文档库 最新最全的文档下载
当前位置:文档库 › 聚磷酸铵的应用及研究进展

聚磷酸铵的应用及研究进展

聚磷酸铵的应用及研究进展
聚磷酸铵的应用及研究进展

聚磷酸铵的应用及研究进展

目录

0. 前言 (3)

1. APP的改性 (3)

1.1 偶联剂改性 (4)

1.2 三氯氰胺改性 (4)

1.3 表面活性剂改性 (5)

1.4 微胶囊化处理APP (5)

2. APP应用 (6)

2.1 APP改性PE及研究进展 (6)

2.2 APP改性PS及研究进展 (7)

2.3 APP改性PU及研究进展 (7)

2.4 APP改性POM及研究进展 (7)

3. 研究方向 (8)

摘要:本文首先介绍了对与APP的偶联剂改性、微胶囊化、表面活性剂改性以及三聚氰胺改性四种改性方法;利用APP改性PE、PU、PS、POM的方法以及被改性后材料阻燃性能、力学性能等方便的提高以及生活中的应用、研究进展,最后还介绍了APP的发展前景以及研究方向。

关键词:APP;改性方法;PE;PS;POM;PU;

0. 前言

聚磷酸铵(简称APP)是膨胀型阻燃剂(IFR)的重要组成部分,具有酸源及气源双重功能,具有含磷量高、含氮量多、热稳定性好、近于中性、阻燃效果好等优点,已成为阻燃技术研究领域中的一个热点[1]。APP通式(NH4)n+2PnO3n+1,外观呈白色粉末状,分水溶性和水难溶性,其中聚合度n在10~20之间为水溶性,称为短链APP;n>20为水难溶性的长链APP。APP的阻燃机理是受热脱水后生成聚磷酸强脱水剂,促使有机物表面脱水生成炭化物,加之生成的非挥发性磷的氧化物及聚磷酸对基材表面进行覆盖,隔绝空气而达到阻燃的目的,同时由于APP含有氮元素,受热分解释放出CO2、N2、NH3等气体,这些气体不易燃烧,阻断了氧的供应,达到了阻燃增效和协同效应的目的。

但是,目前受生产制备条件的限制,一般得到APP的聚合度只有几十。因此,APP具有一定的水溶性,而且与高分子材料的相容性较差,无法满足相应的力学性能要求。因此,对于以APP为主的膨胀型阻燃剂的研究主要集中在以下3个方面:(1)研究新的合成方法和工艺,提高APP的聚合度;(2)对现有APP产品进行表面改性(或微胶囊化);(3)开发膨胀型阻燃剂的高效协效剂。目的是设法提高膨胀型阻燃剂的阻燃效率,降低成本和添加量,改善其与有机材料的相容性,提高在潮湿环境下阻燃剂的抗溶出性能及APP的分解温度等。本文针对目前研究众多的APP为主的膨胀型阻燃剂的表面改性以及应用进行综述。

1. APP的改性

由于目前聚磷酸按的生产受到生产条件的限制,在生产工艺和设备落后的条件下,一般得到APP聚合度只有几十,而且其与有机材料的相容性不能完全达到相应的力学性能要求。另外,以APP为基础的膨胀型阻燃剂(IFR)在聚丙烯(PP)、

聚乙烯(PE)、乙烯-醋酸乙烯共聚物(EV A)等塑料的阻燃中显示出优良的阻燃作用,是目前阻燃技术研究开发的热点,但是,通常情况下APP的热稳定性仍不能满足如PP的加工要求,而且APP还存在吸湿性较大的缺点,限制了它在电子材料等方面的应用,因此,为了能够使其发挥阻燃作用,在很多情况下,都需要对其颗粒进行表面改性。目前较为常见的改性方法主要有偶联剂改性、微胶囊化、表面活性剂改性以及三聚氰胺改性等4种[2]。

1.1 偶联剂改性

提高APP阻燃效果的一条有效途径就是使用偶联剂,偶联剂是一种具有两亲结构的有机化合物,它可以使性质差别很大的材料紧密结合起来,从而提高复合材料的综合性能。目前使用量最大的偶联剂包括硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂等,其中硅烷偶联剂又是品种最多,用量最大的一种。硅烷、硅氧烷、铝酸酯等本身具有一定的阻燃性,加入到APP中,既可以增加其阻燃性,对其吸湿性也有一定的改善,同时也能够改善材料的韧性、耐热性以及吸水率。另外利用硅烷偶联剂还可以将小的有机分子加到APP分子链上改善其吸湿性。根据美国PPG公司报道,利用聚二甲基硅氧烷衍生物(相对分子质量为14000)处理APP,使此种APP与聚乙烯混料制成薄膜,耐水试验14天,发现磷的渗出率为2.7%,而未处理的则为15.6%。

武汉工程大学研究人员奚强、常亮、邝生鲁等用有机硅偶联剂(WD- X)对聚磷酸铵(I型- APP)阻燃剂表面进行改性,研究了偶联剂用量、改性时间、改性温度及惰性溶剂等因素对改性效果的影响。认为改性的最佳工艺条件为:改性剂质量分数1%,反应时间2.5~3.5h,反应120~130℃。测试结果表明,改性后的APP粒子表面呈疏水性,在树脂中的分散性得到很大改善。

1.2 三氯氰胺改性

采用三聚氰胺进行表而改性是近年来研究开发的热点,较常见的是先将APP 表面包裹,之后利用一定的交联剂把三聚氰胺与己经进行表面包裹三聚氰胺的APP颗粒连接起来,提高其之间的键合,改善吸湿性。可选用的交联剂包括含有异氰酸醋、羟甲基、甲酰基、环氧基等基团的化合物。另外,APP是IFR的主要成分,三聚氰胺通常作为发泡剂使用,当APP在受热分解释放出氨而呈酸性的情况下,能与三聚氰胺反应生成盐,从而改善APP的性能。中山大学研究报

告,将一定数量APP和三聚氰胺搅拌,升温到250℃并维持反应1小时,降低温度,粉碎,得到三聚氰胺改性的APP (MAPP)。实验结果表明,改性的APP热分解温度比APP高且吸湿性小。国外专利报道,在高速搅拌下将三聚氰胺溶液加到APP中,可制成三聚氰胺改性的APP。

