能源,符合可持续发展的战略要求。地源热泵中央空调与传统中央空调对比:运行效率 对于普通中央空调系统,不管是采用风冷热泵机组还是采用冷却塔的冷水机组,无一例外的要受外界天气条件的限制,即空调区越需要供冷或供热时,主机的供冷量或供热量就越不足,即运行效率下降,这在夏热冬冷地区的使用就受到了影响。而土壤源热泵机组与外界的换热是通过大地,而大地的温度很稳定,不受外界空气的变化而影响运行效率,因此,土壤源热泵的运行效率是最高的。 地源热泵中央空调与传统中央空调对比:经济方面 地源热泵系统还可以集采暖、空调制冷和提供生活热水于一体。一套热泵系统可以替换原有的供热锅炉、制冷空调和生活热水加热的三套装置或系统,从而减少使用成本,十分经济。 地源热泵中央空调与传统中央空调对比:运行费用 地源热泵系统在运行中的节能特点也是显而易见的:通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量,其制冷、制热系数可达4以上,与传统的空气源热泵相比,要高出40%,其运行费用为普通中央空调的50%~60%。达到相同的制冷制热效率,土壤源热泵主机的输入功率较小,即为业主提供了较低运行费的空调系统,在全年时间使用空调的场所,这种效果尤为明显。锅炉只能将70%~90%的燃料内能为热量,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省约二分之一的能量。 地源热泵中央空调与传统中央空调对比:主机设置 对于普通中央空调系统,若设置风冷热泵机组进行冷热空调,则风冷热泵主机的设置必须要与外界通风良好,要么设置于屋顶,要么设置于地面,这对别墅空调受限就更严重。而土壤源热泵主机的设置就非常灵活,可以设置在建筑物的任何位置,而不受考虑位置设置的限制。若设置冷水机组+锅炉进行冷热空调,冷却塔和锅炉的位置就更受限制。因此,就主机的设置而言,地源热泵系统的主机设置是非常灵活的。. 地源热泵中央空调与传统中央空调对比:系统简单 一机多用,节约设备用房,应用范围广。地源热泵可供暖、空调,还可用于生活热水供应系统,一套系统可替代锅炉加空调的两套系统,因此一机多用,节省了建筑空间及设备的初投资,机组紧凑,节省设备用房空间,由此而产生的经济效益相当可观。 地源热泵中央空调与传统中央空调对比:无需除霜 大地土壤温度一年四季相对保持恒定,冬季也能保持在15℃以上,埋地换热器不会结霜,可

海水源热泵为养殖池加热Word版

青岛科创新能源科技有限公司 海水源热泵供热系统简介 海水养殖目前在渔业领域中占据着很大的一部分,对于海水养殖的收获成果,水温的控制占据着十分重要的位置,适宜物种生存的温度会增加养殖户的收入。针对水温过低会致使海产品生长缓慢甚至死亡的现象,需要对养殖池中的水温进行控制。目前水产养殖冬季加温或保温的传统措施主要有:电热棒加热,锅炉加热(燃油、煤、柴等)、搭建塑料大棚保温等。这些传统的加热方式不但效率低,而且会造成环境污染以及浪费,并且运行成本也比较高。而近几年随着热泵技术的快速发展,利用水源热泵技术采暖空调变得普及起来,因此实施应用海水源热泵供热系统为养殖池供热提供了新的途径。在水产养殖的应用中,海水源热泵系统并不是直接给养殖用水加热。而是利用热泵技术从海水中提取低温热量供热,实现海水热能资源化。通过热泵的运转,以消耗25%左右的电能,从该温度的海水中提取75%的热量,可得到100%的供热量,进而加热系统内部的末端水的温度,变热后的末端水,经过铺设在养殖池中的换热器用热传递的原理使养殖水体慢慢升温,从而达到保持水温的目的。海水源热泵供热系统属于当前国家重点鼓励和扶持的海洋新能源和高效节能减排、环保领域。 项目背景及公司简介

