文档库 最新最全的文档下载
当前位置:文档库 › 喷雾干燥法制备微胶囊方法

喷雾干燥法制备微胶囊方法

喷雾干燥法制备微胶囊方法
喷雾干燥法制备微胶囊方法

Journal of Microencapsulation,June2005;22(4):377–395

Preparation of cross-linked chitosan microspheres

by spray drying:Effect of cross-linking agent on the properties of spray dried microspheres

K.G.H.DESAI1&H.J.PARK1,2

1School of Life Sciences and Biotechnology,Korea University,Sungbuk-ku,Seoul,South Korea,

and2School of Life Sciences and Biotechnology,Korea University and Department of Packaging Science,Clemson University,Clemson,SC,USA

(Received4September2004;accepted10December2004)

Abstract

Chitosan microspheres cross-linked with three different cross-linking agents viz,tripolyphosphate (TPP),formaldehyde(FA)and gluteraldehyde(GA)have been prepared by spray drying technique. The influence of these cross-linking agents on the properties of spray dried chitosan microspheres was extensively investigated.The particle size and encapsulation efficiencies of thus prepared chitosan microspheres ranged mainly between4.1–4.7m m and95.12–99.17%,respectively.Surface morphol-ogy,%erosion,%water uptake and drug release properties of the spray dried chitosan micro-spheres was remarkably influenced by the type(chemical or ionic)and extent(1or2%w/w)of cross-linking agents.Spray dried chitosan microspheres cross-linked with TPP exhibited higher swelling capacity,%water uptake,%erosion and drug release rate at both the cross-linking extent (1and2%w/w)when compared to those cross-linked with FA and GA.The sphericity and surface smoothness of the spray dried chitosan microspheres was lost when the cross-linking extent was increased from1to2%w/w.Release rate of the drug from spray dried chitosan microspheres decreased when the cross-linking extent was increased from1to2%w/w.The physical state of the drug in chitosan-TPP,chitosan-FA and chitosan-GA matrices was confirmed by the X-ray diffrac-tion(XRD)study and found that the drug remains in a crystalline state even after its encapsulation. Release of the drug from chitosan-TPP,chitosan-FA and chitosan-GA matrices followed Fick’s law of diffusion.

Keywords:Chitosan microspheres,spray drying,tripolyphosphate,formaldehyde,gluteraldehyde,swelling, erosion,sustained release

Introduction

There has been considerable interest in recent years in developing controlled or sustained drug delivery systems by using biopolymers.Controlled or sustained release drugs provide many advantages in comparison with conventional forms:reduced side effects,drug Correspondence:Professor H.J.Park,307,School of Life Sciences and Biotechnology,Korea University,1,5-Ka,Anam-Dong, Sungbuk-ku,Seoul-136-701,South Korea.Tel:82232903450.Fax:8229535892.E-mail:hjpark@korea.ac.kr

ISSN0265-2048print/ISSN1464-5246online#2005Taylor&Francis

DOI:10.1080/02652040500100139

378K.G.H.Desai&H.J.Park

concentration kept at effective levels in plasma and improved utilization of drug and decrease the dosing times(Kim et al.2002).Of the different drug delivery systems,nano or microparticles based drug delivery systems gained significant importance(Ravi Kumar 2000).With the attractive properties and wider application range,they occupy unique position in drug delivery technology(Ravi Kumar2000).The use of microspheres-based therapy allows drug release to be carefully tailored to the specific treatment site through the choice of appropriate formulation https://www.wendangku.net/doc/ab788142.html,ing innovative microencapsulation technologies and by modifying the polymeric matrix,microspheres can be developed into an optimal drug delivery system which will provide desired release profile(Benita1996; Ravi Kumar2000).

Chitosan,a natural biopolyaminosaccharide,is obtained by alkaline deacetylation of chitin that is found widely in nature.Chitosan has attracted significant interest in recent years.This is largely due to the proposed novel application of the polymer in phar-maceutical,food and various industrial and biotechnological fields.These applications are possible because of the polymer reactive groups and their biodegradability,low toxicity and biocompatibility(Hejazi and Amiji2003).Due to the easy availability of free amino groups in chitosan,it carries a positive charge and,thus,in turn reacts with many negatively charged surfaces/polymers(Ko et al.2002).This principle has been used for the produc-tion of chitosan microcapsules and microspheres to control drug release(Hejazi and Amiji2003).Chitosan microspheres are most widely studied drug delivery systems for the controlled release of drugs viz.antibiotics,anti-hypertensive agents,anti-cancer agents, anti-inflammatory agents,proteins,peptide drugs and vaccines(Sinha et al.2004). Chitosan microspheres can be synthesized by a number of different techniques such as solvent evaporation,spray drying,coacervation,emulsification/internal gelation and suspen-sion cross-linking(Sinha et al.2004).

Although numerous techniques are available for the synthesis of microparticles,spray drying technique is widely used in the pharmaceutical industries because of its numerous advantages over other methods.The advantage of spray drying technique for applica-tion to microencapsulation is that it is reproducible,rapid and easy to scale up(Masters 1991;Benita1996;He et al.1999;Sinha et al.2004).Spray drying technique can be used to produce dry powders,granules or agglomerates from drug-excipient solutions and suspensions(Wang and Wang2002).The particle size of the microparticles prepared by spray drying technique ranged from microns to several tens of microns and had a relatively narrow distribution(Masters1991).Recently,a number of articles have been published describing the preparation of controlled release microparticles by such a spray drying tech-nique.For example,microparticles composed of the water soluble polymers used as the carrier for intra-articular delivery of dexamethasone(Pavenetto et al.1994)or sustained release dosage form(Maa and Prestrelski2000)for the delivery of acetazolaminde (Di Martino et al.2001),butorophanol(Chang and Li2000),dexamethasone hydrochloride and toremifene citrate(Kortesuo et al.2000),erythromycin and clarithromycin(Zgoulli et al.1999).Water insoluble polymer polylactic acid or poly(lactide co-glycolide)was prepared for the delivery of rifampicin(Bain et al.1999a,b,O’Hara and Hickey2000) and gentamycin(Prior et al.2000).

Ideally,a delivery system might be developed to release a drug at precisely the rate it is required for different application.Chitosan-based microspheres have been prepared by spray drying technique(He et al.1999;Huang et al.2002;2003a,b;Filipovic-Grcic et al. 2003).However,as an unfavourable factor,spray dried chitosan microspheres swell quickly in water and release the encapsulated drug immediately(Genta et al.1995).The drug release kinetics from spray dried chitosan microspheres is affected by the concentration

Preparation of cross-linked chitosan microspheres379 and molecular weight of the chitosan,solubility of the drugs,especially the chitosan matrix(cross-linked or non-cross-linked)(He et al.1999).Therefore,non-cross-linked spray dried chitosan microspheres are unsuitable for sustained drug delivery(Genta et al. 1995;He et al.1999).In order to stabilize the spray dried chitosan microspheres,cross-linking agents such as GA and FA have been used(He et al.1999).In an earlier work (Desai and Park2005),TPP has been demonstrated as a new stabilizing agent for the preparation of chitosan microspheres by spray drying technique covering the influence of concentration and molecular weight of the chitosan and drug loading on the properties of spray dried chitosan-TPP microspheres.However,the effect of different cross-linking agents on the properties of spray dried chitosan microspheres is not studied so far.