在大多数情况下,经三聚氰胺改性的APP仍不能满足需要,还需对其进行再处理。日本Chisso公司报道,用一种含有活性氢的化合物处理MAPP,使MAPP 粒子间形成化学键,从而改进MAPP的性能。Tosoh公司用牌号为SILA-ACES330(3-氨基三乙氧基硅烷)偶联剂处理MAPP(牌号为H istaflamAP462),用此产品阻燃EV A ,可制成耐水、绝缘性能优良的材料。

浙江大学研究人员曹堃等[3]探讨三聚氰胺(MEL)改性聚磷酸铵(APP) 过程中A PP本身的化学及物理变化。发现在改性反应条件下,APP聚合度略有增加,品型由I型变为I、II型混合物,导致改性产物(MAPP)的热稳定性大大提高,其失重特征更符合阻燃要求。将其与季戊四醇组成膨胀型燃剂(IFR)用于聚丙烯阻燃特性研究,结果表明添加25%时即具有良好的阻燃效果。同时热分析还证明,与简单掺混烈相比,其失重速率峰值更小,500℃时的残余量更高。

1.3 表面活性剂改性[4]

水溶性的APP经阴离子表面活性剂处理后,其吸水性会降低,阴离子表面活性剂可以从碳原子数为14- 18的脂肪酸及其二价金属盐、三价金属盐或其混合物中选择,其中二价盐包括镁盐、锌盐、钙盐,三价盐可以选择铝。在APP表面处理中需要使用溶液,任何可以溶解表面活性剂但是不影响APP质量的溶剂均可选用,包括氯化脂肪烃类,如氯甲烷、二氯甲烷以及三氯甲烷等,另外也可选用芳香烃或氯化芳香烃,如甲苯、二甲苯和氯苯等。

除去利用阴离子表面活性剂外,还可以利用阳离子或非离子表面活性剂来对APP进行改性,如采用二甲基氯铵、碳原子数为14- 18的脂肪醇、带有酰基的碳原子数为14- 18的脂肪酸、乙烯氧化物和丙烯氧化物的共聚物及其混合物,中后四种为非离子改性剂,其亲水亲油平衡值(HLB)控制在10以下。

1.4 微胶囊化处理APP

微胶囊技术是指利用成膜材料将细小物质包覆成微小颗粒的技术[5]。通常制备的微胶囊粒子大小在5 -2000um,但随着科学技术的进步,己经可制备出纳米

级微胶囊。微胶囊一般由囊芯和囊带组成,构成包覆APP的微胶囊的囊壁材料主要有三聚氰胺-甲醛树脂、尿素一甲醛、酚醛树脂等[6]。其中三聚氰胺-甲醛树脂对APP的微胶囊化最早被采纳,应用也较为广泛[7]。例如用500 g三聚氰胺-甲醛树脂对5.2 kg APP进行微胶囊化处理后,可使APP在25℃下水中的溶解性由8.2%下降为0.2%,并且18份微胶囊化的APP用于阻燃PP时,即可达到UL94 V0级,赋予了PP优异的阻燃性能[8];Wu等[9]采用原位聚合法也成功制备了三聚氰胺-甲醛树脂微胶囊化的APP。与未改性APP相比,微胶囊APP的阻燃性能明显提高,添加30%的阻燃剂时,使PP的极限氧指数从20.0%提高到30.5%。冯申[10]等采用原位聚合法制备了二聚氰胺-甲醛树脂微胶囊包覆的APP(MFAPP),将MFAPP和双季戊四醇(DPER)组成的膨胀阻燃体系应用于氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS )中。结果表明,所制得的MFAPP表面包覆层完好致密,并且250℃以下热失重率仅为1.629%,阻燃SEBS样条在湿热环境下不会吐白,垂直燃烧级别达到F V-0级,且制成电缆后硬度、断裂伸长率和抗张强度均可以满足要求[11]。

2. APP应用

2.1 APP改性PE及研究进展

聚乙烯材料是现时使用最广泛的塑料材料之一,但其氧指数仅为17.4%,在高压、放热、放电等条件下极易引起火灾,因而聚乙烯的阻燃成为该材料能否广泛使用的关键。先前使用的聚乙烯无卤阻燃剂多为镁盐和铝盐阻燃剂,通过高温分解吸收塑料表面热量,从而达到降低环境温度,并同时产生大量水蒸汽冲淡可燃气体浓度,达到阻燃的效果,因此其使用量大,对材料的物理机械性能产生较大影响。人们根据几种阻燃剂的协同作用,采用以聚磷酸铵为主阻燃剂,季戊四醇、沸石为助阻燃剂共同组成膨胀烈体系加入PE材料中,制成阻燃聚乙烯材料,其氧指数可提高到35%,阻燃级别达到U L94V- 0级标准,且材料的力学性能、加工性能优良,可广泛应用于电线、电缆、管材和吹塑制品中。

山西中北大学研究人员刘渊[12]等通过极限氧指数测试、力学性能测试研究了聚磷酸铵(APP)对聚乙烯(PE)的燃烧性能和力学性能的影响。结果表明:II型APP在添加量达到30%以后,PE的氧指数达到了22.4,可以实现离火后很快自熄;在添加了APP后,PE的拉伸强度在开始的时候提高,当添加量超过20%后,

其拉伸强度开始缓慢降低;PE的缺口冲击强度在添加APP后,在添加量很低时就产生了大幅度下降。

2.2 APP改性PS及研究进展

早期的聚苯乙烯(PS)泡沫塑料主要用作隔热、隔音、防震,以及包装材料,近年来发展起来的高抗冲聚苯乙烯(HIPS)是PS的改性品种,与PS相比,具有较高的韧性和冲击强度,并且保留了PS易成型加工的优点,可进行注塑、挤塑、真空吸塑等成型加工,广泛用于制造各种电器零件、电视机、收音机、电话、吸尘器等的壳体,板材及冰箱衬里,但它同样易燃烧,同时产生带毒性气体的黑烟,限制了其在某些要求阻燃场所的使用,尤其是对塑料阻燃性能要求越来越高的家电行业。磷系阻燃剂具有较好的阻燃性和消烟效果,但常规磷系阻燃剂对制品的力学性能影响较大,因此,国内外正在研制开发新型磷系阻燃剂-选用新型长链聚磷酸铵,与辅助助燃剂一起构成多元阻燃体系,使阻燃体系与树脂相容性好,成本低廉,氧指数由17%上升到28.8%,阻燃性为U L94V- 0极,达到阻燃、消烟的目的。