海水源热泵技术的开发为利用可再生能源提供了强有力的手段,从而满足了节约能源和环境保护的要求。由于海水的质量热容大,传热性能好,因此沿海地区拥有大量海水的地方,海水是理想的冷热源,而且与传统的加热方式相比,设计安装良好的海水源热泵具有明显的优势。但由于海水源热泵系统属于新兴产业,虽然从事本行业的相关企业众多,但这些企业又大多没有自主知识产权和工程技术经验,造成大量海水源热泵供热工程项目出现一系列问题,包括运行效果不好、运行成本过高、不节能、甚至以失败告终等。而科创公司的技术团队是我国较早从事海水源热泵系统研究与应用的研发队伍,有一批教授、研究员、博士等组成的高层次研究团队,具有丰富的研究开发和工程实施经验(其中,西德博士1名,省部级突贡专家1名),同时联合哈尔滨工业大学、青岛大学、哈尔滨机械研究所等,具备高能力、高水平的人员背景和产学研支撑条件。先后开发了近50项相关专利技术与设备,并进行了投产转化,建设了我国大型热泵供热系统示范工程50余项,累计建筑面积达千万平方米以上,承担了十二五科技支撑、科技惠民等大量的国家、省部级科研项目,并获得了省部级技术发明一等奖、专利奖等。公司还承担建设了山东省低值能源供热工程技术研究中心、青岛市热泵供热工程技术研究中心以及青岛市余热利用与热泵专家工作站等平台的建设。工作原理 相对其他热泵系统而言,海水水质条件极其恶劣,利用过程中又

地源热泵供暖实施方案

地源热泵供暖方案

————————————————————————————————作者:————————————————————————————————日期:

静海时运花园地源热泵供暖方案 某中学地源热泵技术 供暖方案

第一部分地源热泵项目设计

一、项目概况及设计依据 该总建筑面积约22916平方米,节能建筑,其中教学楼分别为2872㎡和2761㎡各一栋,综合教学楼3916㎡,专业教室2545㎡,学生公寓两栋计8722㎡,餐厅2100㎡,其中学生餐厅暂不考虑供暖,机组选用KLSH-160D两台,按照供热需求调剂使用以便节能;地源侧循环泵和用户端循环泵分别按照机组配置;水泵的启用模式与机组启用模式相同,可降低运行费用。地源热泵水源水系统来自室外地下埋管系统,其水系统在闭式PE管路中循环,无须自地下提取地下水。 设计依据 1、甲方提出的设计任务及相关专业提供的条件图; 2、《采暖通风与空气调节设计规范》(GB50019-2003) 3、《地源热泵系统工程技术规范》(GB50366-2005) 4、《民用建筑电气设计规范》JGJ16-2008 5、《民用建筑电气设计手册》 6、《智能建筑设计规范》GB/T50314-2000 7、《智能建筑弱电工程设计施工图集》GBBT-471 8、《建筑电气工程施工质量及验收规范》GB50303-2002 9、《建筑电气通用图集》92DQ1 10、暖通专业要求及暖通专业条件图 二、方案考虑原则 1、在条件允许的情况下,满足建筑物冬季采暖要求; 2、在保证安全可靠的情况下,尽量节省投资费用;

污水源热泵系统与集中供热系统对比

污水源热泵系统与集中供热系统对比 原生污水源热泵原理: 在高位能的拖动下,将热量从低位热源流向高位热源的技术。它可以把不直接利用的低品位热能(如空气、土壤、水、太阳能、工业废热等)转化为可利用的高位能,从而达到节约部分高位能(煤、石油、天然气、电能等)的目的。 在制冷状态下,污水源热泵原理是通过压缩机对冷媒做工,使其进行汽——液转化的循环。通过蒸发器内冷媒的蒸发将由风机盘管循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷凝器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至城市原生污水里。在室内热量不断转移至地下的过程中,通过风机盘管,以13℃一下的冷风的形式为房间供冷。 在制热状态下,污水源热泵原理是通过压缩机对冷媒做功,并通过换向阀将冷媒流动方向换向。由地下的水路循环吸收地下水或土壤里的热量,通过冷凝器内的冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过蒸发器内冷媒的冷凝,由风机盘管循环将冷媒所携带的热量吸收。在城市原生污水中的热量不断转移至室内的过程中,以35℃以上热风的形式向内供暖。 污水源热泵原理优势特点: 1)利用可再生能源,环保效益好 污水源热泵原理利用了城市原生污水中丰富的热量资源作为冷热源,进行能量转换的供暖制冷空调系统。城市原生污水是一个巨大的能量采集器,巨大的城市废热从市政污水管路中排出,这种储存于城市原生污水中的能源数以清洁的,可再生能源。 2)高效节能,运行费用低 污水源热泵原理是采用温度恒定的城市原生污水作为能源,能效比COP在4.5~5.0之间,比空气源热泵高出40%左右,污水源热泵机组运行费用比常规中央空调低30%~40%左右。 3)运行安全稳定,可靠性高 无燃烧设备,无爆炸隐患,使用安全。如使用燃油、燃气锅炉供暖,其燃烧产物对居住环境污染极重,影响人们的生命健康。污水源热泵机组利用常年温度稳定的城市原生污水,夏季不会向大气中排除废热,加剧城市的“热岛效应”;冬季不受外界气候影响,运行稳定可靠,不存在空气源热泵除霜和供热不足的问题。4)空调主机以及多用,便于布置,使用范围广泛 空调主机体积小,污水源热泵机组安装在储藏室等辅助空间,既可制冷,又可制热,也不需要高的入户电容量。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可替换原来的锅炉加空调的2套装置或系统;可应用于宾馆、