In continuation of the ongoing programme of research to develop the chitosan based microspheres for the release of drugs(Ko et al.2002;Lee et al.2003),one now reports the influence of three different cross-linking agents(TPP,FA and GA)on the proper-ties(%encapsulation efficiency,size,surface morphology,%erosion,%swelling and release behaviour)of spray dried chitosan microspheres.Therefore,the objective of the pre-sent study was to prepare the chitosan-TPP,chitosan-FA and chitosan-GA microspheres by spray drying technique through a novel process as well as to examine the influence of the above mentioned three different cross-linking agents on the properties of thus prepared microspheres.Acetaminophen was used as a model drug candidate.

Materials and methods

Materials

Acetaminophen(99.5%purity)was purchased from Kanto Chemical Co.,Inc.(Tokyo, Japan).Chitosan(medium molecular weight)was purchased from Sigma-Aldrich Chemie (Steinheim,Germany).The average molecular weight of chitosan was determined by batch mode method using multi-angle laser light scattering(MALLS)photometer according to the method of Chen and Tsaih(1998).The average molecular weight of the chitosan was found to be1.336?106.The%N-deacetylation of chitosan was determined by the 1NMR spectroscopy method(Hirai et al.1991;Lavertu et al.2003).The degree of

deacetylation of the chitosan was found to be82.10%.FA(35%)and GA(25%)were purchased from Showa Chemicals(Japan).All other chemicals were of analytical grade and used as received.Ultrapure water(Millipore,USA)water was used throughout the study.

Preparation of cross-linked chitosan microspheres by spray drying

Model drug,acetaminophen(0.5%w/v)was dissolved in300ml of1%v/v acetic acid solution.Then the chitosan was dissolved in the drug solution by stirring it overnight.About 10ml of different cross-linking agents(see Table I)(TPP or GA or FA)was added dropwise into the aqueous chitosan-drug solution with constant stirring at8000rpm for30min using a Young Ji HMZ20DN stirrer(Hana Instruments).Thus prepared chitosan-TPP-drug or chitosan-GA-drug or chitosan-FA-drug solution was then spray dried to obtain the cross-linked chitosan microspheres loaded with the drug.Spray drying was performed using a SD-05spray drier(Lab Plant,UK),with a standard0.5mm nozzle.Spray drying conditions such as inlet temperature,liquid flow and drying air flow were set at170 C, 2ml minà1,1.2m3minà1,respectively.The atomizing air pressure was60kPa.When the liquid was fed to the nozzle with peristaltic pump,atomization occurred by the force of the compressed air,disrupting the liquid into small droplets.The droplets,together with

hot air,were blown into a chamber where the solvent in the droplets was evaporated and discharged out through an exhaust tube.The dry product was then collected in a collection bottle.The preparation process of cross-linked chitosan microspheres through a novel process by spray drying method is shown in Figure 1.

Loading efficiency

About 10mg of drug-loaded chitosan-TPP or chitosan-GA or chitosan-FA micro-spheres were dissolved in 50ml of 0.1N HCl.The solution was passed through

Table I.Preparation of crosslinked chitosan microspheres by spray drying method.

Formulation code Chitosan concentration (%w/v)Chitosan

molecular weight

Cross-linking agent Cross-linking extent (%w/w)Drug loading (%w/v)F1

1.0 1.336?106Tripolyphosphate 10.5F2

1.0 1.336?106Tripolyphosphate 20.5F3

1.0 1.336?106Formaldehyde (35%)10.5F4

1.0 1.336?106Formaldehyde 20.5F5

1.0 1.336?106Gluteraldehyde (25%)10.5F6 1.0 1.336?106Gluteraldehyde 20.5

Spray dried chitosan-TPP or chitosan-FA or chitosan-GA

microspheres loaded with acetaminophen

Figure 1.Preparation process of cross-linked chitosan microspheres by spray drying.

380K.G.H.Desai &H.J.Park

a0.22m m membrane filter(Millipore,USA)and then the drug content was assayed by measuring the absorbance at201nm( max of acetaminophen in0.1N HCl)after suitable dilution using UV spectrophotometer(Shimadzu1601PC,Japan).Experiments were performed in triplicate(n?3)and loading efficiencies were calculated using equation(1).

Loading efficiencye%T?Calculated drug concentration

Theoretical drug concentration

?100e1T

Measurement of particles size

Spray dried chitosan microspheres exhibited quick swelling in liquid medium and,hence, sizes could not be determined using a laser diffraction technique in a particle size analyser. Therefore,the particle size was determined by microscopy.Briefly,$5mg of cross-linked chitosan microspheres were taken on a glass slide and sizes of$200spherical particles were measured each time(n?3)by using a biological microscope(Olympus,Japan).

Erosion study

Spray dried placebo chitosan-TPP,chitosan-FA and chitosan-GA microspheres(200mg) were immersed in phosphate buffer solution(pH7.4)and stirred at100rpm for6h. After6h,microspheres were separated by centrifuge(3000rpm,10min)and dried in a temperature controlled oven(JEIO TECH,FO600M,South Korea)at40 C for24h to dry the microspheres completely;these were weighed to calculate the mass loss. Surface morphology

The surface morphology of the spray dried chitosan microspheres cross-linked with TPP, FA and GA was examined by means of Hitachi(Japan)scanning electron microscope.The powders were previously fixed on a brass stub using double-sided adhesive tape and then were made electrically conductive by coating,in a vacuum,with a thin layer of platinum ($3–5nm),for100s and at30W.The pictures were taken at an excitation voltage of15kv and a magnification of1.8,2,3.5,4,4.5or800k.

Swelling study

The dynamic swelling properties of the spray dried chitosan-TPP,chitosan-FA and chitosan-GA microspheres in the dissolution medium(phosphate buffer solution,pH7.4) were determined.Spray dried chitosan-TPP,chitosan-FA and chitosan-GA microspheres of known weight(200mg)without containing the drug were placed in phosphate buffer solution(pH7.4)for a period of6h.The swollen chitosan-TPP,chitosan-FA and chitosan-GA microspheres were collected by a centrifuge and the wet weight of the swollen microspheres was determined by first blotting the particles with filter paper to remove absorbed water on surface and then weighing immediately on an electronic balance. The weight of the swollen microspheres was determined at a pre-determined time period (0.5,1,2,4and6h)to accuracy of0.01mg using an electronic balance.The percentage

Preparation of cross-linked chitosan microspheres381

喷雾干燥塔的知识,工作原理、操作规程、故障修复

1、干燥速度快,完成只需数秒钟; 2、适宜于热敏性物料干燥; 3、使用范围广:根据物料的特性,可以用于热风干燥、离心造粒和冷风造粒,大多特性差异很大的产品都能用此机生产; 4、由于干燥过程是在瞬间完成的,产成品的颗粒基本上能保持液滴近似的球状,产品具有良好的分散性,流动性和溶解性; 5、生产过程简化,操作控制方便。喷雾干燥通常用于固含量60%以下的溶液,干燥后,不需要再进行粉碎和筛选,减少了生产工序,简化了生产工艺。对于产品的粒径、松密度、水份,在一定范围内,可改变操作条件进行调整,控制、管理都很方便; 6、为了使物料不受污染和延长设备寿命,凡是与物料接触部分,均可以采用不锈钢材料制造。 喷雾干燥塔的主要类型1离心喷雾 高速离心喷雾干燥是液体工艺成形和干燥工业中最广泛应用的工艺。 最适用于从溶液、乳液、悬浮液和糊状液体原料中生成粉状、颗粒状固体产品。因此,当成品的颗粒大小分布、残留水份含量、堆积密度和颗粒形状必须符合精确的标准时,喷雾干燥是一道十分理想的工艺。