2.3 APP改性PU及研究进展

聚氨醋(PU)是现代塑料工业中发展最快的品种之一,其特点是通过改变分子中链的结构,能较大幅度地进行各种改性,因此PU塑料广泛用于各种绝热、防震、隔音、轻质构件和座垫、包装、汽车内饰等方面,但PU塑料是极易着火燃烧的塑料制品,在着火时放出使人窒息的毒气,造成伤亡事故,囚此为了提高PU塑料的阻燃性能,保持原有的机械性能,降低阻燃剂的用量,控制成本,协同阻燃作用的研究逐渐发展起来。采用聚磷酸铵与稀土金属氧化物Ce203组成协同阻燃体系,可以达到较好的阻燃效果,氧指数由原来的17.5%上升到24.8%,阻燃性为UL94V- 0级,对材料机械性能影响小,特别是生烟量、有毒和腐蚀性气体生成量少,达到了使用要求。

2.4 APP改性POM及研究进展

聚甲醛(POM)是一种综合性能优异的工程塑料,具有硬度大、耐磨性、耐疲劳性和弹性好,化学稳定性高,有突出的耐溶剂性,电绝缘性佳,吸水性低以及制品的尺寸稳定性好等优点,可用来取代有色金属及其合金,被广泛用于汽车、电子电气、各种精密机械、五金建材等行业。但POM的氧指数仅为15%,是一

种易燃烧的塑料,随着其应用领域的日益扩大,对其进行阻燃改性的要求越来越强烈。根据POM燃烧的机理及燃烧特性,选用以APP为主阻燃剂,三聚氰胺与季戊四醇双磷酸酯三聚氰胺盐(MPP)为辅助阻燃剂,再配以高分子吸醛剂共同组成阻燃体系,通过塑炼方式加入POM中构成了阻燃POM,经过测试其氧指数可以达到50%,垂直燃烧达到FV- 0级,且加工条件与普通POM相同,可以满足使用要求[13]。

3. 研究方向

APP作为化学膨胀型阻燃剂体系中理想的酸源,经过过去近20年的研究探索,无论是针对APP的合成方法及工艺研究还是APP协效剂的开发应用研究,以及APP的改性研究,均取得了长足的发展和进步。随着APP相关技术的不断发展,国内外一些大型APP生产企业生产技术日趋成熟,产品性能进一步提高,开发的APP种类不断增加,生产规模相应扩大;

随着我国合成树脂工业的快速发展,以及国家对阻燃材料应用的规范化、法制化,对APP的应用和需求将日益增加。APP作为一种重要的无机阻燃剂,未来的发展方向应是超细化、专用化、系列化,因此,今后应该APP改性技术的研究和开发,增加其耐热稳定性,与树脂的相容性和降低其吸湿性等,进而开发出系列化、专用化的APP产品,以满足不同各种领域对APP产品的需求。

APP作为一种重要的无机阻燃剂,在未来几年将会进一步得到发展,开发廉价高效的APP为主的膨胀型阻燃剂的协效剂,可以有效降低APP在基体中的添加量,降低成本,同时降低APP对基体性能的不利影响,进一步扩大APP的应用领域。成熟稳定的产品性能,反过来促进了APP的广泛应用,而且APP作为一种具有诸多优点的无机添加型阻燃剂符合当前阻燃剂绿色化的发展趋势。因此,针对改善APP应用过程中早现的耐水性差、与基体相容性差及阻燃效率低等缺点进行的相关研究,不但具有一定的理论研究意义,史具有广泛的应用价值。

参考文献

[1]Bras M I,Bugajny M, Lefebvre https://www.wendangku.net/doc/ac12559022.html,e of Polyurethanes as Char-forming Agents in Polypropylene Intumescent Formations[J].Polymer International,2000,49(10):1216-1221

[2]张世伟,解田,李天祥等,水难溶性聚磷酸铵的合成技术研究进展[J]贵州化工,2006,31 (4):12- 15.

[3]曹堃,王开立,姚臻.聚磷酸铵的改性及其对聚丙烯阻燃特性的研究[J].高分子材料科学与工程,2007, 23 (4):136- 139.

[4]崔小明,聂颖.聚磷酸铵的生产工艺及改性技术进展[J]杭州化工2007, 37 (4):14- 17

[5 ]耿妍,陶杰,崔益华等.聚磷酸铵微胶囊化的工艺研究[J].玻璃钢/复介材料,2006, 3: 39- 41

[6]Wu K,Wang Z, HuY. Micro Encapsulated Ammonium Polyphosphate with Urea-melamine-formaldchyde Shell: Preparation,Characterization,and Its Flame Retardance

in Polypropylene[J]. Polym Adv Technol,2008,19(8):1118-1125

[7] Garba B, Eboatu A N,Ahdulrahman F W. Effect of Dimethylol Urea as a Flame Retardant Formulation onSome Cellulosic Fabric Materials [J].Fire Mater, 1996,20:155-159

[8] Piper W. Hydrolysis Stable Finely Divided Flame-resistant Agent Based on Ammonium Polyphosphate; DE31500[P]-1986-05-07

[9]Wu K,Wang Z,Liang H. Microencapsulation of Ammonium Polyphosphate; Preparation,Characterization,and Its Flame Retardance in Polypropylene [J] .Polymer Composites,2008,29(8):854-860

[10] 冯申,徐军,郭宝华,等微胶囊化聚磷酸铵的制备及其在SEBS中的应用[J].中国塑料,2011,25(8): 81-84.

[11]李玉芳.聚磷酸按阻燃剂的生产及应用进展[J]化工科技市场,2007, 30③:36- 40

[12]刘渊,贾润礼,柳学义.聚磷酸铵阻燃聚乙烯的研究[J].塑料,2007, 36③:24- 26,49

[13]李云东,古思廉.聚磷酸铵阻燃剂的应用[J].云南化工,2005, 32③:5 l- 54.