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

地源热泵冬季供暖测试及传热模型

地源热泵冬季供暖测试及传热模型3重庆建筑大学 魏唐棣☆ 胡鸣明 丁 勇 刘宪英 提要 概述了国外地源热泵的发展情况,报告了在所建设的15kW浅埋竖管换热器地源热泵试验装置上做的冬季供暖效果测试,建立了地下浅埋套管式换热器的传热模型。 关键词 地源热泵 地下浅埋套管式换热器 冬季供暖 传热模型 M e a s ure m e nt a n d h e a t tr a nsf e r m o d e lli n g of a s h a ll o w b uri e d gr o u n d s o ur c e h e a t p u m p i n wi nt e r h e a ti n g o p e r a ti o n By Wei T angdi★,H u M ingming,Ding Y ong and Liu X ianying Abs t r a c t Out li ne s d e ve l op me n t of GS HP(g r ound s our c e he a t p ump)a b r o a d,r e p o r t s t he me a s ur e me n t d one t o a15kW GS HP wi t h s ha ll ow buri e d ve r t i c a l t ub e he a t e xc ha ng e r s i n he a t i ng op e r a t i on mo d e,a nd e s t a bli s he s a he a t t r a ns f e r mo d e l. Ke yw o r ds g r ound s our c e he a t p ump,s ha ll ow buri e d t he rma l w e ll t yp e und e r g r ound e xc ha ng e r,he a t i ng i n wi n t e r,he a t t r a ns f e r mo d e l ★Chongqing Jianzhu University,China ① 1 概述 地源热泵是以大地为热源对建筑进行空调的技术。冬季通过热泵将大地中的低位热能提高品位对建筑供暖,同时蓄存冷量,以备夏用;夏季通过热泵将建筑物内的热量转移到地下对建筑进行降温,同时蓄存热量,以备冬用。夏热冬冷地区供冷和供暖天数大致相当,冷暖负荷基本相同,用同一系统,可以充分发挥地下蓄能的作用。地下蓄能系统的埋管可环绕建筑布置;可布置在花园、草坪、农田下面或湖泊、水池内;可布置在土壤、岩石或地下水层内;也可在混凝土桩基内埋管。不必远距离输送,不必大面积开挖,也不占用地面,实是一种节能、对环境无害的绿色空调设备,符合可持续发展的要求。 “地源热泵”(GSHP)的名称最早出现在1912年瑞士的一份专利文献中,20世纪50年代欧洲出现了利用地源热泵的第一次高潮。在此期间,Ingersoll和Plass根据K elvin 线源概念提出了地下埋管换热器的线热源理论,但当时由于能源价格低,系统造价高,未得到广泛应用。70年代,石油危机把人们的注意力集中到节能、高效益用能,使地源热泵的发展进入了又一次高潮,此时地下埋管已由早期的金属管改为塑料管。这个时期欧洲建立了不少水平埋管换热器的地源热泵,但主要用于冬季供暖。80年代初开始,美国、加拿大开展了冷暖联供地源热泵方面的研究工作,不少文献报道了地源热泵不同形式地下埋管换热器的传热过程及模型,并有部分工程的运行总结和性能比较。 到目前为止,“地源热泵”的命名尚不统一,国外文献[1]称“地源热泵”(GSHP),文献[2]称“地耦合式热泵”(GCHP),文献[3]称“土壤—水热泵”;国内文献[4,5]称 3本文属国家自然科学基金资助项目,批准号为59778007“土壤热源热泵”,“土壤热泵”,“土地热源热泵”,“大地耦合式热泵”等;1997年建设部下发的《住宅产业现代化试点技术发展要点》中称作地热源热泵。考虑到“热泵”的科学含义一个重要内容是“热源”,地源热泵突出了“热源”,而且简单顺口,笔者采用“地源热泵”这一名称。 笔者查阅了美国、加拿大80年代中期到90年代中期建成的冷暖联供的数十个地源热泵的工程实例[6,7],大多数采用的是U形竖埋管换热器,按其埋管深度可分为浅层(<30m),中层(30~100m)和深层(>100m)三种,埋管深,地下岩土温度比较稳定,传热模型比较简单,钻孔占地面积较少,但相应会带来钻孔、钻孔设备的经费和高承压PVC管的造价增加。根据笔者的实践比较,埋深10~15m 的竖管要比埋深80~100m造价低60%~80%。国外在中、深层埋管换热器传热模型及工程实例方面的文献报道较多,但浅层埋管方面文献报道甚少,本文研究主要集中在浅层埋管换热器地源热泵的试验及传热模型的建立。 2 试验装置及测试仪表 根据竖埋单管试验结果[8],套管式换热器比U形管换热器传热效率高20%~25%,故试验装置采用了埋深10m 的套管式换热器5排15根埋管,错排布置,间距1.5m,孔洞与套管之间的缝隙用钻孔回收的岩浆回填。为了研究水平埋管换热器和冷暖地板的性能,还安装了3m×4m,深2 m和1m的两层水平蛇形管,室内地板下埋设了冷暖地板蛇形换热盘管。地下埋管换热器按总换热量15kW设计, ? 2 1 ?专题研讨 2000年第30卷第1期 ①☆魏唐棣,男,1963年2月生,讲师,在读博士研究生 400045重庆市沙坪坝区重庆建筑大学城建学院 (023)65121806 收稿日期:1999-08-31