性能特点: 1)干燥速度快,料液经雾化后表面积大大增加,在热风气流中,瞬间就可蒸发95%-98%的水份,完成干燥时间仅需数秒钟,特别适用于热敏性物料的干燥。 2)产品具有良好的均匀度、流动性和溶解性,产品纯度高,质量好。 3)生产过程简化,操作控制方便。对于含湿量40-60%(特殊物料可达90%)的液体能一次干燥成粉粒产品,控制和管理都很方便。 适应物料: ?化学工业: 氟化钠(钾)、碱性染料颜料、染料中间体、复合肥、甲醛硅酸、催化剂、硫酸剂、氨基酸、白炭黑等。 ?塑料树脂:AB,ABS乳液、尿醛树脂、酚醛树脂、密胶(脲)甲醛树脂、聚乙烯、聚氯乙烯等。 ?食品工业:富脂奶粉、胳朊、可可奶粉、代乳粉、猎血粉、蛋清(黄)等。 ?食物及植物:燕麦、鸡汁、咖啡、速溶茶、调味香料肉、蛋白质、大豆、花生蛋白质、水解物等。 ?糖类: 玉米浆、玉米淀粉、葡萄糖、果胶、麦芽糖、山梨酸钾等。 ?陶瓷:氧化铝、瓷砖材料、氧化镁、滑石粉等。

最新喷雾干燥优缺点整理

对喷雾干燥的过程阶段及优缺点进行了分析, 综述了喷雾干燥技术的研究进展, 并对喷雾干燥技术的应用前景进行了分析, 最后给出了喷雾干燥技术在中药制药生产中的应用实例—— 中药液一步喷雾干燥造粒。该项技术将中药稀药液直接喷雾干燥制成干颗粒, 将中药加工中药液的浓缩、多效浓缩、造粒、干燥四步合为一步, 大大简化并缩短了中药提取液到半成品 或成品的工艺和时间, 提高了生产效率和产品质量。可 为喷雾干燥技术的推广应用以及提高中药制药水平提供借鉴与帮助。关键词喷雾干燥雾化技术喷雾造粒中药制药一步造粒 喷雾干燥是将原料液用雾化器分散成雾滴, 并用热空气(或其它气体) 与雾滴直接接触的方式而获得粉粒状产品的一种干燥过程。原料液可以是溶液、乳浊液或悬浮液, 也可以是熔融液或膏状物。干燥产品可以 根据需要, 制成粉状、颗粒状、空心球状或团粒状。 喷雾干燥技术已有一百多年的历史。自1865 年喷雾干燥最早用于蛋品处理以来, 这种由液态经雾化和干燥在极短时间直接变为固体粉末的过程, 已经取得了长足的进步。它使许多有价 值但不易保存的物料得以大大延长保质期, 使一些物料便于包装、使用和运输, 同时也简化了一些物料的加工工艺。由于喷雾干燥具有“瞬时干燥”、“干燥产品质量好”、“干燥过程简单”等特点, 明显优于其它干燥方式, 到20 世纪三四十年代, 该技术已经被广泛地应用于乳制品、洗涤剂、脱水食品以及化肥、染料、水泥的生产, 目前常见的速溶咖啡、奶粉、方便食品汤 料等就是由喷雾干燥得到的产品[ 1, 2 ]。我国最早将喷雾干燥用于工业化规模生产的是乳品 行业, 之后是洗涤剂和染料行业等, 目前应用已十分广泛, 遍及了以上所涉及 的所有行业, 尤其在陶瓷和制药行业喷雾干燥的应用更为普遍。 对于中药制药行业, 喷雾干燥技术的应用有其独特的作用, 大大简化并缩短了中药提取液到 制剂半成品或成品的工艺和时间, 提高了生产效率和产品质量。本文对喷雾干燥的过程阶段 及优缺点进行分析, 综述喷雾干燥技术的研究进展, 并对喷雾干燥技术的应用前景进行分析, 最后给出喷雾干燥技术在中药制药生产 中的应用实例——中药液一步喷雾干燥造粒。 1 喷雾干燥的过程阶段及优缺点分析 1.1 喷雾干燥的过程阶段 喷雾干燥可分为三个基本过程阶段: 一是料液雾化成雾滴二是雾滴和干燥介质接触、混合及流动, 即进行 干燥三是干燥产品与空气分离。 1.1.1 喷雾干燥的第一阶段——料液的雾化 料液雾化为雾滴和雾滴与热空气的接触、混合, 是喷雾干燥独有的特征。雾化的目的在于将料液分散成微细的雾滴, 使其具有很大的表面积, 当其与热空气接触时, 雾滴中水分迅速汽化而干燥成粉末或颗粒状产品。雾滴的大小及其均匀程度对产品质量和技术经济指标影响很 大, 特别是对热敏性物料的干燥尤为重要。如果喷出的雾滴其大小很不均匀, 就会出现大颗粒还没达到干燥要求、小颗粒却已干燥过度而变质的现象。因此料液雾化所用的雾化器是喷雾 干燥的关键部件。目前常用的雾化器有气流式、压力式、旋转 式和声能雾化器等。 1.1.2 喷雾干燥的第二阶段——雾滴和空气的接触 雾滴和空气的接触、混合及流动是同时进行的传热传质过程, 即干燥过程, 此过程在干燥塔内进行。雾滴和空气的接触方式、混合与流动状态决定于热风分布器的结构型式、雾化器在塔内的安装位置及废气 排出方式等。