聚磷酸铵

聚磷酸铵 摘要:以磷酸铵盐、尿素为原料,制备了高聚合度聚磷酸铵无机阻燃剂。测定了聚磷酸铵的溶解度[1]。以防火材料的制备测定防火性能,对现代工艺的提高有了自己的认识和理解。 关键词:聚磷酸铵、阻燃性能、防火材料[2]。 前言:聚磷酸铵(APP)是近十多年来发展起来的一种重要的无机阻燃剂,广泛用于塑料、纤维、纸张、橡胶、木材等的阻燃,并可用于配制耐火材料。APP 含磷、氮量大,热稳定性好,水溶性小,近于中性。同时,它具有分散性好,比重小,毒性低和价格低廉的特点。 1实验部分 1.1实验原理 其结构是为(NH4)n+2PnO3n+1。APP有水溶性(n为10∽20)及水难溶性(n?0)两种。作为阻燃剂的n一般大于25[3]。 合成方法主要有高温聚合法和低温溶剂法。本实验用低温溶剂法,以石蜡为介质,尿素和磷酸二氢胺为原料进行制备。本实验用低温溶剂法,以石蜡为介质,尿素和磷酸二氢胺为原料进行制备。在尿素和磷酸二氢胺反应体系中,存在下列反应: CO(NH2)2 +2NH4H2PO4-----(NH4)2P2O7+CO2 (NH4)2P2O7+CO(NH2)2-----2/n(NH)4n+2PnO3n+1+4NH3+CO2 当n很大时,产物可写成(NH4PO3)。 1.2药品与仪器 药品:液体石蜡(碳数在16 以上),尿素,磷酸二氢铵,苯等。 仪器:烧杯(500ml,200ml),抽滤装置,电炉,温度计。 1.3合成

在500ml干燥的烧杯中,加入150ml液体石蜡,加热至200℃,在该温度下,不断搅拌,将30g尿素与28克磷酸二氢胺混合,分批加入至温度为200℃的液体石蜡中,注意温度不能过高,30分钟内加完。与190∽200℃的条件下继续反应25∽30分钟,观察反应产物(由粘稠泡沫液体变为白色固体)。然后冷却至室温,尽可能倾出液体石蜡,将生成物研细后,每次用30∽40ml苯浸洗2-3次,除去产物中夹留得石蜡,抽滤,回收苯。然后用蒸馏水洗涤产物。在120℃烘箱中,烘30分钟,即得产物,成重,计算产率。 1.4产品质量检验 (1) 溶解度测定:准确称取上述产物2克加入50ml蒸馏水煮沸5分钟后,过滤产物,烘干,称余物,计算100ml蒸馏水中的溶解度。 (2) 阻燃性能测试:称取4gAPP加100ml蒸馏水,搅拌均匀后,将一片滤纸浸在此液体中。10分钟后称出烘干,与一未处理的滤纸,使燃烧对比实验,观察其现象。 (3) 测定产品的熔点 1.5防火涂料的制备及防火性能 涂料的配比见下表1 表1:涂料配方 品名用量品名用量 聚乙烯醇缩甲醛胶25.0 聚磷酸铵22 三聚氰胺11.5 季戊四醇 6.0 六偏磷酸钠(10%) 5.0 甲基硅油消泡剂0.5 羧甲基纤维素钠 3.0 去离子水22.0 制备步骤为:将六偏磷酸钠,羧甲基纤维素钠分别配制成10%和2%的水溶液;将要求量的去离子水加入烧杯中;低速(约800r/min)搅拌下,将配方量的阻燃剂、颜料、填料、分散剂依次加入,再加入适量的消泡剂,然后高速搅拌(大

微胶囊技术包覆聚磷酸铵研究进展_汪玲

微胶囊技术包覆聚磷酸铵研究进展 汪玲,刘吉平* (北京理工大学材料学院,北京,100081) 摘要微胶囊技术包覆聚磷酸铵用于阻燃研究可以降低聚磷酸铵的水溶性,有效改善阻燃剂易吸潮、易氧化、热稳定性差、相容性差等缺点,是-种前景良好的对聚磷酸铵进行改性的方法。本文介绍了聚磷酸铵的阻燃机理和微胶囊技术的基本概念,综述了国内外使用微胶囊技术包覆聚磷酸铵的研究进展,并对微胶囊技术包覆聚磷酸铵现状给予总结同时得出结论:目前,微胶囊技术主要应用于包覆聚磷酸铵,而对其他阻燃剂的报道相对较少。因此,应着重扩大微胶囊技术的应用范围研究,另外还应积极开展微胶囊工艺、阻燃剂复配、提高力学性能、抑烟性能等研究,以提高其可适用性和广泛性。 关键词聚磷酸铵,微胶囊技术,包覆,阻燃剂 膨胀型阻燃剂(IFR)是-种典型的无卤阻燃剂[1]。聚磷酸铵(APP)是IFR常用组分之-,其阻燃机理为:聚磷酸铵受热后脱去氨气生成强脱水剂聚磷酸,聚磷酸可使被阻燃物表面脱水生成碳化物,碳化物在基质表面形成致密性膨胀炭层,炭层可减弱聚合物与热源间的热量传递,并阻止气体扩散,由于没有足够的燃料和氧气,因而终止燃烧起到阻燃作用[2-3]。但是聚磷酸铵作为阻燃剂加入后与环氧树脂的相容性差和吸湿性强,限制了其应用。因此,近年来大量文献报道了采用微胶囊技术包覆聚磷酸铵用于阻燃研究。 1 微胶囊技术 微胶囊包覆技术是指将APP利用天然的或合成的高分子材料包覆,形成-种直径1~50μm的具有半透性或封闭膜的微型胶囊APP产品,降低了聚磷酸铵的水溶性,具有更高的热稳定性、耐水性以及相容性。 国外知名企业赫司特公司、孟山都公司及Albright Wilson公司均生产高聚合度APP产品。微胶囊的外形可以是球状的,也可以是不规则的形状;胶囊外表可以是光滑的,也可以是折叠的;微胶囊的囊膜既可以是单层,也可以是双层或多层结构。微胶囊技术的优势在于形成微胶囊时,囊芯被包覆而与外界环境隔离,它的性质能毫无影响的被保留下来,而在适当条件下壁材被破坏时又能将囊芯释放出来,给使用带来许多便利。微胶囊化的目的主要是降低阻燃剂的水溶性,增加阻燃剂与材料的相容性,改变阻燃剂的外观及状态,提高阻燃剂的热裂解温度以及掩盖阻燃剂的不良性质。其制备方法主要有化学法,物理化学法,机械法[4]。