最新全套游泳池供热(热泵方案)

恒温游泳池热水热泵设备选型方案 项目名称 室内标准恒温游泳池热源设备 项目要求 1、室内恒温游泳池贮水约320M3,表面积220M2。 2、采暖和除湿热负荷99.7kw 3、泳池恒温加热200kw,补水加热功率70kw 4、选用热源设备对泳池加热及恒温(室内恒温游泳池池水温度宜在 25~30 ℃左右,这里取28℃即可)。 3、环境温度低于15℃时开始预热,常州地区冬天冷水温度按10℃计算。 设备选型方案 选用4台RMRB25SR空气源热泵热水机组(并联)对泳池加热恒温和空调采暖。 备注:RMRB25SR热泵的泳池工况如下:输入/输出功率:22KW/86KW,冷凝温度:28℃,蒸发温度10℃。 泳池加热设备选型计算 1.给水系统 选择循环过滤给水系统 将已弄脏了的游泳池水,经过净化、消毒等过程达到符合游泳水质要求后,再送如游泳池重复使用的给水系统。

初次预热 预热时间根据供水条件和使用要求确定。一般按24-48小时来计算。 补充水 补充水量:由泳池水面蒸发的水量、过滤设备冲洗水量、游泳池排污水量、溢流水量、游泳者身体带走的水量等部分组成;参考《设计手册》:室内公共池每天的补水量泳池容积的百分数5%~15%,这里取15%; 初次充水、补水方式:水源为城市自来水时,应设置补给水箱或利用平衡水池间接进行,以防止回流污染水源或设备;游泳池专用水源时,可以直接补水。 补给水箱或平衡水池的容积:公共游泳池按50L/平方米计算(这里需要25吨水)。 2、水的循环 循环周期以及循环流量 公共池的循环周期一般取8个小时,则循环流量为: 循环水流量=1.1×游泳池的水容积÷循环周期 = 1.1×320 m3÷8H = 45m3/h 水泵的扬程按循环管道、净化设备、加热设备阻力和水泵与水位高差计算确定。过滤器阻力按设备确定。 3、水的加热与恒温(保持在28℃左右) 游泳池的初次预热(24-48个小时) 320M3的泳池水在24-48小时内从10℃加热到28℃。 泳池的补充水量:320M3×15%÷8小时=6M3/小时 泳池加热恒温