微胶囊的作用、壁材及制备方法

微胶囊技术是目前一种十分热门的技术,是指将一些物质包埋进高分子材料组成的微胶囊中[1]。微囊膜具有半透性或密封性,能根据需要对其中包裹的芯材起到保护、突释或缓释的作用[2]。 1?微胶囊的作用 将芯材物质微胶囊化,是利用囊壁的封闭结构,给芯材物质一个物理屏障,避免在不适当的条件下与外界环境接触,防止其有效成分丧失,便于存储和运输。另外,还可以实现对芯材物质的缓释、突释等目的[3]。 1.1?隔离作用 微胶囊最主要的功能就是在芯材物质与外部环境之间形成一道物理阻隔,最大程度的保护芯材物质不受外界环境影响而引起的活性物质损失、变性等不良后果。 1.2?控释或靶释 在运输阶段尽可能保证芯材物质有效成分不损失,到特定时间或特定位置进行释放,成为控制释放或靶向释放[4],这也是微胶囊另一个重要的作用。这一点在药学领域表现的尤为突出。 1.3?改善材料性质 微胶囊的另一个作用就是能改善材料性质,便于材料的后续使用或处理。如将对液体或半固体芯材,通过包埋作用固体化,便于运输、贮藏和使用[5]。 2?微胶囊的壁材 微胶囊的功能效果主要取决于由壁材的种类决定。壁材的选择对其性质起了决定性作用,如缓释性、生物相容性,环境刺激响应性等[6]。目前,代表性的壁材主要有壳聚糖、海藻酸钠和明胶。 2.1?壳聚糖 壳聚糖是一种典型的碳水化合物类囊壁材料,又称几丁聚糖,片状固体,呈微黄色或白色。能在大多数有机酸中溶解,不溶于水和碱溶液,具有易挥发的特点[7]。 2.2?海藻酸钠 海藻酸钠也是一种极其常见的微胶囊壁材,外观呈淡黄色或白色粉末,极易溶于水[8]。与其他碳水化合物不同,海藻酸钠在较低的浓度条件下,就表现出很高的粘度,同时形成的微囊膜任性很强,半透性能良好。 2.3?明胶 明胶可溶于热水,但不溶于冷水,是一种蛋白质混合物,呈淡黄色或白色的透明颗粒,来源广泛,大量存在于动物的结缔或表皮组织中。明胶具有很好的稳定性、乳化性和成膜性,具有入口即化的优点[9]。 3?微胶囊的制备方法 微胶囊的制备方法种类繁多,一般从原理上可以分为物理法、化学法和物理化学法(见表1)。根据操作工艺的不同,这三类方法还可以进一步细分[10]。 表1?微胶囊的制备方法 方法具体方法 物理法 喷雾干燥法、空气悬浮法、挤压法、喷雾冷却法、 静电结合法、包络接合法、溶剂蒸发法 化学法原位聚合法、界面聚合法、锐孔法 物理化学法 单凝聚法、复凝聚法、油相分离法、水相分离法、 干燥浴法(又称复相乳液法)、熔化分散冷凝法 4?结束语 本文总结了微胶囊在应用过程中的作用、系统介绍了代表性的壁材和常见的制备方法,有助于开展新型微胶囊的研究。 参考文献 [1]?Kr???b?e?r?H?,?Teipel?U?.?Ch?em?.?En?g?.?Pr?o?cess?,?2?00?5?,?44?(?2?)?:?215-21?9 [2].王国建,刘琳.特种与功能高分子材料[M].北京: 中国石化出版社.?2004. [3]?Yow,?H.?N.,?Routh,?A.?F.?Formation?of?liquid?core-polymer?shell?microcapsules.?Soft?Matter,?2006,?2,?940-949. [4]M?eshali?M?M?,?et?al?.?Acta?Pharm.?Fenn?.?,?1992,?101(3):?135 [5]?刘晓庚?,?徐明生,?鞠兴荣.高新技术在粮油食品中的应用[J].食品科学,2002,?23(?8)?:?33?5?-3?42?. [6]李莹,靳烨,黄少磊,等.微胶囊技术的应用及其常用壁材[J].农产品加工,2008(?1)?:65-68. [7]蒋挺大.?壳聚糖[M].?北京:?化学工业出版社,?2001. [8]?梁治齐?.?微胶囊技术及其应用?[?M?]?.?北京?:?中国轻工业出版社?,?1999. [9]?王俊强,顾震,马天贵,等.?微胶囊壁材的选择及其在食品工业中的应用[J]?.?江西科学,2008,26(2):242-244. [10]?Park?J,Ye?M,Park?K.?Biodegradable?polymers?for?microencapsulation?of?drugs?[J]?.?Molecules,2005,10(1):146-161. 微胶囊的作用、壁材及制备方法 白小林 西南石油大学 四川 成都 610500 摘要:总结了微胶囊在应用过程中的作用,系统介绍了代表性的壁材和常见的制备方法。微胶囊的主要作用有隔离、控释和靶释、改善材料性质。代表性的壁材有壳聚糖、海藻酸钠和明胶。主要的制备方法有物理法、化学法和物理化学法。 关键词:微胶囊?壁材?控释?壳聚糖?物理化学法 Functions,?wall?materials?and?preparation?of?microcapsule Bai?Xiaolin Southwest Petroleum University, Chengdu 610500, China Abstract:This?paper?mainly?summarizes?the?functions?of?microcapsule?in?its?application,?and?systematically?introduces?typical?wall?materials?and?their?common?preparation?methods.?The?main?functions?of?microcapsule?include?isolation,?controlled?release,?target?release?and?material?quality?improvement.?Typical?wall?materials?include?chitosan,?sodium?alginate?and?gelatin.?The?main?preparation?methods?include?physical?methods,?chemical?methods?and?physical-chemicalmethods. Keywords:microcapsule;?wall?material;?controlled?release;?chitosan;?physical-chemical?method 37

微胶囊技术

microencapsulation (微胶囊技术) 指将物质细微分散包覆后,并在所需的时候将其释放出来的方法 capsules--粒径大于1000μm microcapsules (or microcells)--粒径分布在1~1000μm nanocapsules--粒径小于1μm 2.Principle:微胶囊技术主要是根据Bungenbergde Jong所提的聚集(coacervation)原理 (1) 运用高分子的聚集是微胶囊形成主要方式 (2) 它是利用分子间的化学或物理产生的边界作用力,让分子自行形成微胞的一种方法 3. 微胶囊技术在食品工业上的意义 (1) 将液体形式的食品转变成固体,以利于干燥食品中使用 (2) 留滯挥发性物,以供最佳条件时释放 (3) 避免蒸发及受水分影响 (4) 使不容(incompatible)成分均匀混合 (5) 掩蔽不良味道 (6) 藉由特定的溶释机构,达到特殊效果 (7) 改变固体物质的质地与密度 (8) 保护敏感物质 (1)corematerial(芯材)或nucleus (核心物质):包覆于壁膜内的物质。 重量约占整个微胶囊的80-99%,并于适当的时候被释放出來。 (2)wallmaterial(壁膜材料或囊壁)或shell (外壳) a.如芯材为亲油性物质,则囊壁材料选择亲水性材料 b.如芯材为亲水性物质,则囊壁材料用水不溶性的合成聚合物 壁材选择基本原则 芯材和壁材的溶解性能相反,芯材亲油、壁材一般要亲水,反之亦然。 壁料对芯材无不良影响 壁材有适当的渗透性、溶解性、可降解性、弹性、流动性、乳化性等 壁材成膜性能好、具有一定的机械强度与稳定性 2.核/壳比值 (1)典型的胶囊含有70-90%wt的核心物质,外壳厚度约为0.1-200μm a.胶囊外壳的厚度与颗粒大小和相对密度有关 b.微胶囊中核心物质和外壳的关系有许多表示方法,最常见的是「核心量」和「核/壳比值」两种表示方式 (2)核心量 a.心材在整个微胶囊中所占百分比 b.核心量可作为商品的重要准则 (3)核/壳比值 a.定义:核心与外壳的重量比值 b.核/壳比值是假设核心是一完美的球体,胶囊外壳厚度也是均匀不变的。