趋化因子及其受体的研究进展

趋化因子及其受体的研究进展 摘要:趋化因子( chemokine)是一类一级结构相似小分子细胞因子,能够趋化细胞定向移动的,而且在免疫细胞和器官的发育、免疫应答过程、炎症反应、病原体感染、创伤修复及肿瘤形成和转移等方面发挥广泛的生理和病理作用。本文综述了对趋化因子及其受体的结构、分类和生物学功能的研究进展。 关键词: 细胞因子;趋化因子;趋化因子受体;趋化作用 Abstract:chemokine is similar to the primary structure of a class of small molecule cytokine, chemokine cell directional movement, but also in the development of immune cells and organs, immune response, inflammatory response, pathogen infection, wound healing andplay a wide range of physiological and pathological roles of tumor formation and metastasis. This paper reviews the progress on the study of the structure, classification and biological function of chemokines and their receptors. Keywords: cell factor; chemokines; chemokine receptor; chemotactic effect 免疫细胞的定向迁移是集体免疫应答发生和完成的必须条件。趋化因子是一类控制细胞定向迁移的细胞因子。其功能行使由趋化因子受体介导。趋化因子与其受体的相互作用控制着各种免疫细胞在循环系统和组织器官间定向迁移,使之到达感染、创伤和异常增殖部位,执行清除感染源、促进创伤愈合和消灭异常增殖细胞,维持组织细胞的平衡的功能。因此,趋化因子系统在免疫系统功能行使的各个环节中处于关键地位,并由此在病原体的清除、炎症反应、病原体感染、细胞及器官的发育、创伤的修复、肿瘤的形成及其转移、移植免疫排斥等方面都起着重要的作用。以趋化因子及其受体为控制靶点,通过激活或拮抗趋化因子受体的信号传导来调控趋化因子系统的功能,可

海藻糖的特性及其应用

海藻糖的特性及其应用 彭亚锋,周耀斌,李勤,薛峰,冯俊 (上海市质量监督检验技术研究院/国家食品质量监督检验中心(上海),上海 200233) 摘 要:海藻糖是由两个葡萄糖分子以α,α,1,1-糖苷键构成的非还原性糖,自身性质非常稳定,具有独特的生物学特性、对生物抗脱水的保护作用、抗冷冻保护作用和抗高渗保护作用,同时赋予了防止淀粉老化、防止蛋白质变性、抑制脂类物质酸败、抑制鱼腥味的生成、矫正味道和矫正气味作用、抑制大米的米糠臭、保鲜、稳定物料中的超氧化物歧化酶、防蛀牙和补充能源等功能特性。而自然界中如蔗糖、葡萄糖等其它糖类,均不具备对多种生物活性物质具有神奇的保护作用这一功能;这一独特的功能特性,使得海藻糖除了可以作为蛋白质药物、酶、疫苗和其他生物制品的优良活性保护剂以外,还是保持细胞活性、保湿类化妆品的重要成分,更可作为防止食品劣化、保持食品新鲜风味、提升食品品质的独特食品配料,拓展了海藻糖作为天然食用甜味糖的功能。 关键词:海藻糖;特性;功能;应用;前景 中图分类号:TS20211 文献标识码:A 文章编号:1006-2513(2009)01-0065-05 App li ca ti o n p r o spect of treha l o se PENG Ya2feng,ZHO U Yao2b i n,L I Q i n g,XUE feng,FENG Jun (Shanghai I nstitute of Quality I ns pecti on and Technical Research/Nati onal Food Quality Supervisi on and I ns pecti on Center(Shanghai),Shanghai 200233) Abstract:Trehal ose is a non2reducing sugar for med by t w o glucose molecules bet w eenα,α-1,1-glycosidic bond and is one of the most stable sugars in the world.It can effectively p revent organis m da mage in freezing,drying and heating.It has s pecial bi ol ogic characteristic including dehydrati on t olerance,freezing t olerance and hypert onic t oler2 ance.It can als o p revent starch retr ogradati on,p r otein denaturati on,li p ids rancidity,fishy s mell inhibiti on,keep ing rice fresh and stabling S OD in the ra w material.It is als o an energy s ource as well as keep ing teeth fr o m decay.No oth2 er natural sugar can compete with trehal ose unique p r operties.It is now become a p r otective reagent in p r oducing medi2 cines,enzy me,vaccines and other bi o2p r oducts.It is als o an i m portant component of keep ing cell activity and cos metics moisture.Further more,trehal ose is a unique food ingredient which can avoid the f ood degradati on and keep the fresh flavor.A s a s weetener,trehal ose is widely used in f ood p r ocessing. Key words:trehal ose;p r operty;functi on;app licati on;p r os pect 海藻糖作为一种天然的糖类,最早发现海藻糖的是W igger,他在研究黑麦的麦角菌时,让溶液静置一段时间之后,发现在容器壁中形成一些无色、非还原性、微甜的糖晶体[1][2]。随后人们发现它在自然界的动植物和微生物中广泛存在, Elbein总结了各种生物中海藻糖的含量分布,近80种植物、藻类、真菌、酵母、细菌,昆虫到无脊椎动物都罗列其中[3]。经过100多年的研究,直到进入20世纪90年代,较大规模的工业化生产才得以实现。由于海藻糖的结构明显不同于其他低聚糖类,自然就赋予了它独特的理化性质与生物学特性,学术界对海藻糖的作用机理和应用 收稿日期:2008-11-17 作者简介:彭亚锋(1967-),男,高工,研究方向:食品加工与检验。

聚磷酸铵的生产工艺及改性技术进展[1]