风冷热泵与水源热泵制供热方案

风冷热泵方案与水源热泵制冷供暖方案 一、项目概况 北京某办公楼位于城南,该办公楼为改造项目,地上五层,地下一层,总建筑面积约8000平米。需解决夏季空调制冷,冬季供暖问题,全年保持室温在18℃-25℃。 二、制冷供暖解决方案 1、风冷热泵加辅助电加热方案 利用风冷热泵实现夏季制冷,冬季供暖考虑到风冷热泵机组在室外温度-8℃时启动困难,需增加辅助电加热。 2、水源热泵方案 该方案要求在建筑物附近打三口井,井深80-100米,一口抽水,出水量为100M3/h,两口井回灌,保持地下水资源稳定,利用井水作为冷热源,水源热泵机组夏季制冷,冬季供暖满足办公楼要求。 三、负荷计算及机组 1. 设计依据、范围及原则 本方案包含某办公楼的空调制冷供暖系统,包括冷热源、设备选型及末端系统方案。能够独立实现夏季制冷,冬季供暖。保证大楼的正常使用。 2. 空调冷热负荷计算 考虑到该建筑主要为办公室,根据国家标准单位建筑面积制冷负荷选取100W/M2, 建筑总冷负荷约为800KW。单位建筑面积供暖热负荷选取60W/M2, 建筑总热负荷约为480KW。3. 机组设备选型及技术参数 选择方案时应该考虑节省投资和保障该建筑正常制冷供暖要求。风冷热泵机组设计装机容量为835.2KW,配置风冷热泵机组MTD-80SH叁台。水源热泵机组设计装机容量为930KW,配置水源热泵机组MSRB80壹台。 表一机组选型 项目风冷热泵水源热泵 设备名称风冷冷(热)水机组水源热泵机组 设备型号 MTD-80SH MSRB80 数量 3台 1台

单台制冷量 278.4KW 930KW 单台制热量 304KW 1116KW 总制冷量 835.2KW 930KW 总制热量 912KW 1116KW 总耗电量 262.2KW 178.8KW 单台外形尺寸长 4320mm 3640mm 宽 2110mm 1300mm 高 2130mm 2200mm 表中机组的设计装机容量基本满足大楼的需求。 4.风冷热泵机组由于存在在室外温度-8℃时启动困难,需增加功率为480KW的辅助电加热设备,解决在严寒情况下供暖问题。 5.水源热泵机组对水资源要求严格,需要井水温度、流量稳定。必要时,应设置独立换热站,把井水与机组隔离。 四、风冷热泵机组与水源热泵机组的特点 1、风冷热泵机组的特点 (1)风冷冷(热)水机组采用模块化设计,完全不必设置备用机组,运行过程中电脑自动控制,调节机组的运行状态,使输出功率与工作环境的实际利用率相协调。 (2)模块化机组的可靠性高,该机组由数个模块组成,任何模块的临时检修停运都不会影响整机的正常运行,大大提高了整个空调系统的合理性和可靠性。 (3)机组可任意放置屋顶或地面,没有机房设施和冷却水塔系统,不占用有效使用面积。同时安装施工工作大为简便。 (4)由于机组在运行过程中是全电脑自动控制,所以日常不需要专业技术人员管理维护。(5)风冷热泵有不足之处,由于在室外温度-8℃时启动困难,需增加辅助电加热。 2、水源热泵的特点 水源热泵机组以水为载体,冬季采集来自湖水、河水、地下水及地热尾水,甚至工业废水、污水的低品位热能,借助热泵系统,通过消耗部分电能,将所取得的能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。该机组具有设计标准、选择优良、操作简便、安全可靠等优点。由于水源热泵技术利用地表水作为空调机组的制冷制热的源,所以其具有以下优点: (1)环保效益显著

相关文档
相关文档 最新文档