喷雾干燥技术的研究与展望

喷雾干燥技术的研究现状与展望 严晓华 (轻工学院食品科学与工程091班) 摘要对喷雾干燥的过程阶段及优缺点进行了分析, 综述了喷雾干燥技术的研 究进展, 并对喷雾干燥技术的应用前景进行了分析喷雾干燥过程的复杂性研究已经有很多成果, 喷雾干燥的低热效率给设备研究人员和企业界留下了较大的研发空间, 需要不断地去完善其流程和工艺, 以满足市场和产品本身的需要。从分析喷雾干燥的研究现状入手, 介绍喷雾干燥领域新的研究成果及设备与工艺的发展情况, 总结并提出了目前较新的研究课题和方向。 关键词:喷雾千燥;工艺流程;研究现状;展望 一、概述 喷雾干燥技术已有一百多年的历史。自1865 年喷雾干燥最早用于蛋品处理以来, 这种由液态经雾化和干燥在极短时间直接变为固体粉末的过程, 已经取得了长足的进步。它使许多有价值但不易保存的物料得以大大延长保质期, 使一些物料便于包装、使用和运输, 同时也简化了一些物料的加工工艺。由于喷雾干燥具有“瞬时干燥”、“干燥产品质量好”、“干燥过程简单”等特点, 明显优于其它干燥方式, 到20 世纪三四十年代, 该技术已经被广泛地应用于乳制品、洗涤剂、脱水食品以及化肥、染料、水泥的生产, 目前常见的速溶咖啡、奶粉、方便食品汤料等就是由喷雾干燥得到的产品。我国最早将喷雾干燥用于工业化规模生产的是乳品行业, 之后是洗涤剂和染料行业等, 目前应用已十分广泛, 遍及了以上所涉及的所有行业, 尤其在陶瓷和制药行业喷雾干燥的应用更为普遍。 喷雾干燥是将原料液用雾化器分散成雾滴, 并用热空气( 或其它气体) 与雾滴直接接触的方式而获得粉粒状产品的一种干燥过程。原料液可以是溶液、乳浊液或悬浮液, 也可以是熔融液或膏状物。干燥产品可以根据需要, 制成粉状、颗粒状、空心球状或团粒状。喷雾干燥技术的主要特点是: 1、干燥速度快, 时间短( 约为3 ~10 s) ,可以把初始状态为含固的液体通过特殊设计的雾化器雾化后再与干燥介质接触, 在短时间内完成蒸发干燥而获得干燥的产品,特别适合于热敏性物料的干燥; 2、能避免干燥过程中造成粉尘飞扬,可由液体直接得到干燥产品, 无需蒸发、结晶、固液机械分离等操作; 3、产品具有良好的分散性和溶解性, 不经过粉碎也可以在溶剂中迅速溶解; 4、生产过程简单, 操作控制方便。但也有其不可忽视的缺点: 干燥器的体积大; 5、传热系数低, 导致热效率低( 约40%以下) , 动力消耗大; 6、操作弹性小,易发生沾壁现象。 目前我国喷雾干燥技术的应用还存在诸如多问题, 突出表现在以下三个方面: 1) 技术开发能力不强。我国从事干燥设备技术开发的企业较少, 设备加工精度也较低, 干燥塔内壁表面过于粗糙, 挂粉比较严重, 并且没有较好的振动

喷雾干燥工艺

喷雾干燥工艺 (Spray Drying Technology) 一、喷雾干燥是采用雾化器将原料分散为雾滴,并利用热空气干燥雾滴而获得产品的一种干燥方法。原料液可以是溶液,乳浊液或是乳液,也可以是熔融液或膏糊液。干燥产品可根据生产要求制成粉状、颗粒状、空心球或团粒状。国内外通常采用的喷雾干燥方式有离心式、压力式和气流式。 二、工业化生产使用的三种雾化器 ●旋转盘式雾化器由离心能发生雾化 ●压力式雾化器由压力能发生雾化 ●气流式(二流体或三流体)雾化器由动能发生雾化 三、雾化器的选择: 取决于原料的物理、化学性质和干燥成品的形状规格。值得注意的是,当三种类型的雾化器均可选用时,我们通常优先采用旋转式雾化器,因为它具有更大的灵活性并且易于操作与控制。其优越性有:无堵塞问题;适用于磨损性原料;可使用低压进料系统;快速进料时,不需使用加倍的雾化器;易于调整旋转速度以控制液滴大小。 四、型号规格的选择:(以每小时水分蒸发量为规格单位) 目前本厂生产的喷雾干燥装置从每小时汽化水:5、25、50、100、150、200-3000kg 规格。具体的技术资料及参数,用户可直接向厂部索取。

LPG-200 喷雾干燥(冷却)联合机组 喷雾干燥应用实例: 食品:氨基酸类:氨基酸、氨基酸类似品、调味料、蛋白质食品、豆酱、精制小麦蛋白、大豆蛋白等 糖类:葡萄糖、糖稀、糖稀异性体、淀粉糖化液、焦糖、淀粉类、着色淀粉等 其他:酵母菌、香料、酶、鱼/肉精、糖精、小球藻、咖啡、全脂奶粉、食品添加物、山梨酸钾等 陶瓷:氧化铝、铁酸盐、块滑石、氧化镁、氧化钛、氧酸钡、钛酸镤、各种肥料体(铁素体)、各种金属氧化物、瓷砖陶土、陶瓷器、耐火粘土、瓷土、白云石、特殊金属等。 医药品:医药品、中药、农药、无机药品、酶、抗生素、维生素剂等。化学工业有机质、有机催化质、三聚氰胺树脂、尿素树脂、界面活性剂、氯乙烯、聚氯乙烯、有机物、木质素、酵母、五氯苯酚、苯酚钠、腐殖酸、酞酸盐钠、高级洗衣粉、中性洗衣粉、油脂类、脂肪酸、甘油酸脂、硬脂酸盐等。 无机质:甲基硅酸、铝酸、镁、磷酸曹达、磷酸钾、硅酸曹达、碳酸钾、硅藻磷曹达、白碳素、硫铵、无机染料、磷铵等。 废液:酿造废液、淀粉废液、发酵废液、黑液等。