聚磷酸铵的生产工艺及改性技术进展 崔小明,聂 颖 (北京燕山石油化工公司研究院,北京 102550) 摘要:介绍了聚磷酸铵的生产方法以及改性技术进展,并指出了其今后的发展趋势。关键词:聚磷酸铵;阻燃剂;生产工艺;改性技术 聚磷酸铵(AmmoniumPol yphosphate,简称APP)是一种含磷、氮的无机聚合物,最早由美国孟山都公司开发应用,分子通式为(NH4)n+2 PnO3n+1,外观呈白色粉末状,当n足够大时也可以写成(NH4PO3)n。由于其具有含磷量高、含氮量大、热稳定性好、水溶性小、接近于中性、阻燃效能高等优点,因此作为膨胀型阻燃剂的基础材料,被广泛应用于阻燃领域。以APP为主要原料的膨胀型阻燃剂已成为研究开发的热点。我国自20世纪80年代开始研制APP的合成与应用,目前生产能力和产量仍不能满足国内实际需求,需要大力发展。 1 聚磷酸铵的物化性质 根据聚合度的大小,APP可分为短链APP( n=10~20)和长链APP(n>20)两大类。目前已知的APP有5种不同的晶体结构[1]:即Ⅰ型、Ⅱ型、Ⅲ型、Ⅳ型和V型。其中Ⅰ型晶粒外观呈多孔性颗粒状物质,表面具有不规则结构,是线形结构的缩聚物;Ⅱ型具有规则的外表面,均属正交(斜方)晶系,结构紧密,颗粒表面圆滑,为带较长支链的缩聚物,并发生若干交联结构;Ⅲ型为中间体;Ⅳ型和V型为高温下稳定的结构。几种晶体结构之间在不同条件下可以互相转换。Ⅲ型、Ⅳ型的结晶状态是不稳定的,其中Ⅱ型、V型难溶于水,状态稳定;但对V型,目前尚未报道切实可行的制造方法。用做阻燃剂的聚磷酸铵主要类型为Ⅰ型和Ⅱ型。由于Ⅰ型晶粒结构的氧键露置于表面,极易吸引水分而发生水解反应,容易发生吸湿现象;而Ⅱ型APP中支链的存在包围了氧键,使其吸引水分子困难,水解反应困难,具有较低的水溶性,且不易发生吸湿现象,另外其聚合度也比I 型APP高。在通常的温度和湿度下性质比较稳定,可以长期稳定贮存。高聚合度聚磷酸铵通常是指Ⅱ型的APP。 2 聚磷酸铵的生产方法 APP的生产方法很多,目前常用的生产方法主要有磷酸与尿素缩合法,磷酸二氢铵与尿素缩合法以及五氧化二磷与磷酸铵化合法3种。 2.1 磷酸与尿素缩合法 磷酸与尿素缩合法是工业中合成聚磷酸铵最常见、最实用的方法[2]。该法在反应中,尿素既是氮源,又起到缩聚剂的作用,保持反应物在气相中有足够的氨浓度和促进聚磷酸铵的脱水缩聚。具体的合成过程为:将一定质量配比的磷酸和尿素加入到反应釜中,在釜中混合溶解,然后进入沸腾床进行沸腾聚合,物料发泡后,调节排氨量,保持沸腾床内氨压,随着温度的上升,物料聚合固化,继续控制温度和压力,保温,最后冷却出料,得到松脆的白色产物,最后经粉碎得到成品。在生产过程中,有多个因素影响产品的质量,如原料配比、缩合温度和时间、料层高度以及氨气分压等。为了使缩合反应完全,需要提高含氮量和聚合度。尿素使用量少,缩合不完全,聚合度低,含氮量也低;尿素使用量多,氨的损失增大,且不易固化;加热所需要时间取决于温度,温度越高,完成缩聚的时间越短,脱氨速度也越快,但氨的损失也增大。此外,料层过高易导致温度不均匀,反应速度不一;反应温度低,缩聚时间需要延长,否则聚合度不高,难以固化;氨气分压对固相反应体系影响较

浅谈阻燃材料聚磷酸铵的研究进展

浅谈阻燃材料聚磷酸铵的研究进展 摘要:聚磷酸铵是一种高效无机无卤磷系阻燃剂,是膨胀型阻燃剂的主要成分之一。本文就聚磷酸铵的合成方法,改性研究现状和应用前景进行了介绍。 关键词:聚磷酸铵;阻燃剂;合成方法;改性,应用进展 聚磷酸铵(简称APP)是一种磷氮系特效膨胀型无机阻燃剂,通式为(NH4)n+ 2PnO3n+1,外观呈白色粉末状,分水溶性和水难溶性,其中聚合度n 在10- 20 之间为水溶性,称为短链APP;聚合度n 大于20 的为水难溶性,称为长链APP。该产品P- N 阻燃元素含量高、热稳定性能好,产品近乎中性,能与其他物质配伍,阻燃性能持久,无毒抑烟。APP作为膨胀型阻燃剂的基础材料, 被广泛应用于阻燃领域,随着全球阻燃剂朝无卤化方向发展,以APP 为主要原料的膨胀型阻燃剂成为研究开发的热点。APP 的阻燃机理是受热脱水后生成聚磷酸强脱水剂,促使有机物表面脱水生成炭化物,加之生成的非挥发性磷的氧化物及聚磷酸对基材表面进行覆盖,隔绝空气而达到阻燃的目的,同时由于APP 含有氮元素,受热分解释放出CO2、N2、NH3等气体,这些气体不易燃烧,阻断了氧的供应,达到了阻燃增效和协同效应的目的[1]。 1 聚磷酸铵的合成 目前聚磷酸铵的合成工艺很多,主要有磷酸和尿素缩合法,聚磷酸铵化法,正聚磷酸铵与氨气高温中和法,P2O5-NH3-H2O 高温气相反应法,NH4H2PO4和CO(NH2)2缩合法,NH4H2PO4和NH3缩合法以及H3PO4和NH3缩合法等。根据聚磷酸铵不同的用途合成的方法也不一样。 1.1 磷酸和尿素缩合法 这种合成方法是将磷酸和尿素以一定比例混合,加热搅拌后,得到澄清透明的液体再将这种液体加热,经发泡、聚合和固化3 个阶段即可得到白色干燥固体,冷却后得到成品。 李茂林等以85%的磷酸和尿素为原料探究了聚磷酸铵生产的最佳工艺条件,合成的产品聚合度为170,结果表明反应温度220℃,反应时间3h,n(H3PO4) (以P2O5计85%)∶n [CO(NH2)2]=1∶1.8为最佳工艺条件。 张长水等以正交实验法探讨了用磷酸和尿素为原料合成聚磷酸铵时,原料配比、反应温度、聚合时间等因素对产品聚合度的影响。实验结果表明,较优工艺条件为:尿素与磷酸的摩尔配比为 1.7∶1,预聚合温度180℃,固化温度240℃,固化时间为160min,产品外观为白色固体,平均聚合度为34,溶解度为0.98g·(100g 水)-1。 1.2 磷酸法 这种合成方法要求磷酸以沸腾状态进入反应器,通入氨后使氨气与五氧化二磷的摩尔比在0.5~0.6 之间,反应器温度在180℃左右,此时局部氨化的磷酸将进入浓缩器内浓缩,使氨气与五氧化二磷混合物的含量在70%左右,再进入绝热氨化器内继续氨化,使混合物氨气与五氧化二磷的含量不少于77%,最后在辅助氨化器内进行氨化以达到一定规格的产品。 V.Archie等用物质的量之比为0.8~1.2 的氨气和五氧化二磷在

海藻糖的特性及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

海藻糖的特性及其应用 作者:彭亚锋, 周耀斌, 李勤, 薛峰, 冯俊, PENG Ya-feng, ZHOU Yao-bin, LI Qing,XUE feng, FENG Jun 作者单位:上海市质量监督检验技术研究院/国家食品质量监督检验中心(上海)上海,200233 刊名: 中国食品添加剂 英文刊名:CHINA FOOD ADDITIVES 年,卷(期):2009(1) 被引用次数:7次 参考文献(27条) 1.Harding T.S History of trehalose,its discovery and methods of preparation 1923 2.Koch E.M;F.C.Koch The presence of trehalose in yeast 1925 3.Elbein A.D The metabolism of a,a-trehalose 1974 4.程池天然生物保存物质--海藻糖的特性与应用 1996(01) 5.尤新功能性低聚糖生产与应用 2004 6.袁勤生海藻糖的应用研究进展[期刊论文]-食品与药品 2005(04) 7.聂凌鸿;宁正祥海藻糖的生物保护作用[期刊论文]-生命的化学 2001(03) 8.刘传斌;云战友;冯朴荪;苗蔚荣海藻糖在生物制品活性保护中的应用前景 1998(07) 9.于春燕;郎刚华;刘万顺海藻糖研究进展 2000(02) 10.姚汝华;周青峰海藻糖及其应用前景[期刊论文]-广州食品工业科技 1995(04) 11.马莺酶法合成海藻糖的研究[学位论文] 2003 12.张玉华;凌沛学;籍保平海藻糖的研究现状及其应用前景[期刊论文]-食品与药品 2005(03) 13.Peter Piper Differential role Hsps and trehalose in stresstolerance 1998(02) 14.黄成垠;安国瑞;王庆敏;戴秀玉 周坚海藻糖对医用诊断工具酶活性保护研究 1997(06) 15.杨小民;杨基础不同糖对纤维素酶保护的机理研究[期刊论文]-清华大学学报(自然科学版) 2000(02) 16.李晓东以淀粉为原料利用微生物酶生成海藻糖的新方法 2000(01) 17.涂国云海藻糖的性质、生产及应用[期刊论文]-山西食品工业 2003(03) 18.马春玲;王瑞明;刘建军海藻糖的性质及其生产 2003(03) 19.胡宗利;夏玉先;陈国平;蔡绍皙海藻糖的生产制备及其应用前景[期刊论文]-中国生物工程杂志 2004(04) 20.Crowe J.H Preservation of membranes in anhydrobiotic organism:the role of trehalose[外文期刊] 1984 21.Colaco C Food packaging and preservation 1994 22.Timasheff S N查看详情 1993 23.Mauro Sola-Penna;Jose Roberto Meyer-Fernandes Stabilization against thermal inactivation promoted by sugars on enzyme structure and function:why is trehalose more effective than other sugars[外文期刊] 1998(01) 24.Mike A Singer;Susan Lindquist The ying and yang of thermotolerance affecting trehalose 1998 25.Danforth Parker Miller Rational design of protective agents and processes for the stabilization of biologicals 2001 26.查看详情