微胶囊的制备方法

1.1 引言 微胶囊技术[1]已被广泛应用于医药、农药、香料、食品、染料等行业或领域微胶囊化过程中,囊壁材料是决定微胶囊性能的关键因素。因此,对于微胶囊囊壁材料的选择至关重要。环境响应型微胶囊对外界环境中离子强度、pH、温度、电场等的变化具有化学阀的作用,能根据环境信息变化自动改变自身状态并做出反应。环境响应型微胶囊对环境的应答是通过聚合物分子链或网链的构象变化实现的,因此,可以通过控制外部环境因素使大分子或凝胶网链呈不同构象状态,进一步调控胶囊壁材[2]的孔径大小,有效调节聚合物微胶囊壁材的渗透性来进行客体分子的控制释放,其释放速率可以通过客体分子穿过聚合物微胶囊壁材的扩散速率进行调节。所以这种环境响应型微胶囊在药物包装领域有着广阔的前景[3]。 微胶囊因其具有长效、高效、靶向、低副作用等优良的控制释放性能,在药物控制释放等领域具有广阔的应用前景。随着微胶囊技术的发展和应用,近年来人们提出了环境感应型微胶囊,通过外界环境的刺激实现药物的智能释放,并日益受到重视和关注由于温度变化不仅自然存在的情况很多,而且很容易靠人工实现,所以迄今国外对温度感应型微胶囊的研究较多,但国内研究相对甚少。温度感应型微胶囊的基材主要是聚N-异丙基丙烯酰胺[4](PNIPAAm)它的水溶液具有温敏性,当温度等于或高于它的最低临界溶解温度(LCST约为32℃)时,它在一个相当宽的浓度范围可以发生相分离;而当温度低于LCST时,沉淀的PNIPAAm 又能迅速溶解[5]。交联的PNIPAAm在32℃左右也有一个较低的临界溶解温度NIPAAm与某些单体或聚合物形成的共聚物以及共聚物的共混物也具有这种特性,这种对环境温度敏感的特性引起了人们很大的兴趣。本文以N-异丙基丙烯酰胺和乙基纤维素[6]的共聚物作为壁材,采用乳液聚合法制备温度感应型微胶囊。 1.2 微胶囊常用的制备方法 1.2.1 界面聚合法 该法制备微胶囊的过程包括:①通过适宜的乳化剂形成油/水乳液或水/油乳液,使被包囊物乳化;②加入反应物以引发聚合,在液滴表面形成聚合物膜; ③微胶囊从油相或水相中分离。在界面反应制备微胶囊时,影响产品性能的重要因素是分散状态。搅拌速度、黏度及乳化剂、稳定剂的种类与用量对微胶囊的粒度分布、囊壁厚度等也有很大影响。作壁材的单体要求均是多官能度的,如多元

纳米微胶囊制作新技术及其应用

纳米微胶囊 小组成员: 日期:2014年9月28日

纳米微胶囊 摘要:随着微胶囊技术的发展,纳米微胶囊技术受到越来越多的关注,本文对纳米微胶囊的定义、与传统微胶囊相比的优点以及最新制备方法进行了介绍,并综述了近年来纳米微胶囊技术的应用研究进展,同时探讨了纳米微胶囊技术在各领域中的研究现状及以后的研究趋势。 关键词:纳米微胶囊;制备方法;应用研究 Abstract:With the development of microcapsule technology, nanocapsule technology has received more attention. The definition,characteristic and preparation methods of nanocapsule compared with traditional microcapsule are introduced in this paper, and the new research progress of nanocapsule technology applications in different fields in recent years are reviewed. In addition, current studies and future applications of nanocapsule technology in these fields are explored. Key words: nanocapsule, preparation method, application and research 1 引言 微胶囊技术是指将固体颗粒、液体微滴或气体作为胶囊的芯料,在其外部形成一层连续而极薄包裹的过程。其制备技术起源于20世纪50年代,在70年代中期得到迅猛发展,在此期间出现了许多微胶囊化产品和工艺[1]。微胶囊具有保护芯材物质免受环境影响,屏蔽味道、颜色、气味,改变物质重量、体积、状态或表面性能,隔离活性成分,降低挥发性和毒性, 控制芯材物质的可持续释放等多种作用,目前该技术已经成为材料、化学、化工、生物和医学等诸多学科领域工作者的研究热点,已被广泛应用于生物医学、食品、农药、化妆品、金属切割、涂料、油墨、添加剂等多个领域,因其具有广阔的应用前景,国际上将它列为21世纪重点研究开发高新技术之一[2]。 伴随着微胶囊技术的迅速发展,有学者在20世纪70年代末提出了“纳米微胶囊技术”这一概念。纳米微胶囊(nanocapsule),即具有纳米尺寸的微胶囊,其颗粒微小,易于分散和悬浮在水中,形成均一稳定的胶体溶液,并且具有良好的靶

喷雾干燥工作原理及特点

◆工作原理及特点 喷雾干燥制粒机(一步制粒设备),是一种将喷雾干燥技术与流化床制粒技术结合为一体的新型中成药,西药制粒设备。该设备集混合、喷雾干燥、制粒、颗粒包衣多功能于一体;可生产出微辅料,少剂量、无糖或低糖的中成药产品;颗粒速溶,冲剂易于溶出,片剂易于崩解,符合“GMP”要求。在制粒速、颗粒质量及自动化水平等多方面,向国际先进水平又迈出了重要一步。 ◆主要用途 食品行业:砂糖、可可、咖啡、香料、奶粉、调味品等。 制药工业:中药浸膏、片剂颗粒、胶囊剂颗粒、低糖或无糖的中成药颗粒。 其他行业:农药、饲料、化肥、颜料、染料等。 ◆工作原理及特点 喷雾干燥制粒机(一步制粒设备),是一种将喷雾干燥技术与流化床制粒技术结合为一体的新型中成药,西药制粒设备。该设备集混合、喷雾干燥、制粒、颗粒包衣多功能于一体;可生产出微辅料,少剂量、无糖或低糖的中成药产品;颗粒速溶,冲剂易于溶出,片剂易于崩解,符合“GMP”要求。在制粒速、颗粒质量及自动化水平等多方面,向国际先进水平又迈出了重要一步。 ◆主要用途 食品行业:砂糖、可可、咖啡、香料、奶粉、调味品等。 制药工业:中药浸膏、片剂颗粒、胶囊剂颗粒、低糖或无糖的中成药颗粒。 其他行业:农药、饲料、化肥、颜料、染料等 载体喷雾流化干燥器工作原理 发布时间:2007年10月24日 Audo look6.0下载惰性载体喷雾流化干燥器的典型结构如图所示,料液(溶液、悬浮液、提取液、糊状物)经雾化器均匀地喷洒到呈流化状态的惰性粒子上,惰性粒子在分布板上方,受穿过分布板热空气的冲击而流化。热空气在使惰性粒子流化的同时,也将热传递给粒子。当料液喷洒到粒子表面时,接受粒子的热量(由内向外)和热空气的热量(由外向内)使水分迅速蒸发,物料在粒子表面形成薄壳。物料由弹缩性变为弹脆性,由于粒子的剧烈运动产生碰撞和摩擦,使已干燥的物料从粒子表面脱落,并被研磨成细粉,呈分散状态随尾气带出由气固分离装置收集。大体可以分为三个阶段,即料液涂布于惰性粒子表面,水分受热气化物料干燥,干物料脱落。但在实际生产中,这三个阶段并不完全独立,见图5-11、图5-12,部分物料干燥条件见表5-7。

喷雾干燥法制备微胶囊方法

Journal of Microencapsulation,June2005;22(4):377–395 Preparation of cross-linked chitosan microspheres by spray drying:Effect of cross-linking agent on the properties of spray dried microspheres K.G.H.DESAI1&H.J.PARK1,2 1School of Life Sciences and Biotechnology,Korea University,Sungbuk-ku,Seoul,South Korea, and2School of Life Sciences and Biotechnology,Korea University and Department of Packaging Science,Clemson University,Clemson,SC,USA (Received4September2004;accepted10December2004) Abstract Chitosan microspheres cross-linked with three different cross-linking agents viz,tripolyphosphate (TPP),formaldehyde(FA)and gluteraldehyde(GA)have been prepared by spray drying technique. The influence of these cross-linking agents on the properties of spray dried chitosan microspheres was extensively investigated.The particle size and encapsulation efficiencies of thus prepared chitosan microspheres ranged mainly between4.1–4.7m m and95.12–99.17%,respectively.Surface morphol-ogy,%erosion,%water uptake and drug release properties of the spray dried chitosan micro-spheres was remarkably influenced by the type(chemical or ionic)and extent(1or2%w/w)of cross-linking agents.Spray dried chitosan microspheres cross-linked with TPP exhibited higher swelling capacity,%water uptake,%erosion and drug release rate at both the cross-linking extent (1and2%w/w)when compared to those cross-linked with FA and GA.The sphericity and surface smoothness of the spray dried chitosan microspheres was lost when the cross-linking extent was increased from1to2%w/w.Release rate of the drug from spray dried chitosan microspheres decreased when the cross-linking extent was increased from1to2%w/w.The physical state of the drug in chitosan-TPP,chitosan-FA and chitosan-GA matrices was confirmed by the X-ray diffrac-tion(XRD)study and found that the drug remains in a crystalline state even after its encapsulation. Release of the drug from chitosan-TPP,chitosan-FA and chitosan-GA matrices followed Fick’s law of diffusion. Keywords:Chitosan microspheres,spray drying,tripolyphosphate,formaldehyde,gluteraldehyde,swelling, erosion,sustained release Introduction There has been considerable interest in recent years in developing controlled or sustained drug delivery systems by using biopolymers.Controlled or sustained release drugs provide many advantages in comparison with conventional forms:reduced side effects,drug Correspondence:Professor H.J.Park,307,School of Life Sciences and Biotechnology,Korea University,1,5-Ka,Anam-Dong, Sungbuk-ku,Seoul-136-701,South Korea.Tel:82232903450.Fax:8229535892.E-mail:hjpark@korea.ac.kr ISSN0265-2048print/ISSN1464-5246online#2005Taylor&Francis DOI:10.1080/02652040500100139

实验.微囊的制备

实验九微型胶囊的制备 一、实验目的 1.掌握复凝聚法制备微型胶囊的工艺及影响微囊形成的因素。 2.通过实验进一步理解复凝聚法制备微型胶囊的原理。 二、实验指导 微型胶囊(简称微囊)系利用天然、半合成高分子材料(通称囊材)将固体或液体药物(通称囊心物)包裹而成的微小胶囊。它的直径一般为5~400μm。 微囊的制备方法很多,可分为物理化学法,化学法以及物理机械法。可按囊心物、囊材的性质、设备和微囊的大小等选用适宜的制备方法。在实验室中制备微囊常选用物理化学法中的凝聚法。凝聚法又分为单凝聚法和复凝聚法。后者常用明胶、阿拉伯胶为囊材。制备微囊的机理如下:明胶为蛋白质,在水溶液中,分子链上含有-NH2和-COOH及其相应解离基团-NH3+与-COO-,但含有-NH+3与-COO-离子多少,受介质pH值的影响,当pH值低于明胶的等电点时,-NH+3数目多于-COO-,溶液荷正电;当溶液pH高于明胶等电时,-COO-数目多于-NH+3,溶液荷负电。明胶溶液在pH4.0左右时,其正电荷最多。阿拉伯胶为多聚糖,在水溶液中,分子链上含有-COOH和-COO-,具有负电荷。因此在明胶与阿拉伯胶混合的水溶液中,调节pH约为4.0时,明胶和阿拉伯胶因荷电相反而中和形成复合物,其溶解度降低,自体系中凝聚成囊析出。再加入固化剂甲醛,甲醛与明胶产生胺醛缩合反应,明胶分子交联成网状结构,保持微囊的形状,成为不可逆的微囊;加2%NaOH调节介质pH8~9,有利于胺醛缩合反应进行完全,其反应表示如下: R-NH2+ H2N-R + HCHO pH8-9 R-NH-CH2-HN-R + H2O 三、实验内容 1.复凝聚法制备液体石蜡微囊 处方:

微胶囊技术

微胶囊技术在食品工业中的应用 摘要:本文主要就微胶囊技术的概念.特征及其应用等进行了系统的论述,同时就微胶囊技术在食品工业中的几个应用实例作了简要介绍。实践证明,微胶囊技术为食品的研究与开发提供了一条很重要的途径,具有很高的实用价值。 关键词:微胶囊技术;食品工业;应用 Application of Micronecapsulation Technology in Food Industry Li Ping Feng,20100806159 (School of Food(Biology),Xuzhou Institute of Technology, Xuzhou 221000, China) Abstract:In this paper the concept of microcapsule technology. The features and applicatio is discussed, also introduces several examples of application of microencapsulation technology in food industry. Practice has proved, micro provides an important way capsule technology for food research and development, has very high practical value. Key words:Microcapsule technology; Food industry; Application 微胶囊技术起于20世纪30年代,美国的Wurster用物理方法制备了微胶囊。到20世纪70年代,微胶囊技术的工艺日益成熟,应用范围逐渐扩大,今天它已从最初的药物包覆和无炭复写扩展到了医药、食品、日用化学品、肥料、化工等诸多领域。目前,微胶囊技术在国外发展迅速,美国对它的研究一直处领先地位。在美国约有60%的食品采用这种技术。日本在20世纪60-70年代也逐步赶上来,每年申报的有关微胶囊技术方面的专利可达上百件[1]。全球对微胶囊技术的研究机构从02年的2%增长到06、07年的22%充分说明微胶囊技术在全世界引起的广泛重视。我国的研究起步较晚,在 20 世纪 80 代中期引进了这一概念,虽然在微胶囊技术应用方面也有许多发展,但同国外相比,我国仍处于起步阶段,进口微胶囊在生产中仍占主导地位。微胶囊技术应用于食品工业始于20世纪50年代末,此技术可对一些食品配料或添加剂进行包裹,解决了食品工业中许多传统工艺无法解决的难题,推动了食品工业由低级的农产品初加工向高级产品的转变,为食品工业开发应用高新技术展现了美好前景。目前,油溶性物质微胶囊化研究较为成熟,而水溶性物质微胶囊化则相对研究较少。在食品工业中应用最广的微胶囊技术是喷雾干燥法,应用领域主要是粉末香精,香料与粉末油脂,今后它们仍然要占主导地位[2]。 微胶囊技术的应用现状:出于物质胶囊化后有许多独特的性能,可应用于许多特殊的过程,因而引起了各国科技工作者极大的兴趣。随着人们对微胶囊化技术认识的不断加深,新材料新设备的不断开发,微胶囊化技术将会沿着它这一独特的方式活跃于食品工业中[3]。目前,食品工业中应用微胶囊技术的领域主要有风味料、挥发性物质、微生物类、脂类物质、饮料和粉末状食品等[4]。

微胶囊的制作工艺流程

微胶囊的制作工艺流程 1.材料和方法 1.1 材料与试剂 经过醇提和醇沉的红枣提取物;阿拉伯树胶、糊精、淀粉、乳糖、微晶纤维素、无水乙醇、氢氧化钠、亚硝酸钠、硝酸铝、乙醇等,均为国产分析纯。 1.2制备工艺 以阿拉伯胶和糊精的混合物(1:1)作为壁材,以提取物,淀粉,乳糖和微晶纤维素的混合物为芯材,采用喷雾干燥工艺,制备降血脂微胶囊,制备的工艺流程见图1-1,工艺要点分别为: 芯材溶液制备:提取物和辅料(淀粉,乳糖,微晶纤维素;52:24:24) 壁材溶液制备:称取一定量的阿拉伯胶和糊精(1:1),再加入一定量的水,使其溶胀、分散,制成壁材溶液。 混合:按照一定的壁材/芯材比(2:1,1:1)及一定的壁材浓度(1:50,w/v)要求,将芯材溶液加入到壁材溶液中,搅拌、混匀。 喷雾干燥:用喷雾干燥机,按如图的工艺条件喷雾干燥。 1.3降血脂微胶囊理化性质的测定 (1)结构观察及粒径的测定 (2)水分测定 (3)比容的测定 (4)溶解度的测定

1.4微胶囊化前后的稳定性研究 (1)PH值对微胶囊化前后的稳定性影响 (2)自然光对微胶囊化前后的稳定性影响 (3)空气中的氧气对微胶囊化前后的稳定性影响 (4)温度对微胶囊化前后的稳定性影响 (5)金属离子对微胶囊化前后的稳定性影响 (6)氧化剂对微胶囊化前后的稳定性影响 (7)还原剂对微胶囊化前后的稳定性影响 (8)防腐剂对微胶囊化前后的稳定性影响 (9)食品原料对微胶囊化前后的稳定性影响 1.5降血脂微胶囊质量指标评价 (1)感官评价 (2)理化指标评价 (3)动物实验 1.6微胶囊在模拟肠液中释放效果的检测 按照确定的最佳工艺条件,检测经模拟胃液处理3 h 后的微胶囊在模拟肠液中的释放情况。 药品质量/g 药品质量/g 阿拉伯树胶微晶纤维素 糊精淀粉 乳糖维素

微胶囊化方法及常用壁材

微胶囊化方法及常用壁材 一、微胶囊制备方法 1、微胶囊的常规制备方法 复凝聚法复凝聚法是利用两种带有相反电荷的高分子材料以离子间的作用相互交联,制成的复合型壁材的微胶囊一种带正电荷的胶体溶液与另一种带负电荷的胶体溶液相混,由于异种电荷之间的相互作用形成聚电解质复合物而发生分离,沉积在囊芯周围而得到微胶囊。 单凝聚法单凝聚法通常被称为沉淀法,该方法通过向含有芯材的某种聚合物溶液中加入沉淀剂,使该聚合物的溶解性降低,该聚合物和芯材一起从溶液中析出,从而制取微胶囊的方法该方法不需要事先制备乳液,也可以不使用有机交联剂,可以避免有机溶剂的使用,但通过该法制得的微胶囊粒径较大。 界面聚合法界面聚合法是将两种发生聚合反应的单体分别溶于水和有机溶剂中,其中芯材溶解于处于分散相溶剂中然后,将两种液体加入乳化剂以形成乳液,两种反应单体分别从两相内部向液滴界面移动,并在相界面上发生反应生成聚合物将芯材包裹形成微胶囊的方法该法的优点是反应物从液相进入聚合反应区比从固相进入更容易,所以通过该法制备的微胶囊适于包裹液体,制得的微胶囊致密性好在界面聚合法制备微胶囊时,分散状态在很大程度上决定着微胶囊的性能,搅拌速度溶液黏度以及乳化剂和稳定剂的种类用量对微胶囊的性质也有很大的影响。 原位聚合法原位聚合法应用的前提是形成壁材的聚合物单体可溶,而聚合物不溶该法需先将聚合物单体溶解在含有乳化剂的水溶液中,然后加入不溶于水的内芯材料,经过剧烈搅拌使单体较好的分散在溶液中,单体在芯材液滴表面定向排列,经过加热单体交联从而形成微胶囊如何让单体在芯材表面形成聚合物,是该方法需要控制的重点。 锐孔-凝固浴法锐孔-凝固浴法用的壁材要求是可溶性的通常将芯材物质和高聚物壁材溶解在同一溶液中,然后借助于滴管或注射器等微孔装置,将此溶液滴加到固化剂中,高聚物在固化剂中迅速固化从而形成微胶囊因为高聚物的固化是瞬间进行并完成的,所以将含有芯材的聚合物溶液加入到固化剂中之前应预先成型,所以需要借助于注射器等微孔装置锐孔-凝固浴法的固化过程可能是化学变化或物理变化。

喷雾干燥技术在药剂学中的应用

喷雾干燥技术在药剂学中的应用 喷雾干燥技术是指将药物溶液或混悬液等用雾化器喷雾于干燥室内的热气流中,使水分蒸发以直接 制成干燥细颗粒的一种造粒技术。其最早用于蛋品处理,20世纪40年代以来应用于药学领域,是目前 制药行业常用的干燥方式之一。经过多年的研究和发展,喷雾干燥技术已从当初简易的喷雾干燥发展到 当今多功能、组合型及高效性的喷雾干燥。 1. 技术介绍 1.1 基本原理 喷雾干燥器属于热风直接式干燥设备。喷雾干燥可分为四个过程:①药液雾化成微小粒子(液滴); ②热风与液滴接触;③水分蒸发;④干品与热风的分离与干品的回收。工作时,料液由贮槽进入雾化器,经过雾化器喷成雾状的液滴,液滴群的表面积增大,其与高温热风接触后水分迅速蒸发,在极短的时间内便成为干燥产品,落入干燥器底部,可连续出料或间歇出料。其中,热风与液滴接触后温度迅速降低而引起湿度增大,作为湿热废气由排风机抽出,废气所夹带细粉用分离装置回收。 整个干燥分为等速和减速二阶段。在等速阶段,水分蒸发是在液滴表面发生,蒸发速度由蒸汽通过周围气膜的扩散速度所控制,其动力是周围热风与液滴的温度差,温度差越大蒸发速度越快,水分通过颗粒的扩散速度大于蒸发速度。然后,当扩散速度降低而不能再维持颗粒表面的饱和时,蒸发速度开始减慢,干燥开始进入减速阶段。在减速阶段,颗粒温度开始上升,干燥结束,此时物料温度接近周围空气温度。 喷雾干燥的原料液可以是溶液、乳浊液、悬浊液、熔融液或膏糊液。干燥产品可根据工艺要求制成粉状、颗粒状、团粒状甚至空心球状。由于物料的干燥是在瞬间完成,受热时间非常短,特别适用于热敏性物料。 1.2 特点 喷雾干燥的主要特点是: (1)生产过程简化、操作控制方便。喷雾干燥能将液态物料直接干燥成固态产品,简化了传统工艺所需的蒸发、结晶、分离、干燥、粉碎等一系列单元操作,且通过改变操作条件,方便地调节产品的粒径、松密度、水分含量等。 (2)干燥迅速,与热风接触时间短,且干燥过程中物料的温度不超过热空气的湿球温度,不会产生过热现象,物料有效成分损失少,故特别适合于热敏性物料的干燥。 (3)干燥产品粒度较小,中空球状粒子多,具有良好的分散性、流动性和溶解性。 (4)由于喷雾干燥在密闭的容器中进行,因此可防止污染环境。 (5)喷雾干燥可连续操作,能适应工业化大规模生产的要求。 此外,喷雾干燥也有其不可忽视的缺点:设备体积较大,清洗工作量大,空气和动力的耗用量大;设

相关文档