聚磷酸铵的合成及其阻燃性能研究

聚磷酸铵的合成及其阻燃性能研究3 胡云楚1,2,吴志平2,孙汉洲1,周 莹1,刘 元2 (1.中南林业科技大学理学院,湖南株洲412006;2.中南林业科技大学工业学院,湖南长沙41004) 摘 要: 复合型高效阻燃剂是当前阻燃技术研究的重要方向之一。根据木材阻燃的炭量增加理论,利用水溶性试验、灼烧成炭试验和热分析方法研究了聚磷酸铵的合成条件、聚磷酸铵2硼酸复合阻燃剂的复合阻燃效应。聚磷酸铵的最佳合成条件是:磷酸:尿素摩尔比为1∶1.8,预聚合温度为(124±2)℃,预聚合反应时间为25min左右,聚合固化温度230~240℃左右,聚合固化时间为140min左右。在最佳条件下合成的聚磷酸铵的聚合度为23.3,溶解度为0.67g/100mL 水,阻燃处理杨木粉在400℃灼烧30min的成炭率为38.9%,是同一条件下未处理杨木粉灼烧成炭率的2.15倍。聚磷酸铵和硼酸以4∶1复配所制得的聚磷酸铵2硼酸复合阻燃剂,对木粉的成炭率为40.5%,相对复合阻燃效应为43.2%。200~300℃是木粉热解燃烧的主要阶段,也是阻燃剂发挥阻燃作用的主要阶段。聚磷酸铵2硼酸复合阻燃剂在高温下不仅能催化木材产生更多的木炭,而且能使木炭结构紧密、不易燃烧。 关键词: 聚磷酸铵;硼酸;灼烧成炭试验;阻燃性能; 复合效应 中图分类号: TB34文献标识码:A 文章编号:100129731(2006)0320424204 1 引 言 近年来火灾所造成的财产损失和人员伤亡一直呈上升趋势,许多火灾的发生均与高分子材料和木质材料的使用状况及其可燃性有关,因此,阻燃技术的发展是保障人民生命财产安全的需要,也是高聚物和木质材料具有广泛应用前景的基础[1~3]。 聚磷酸铵热稳定性好,产品接近中性,并可以与其它阻燃剂混合,分散性好,同时价格便宜,毒性较低,使用安全。李蕾等报道[4],国内聚磷酸铵阻燃剂的聚合度为20~50;C.Drevelle等[5]报道,聚磷酸铵的聚合度为700,溶解度低于1%。目前国内外对聚磷酸铵合成工艺及在聚合物中阻燃应用的研究报道较多,未见其在木材阻燃方面的研究报道。 复合型高效阻燃剂是当前阻燃技术研究的重要方向之一。硼酸和聚磷酸铵具有原料充足、价格便宜、阻燃效果好、对环境无害的特性,将两者按一定配比复合可以提高阻燃效果[3~11]。 作者根据木材阻燃的炭量增加理论,利用水溶性试验、灼烧成炭试验和热分析方法研究了聚磷酸铵的最佳合成条件、聚磷酸铵2硼酸复合阻燃剂的最佳配比及其复合阻燃效应。 2 实 验 2.1 仪器与试剂 HC T22型微机差热天平、65112A型电动搅拌器、KDM型连续可调电子控温电热套、FN1012型鼓风干燥箱、KSW电阻炉温控制器、5212型箱式电阻炉、A2 1100紫外可见分光光度计、P HS23C酸度剂、PB2032N 型电子天平、100ml玛瑙研钵、30ml瓷坩锅、坩锅架。 尿素、磷酸、硼酸、多聚磷酸钠、钼酸铵、硫酸肼、氢氧化钠均为国产分析纯试剂;杨木粉,植物粉碎机粉碎为40目以下。 2.2 聚磷酸铵的合成 反应原理: n H3PO4+(n-1)CO(N H2)2 (N H4)n+2P n O3n+1+(n-4)N H3+(n-1)CO2 副反应: CO(N H2)2+H2O CO2↑+2N H3↑ 先将85%的磷酸与99%的尿素按1∶1.8(摩尔比)依次加入三口烧瓶中,加热搅拌,控制升温速度≥10℃/min,待温度升至预聚合温度(100℃左右)时尿素全部融化,溶液澄清冒泡,同时有大量气体逸出(前期p H=6,后期p H=8),待溶液变稠发粘后,在不断搅拌下出料至白瓷盘中,放入已恒温的烘箱中进行聚合固化,待固化完全后,将其冷却,粉碎即得聚磷酸铵 (A PP)。 2.3 聚磷酸铵溶解度的测定 用电子天平称取0.500g样品放入10ml蒸馏水中,于室温下搅拌后,静置24h,过滤,滤渣为未溶解样品,在100℃以下烘干60min,称重,计算溶解度。 2.4 聚磷酸铵聚合度的测定 用分光光度法确定聚磷酸铵样品中P的物质的量,用一阶倒数滴定曲线确定聚磷酸铵的物质的量,根据P的物质的量与聚磷酸铵的物质的量之比计算聚磷酸铵的平均聚合度。测定聚磷酸铵聚合度的详细步骤 3基金项目:国家自然科学基金资助项目(30471358);湖南省自然科学基金资助项目(03JJ Y3063)收到初稿日期:2005207204收到修改稿日期:2005211226 通讯作者:胡云楚作者简介:胡云楚 (1960-),男,湖南湘潭人,教授,博士研究生,从事材料化学和木材阻燃研究。

海藻糖的特性及应用

海藻糖的特性及应用 海藻糖(Trehalose)是一种安全、可靠的天然糖类,1832年由Wiggers将其从黑麦的麦角菌中首次提取出来,随后的研究发现海藻糖在自然界中许多可食用动植物及微生物体内都广泛存在,如人们日常生活中食用的蘑菇类、海藻类、豆类、虾、面包、啤酒及酵母发酵食品中都有含量较高的海藻糖。 海藻糖是由两个葡萄糖分子以1,1-糖苷键构成的非还原性糖,有3种异构体即海藻糖(α,α)、异海藻糖(β,β)和新海藻糖(α,β),并对多种生物活性物质具有非特异性保护作用。科学家们发现,沙漠植物卷叶柏在干旱时几近枯死,遇水后却又可以奇迹般复活;高山植物复活草能够耐过冰雪严寒;一些昆虫在高寒、高温和干燥失水等条件下不冻结、不干死,就是它们体内的海藻糖创造的生命奇迹。海藻糖因此在科学界素有“生命之糖”的美誉。国际权威的《自然》杂志曾在2000年7月发表了对海藻糖进行评价的专文,文中指出:“对许多生命体而言,海藻糖的有与无,意味着生命或者死亡”。 海藻糖又称漏芦糖、蕈糖等。 作用 海藻糖对生物体具有神奇的保护作用,是因为海藻糖在高温、高寒、高渗透压及干燥失水等恶劣环境条件下在细胞表面能形成独特的保护膜,有效地保护蛋白质分子不变性失活,从而维持生命体的生命过程和生物特征。许多对外界恶劣环境表现出非凡抗逆耐受力的物种,都与它们体内存在大量的海藻糖有直接的关系。而自然界中如蔗糖、葡萄糖等其它糖类,均不具备这一功能。这一独特的功能特性,使得海藻糖除了可以作为蛋白质药物、酶、疫苗和其他生物制品的优良活性保护剂以外,还是保持细胞活性、保湿类化妆品的重要成分,更可作为防止食品劣化、保持食品新鲜风味、提升食品品质的独特食品配料,大大拓展了海藻糖作为天然食用甜味糖的功能。 生产工艺 海藻糖是运用当代最先进的生物工程技术和生产工艺,采用按国际制药标准建造的成套设备,以当地特有的不含转基因成分的天然木薯淀粉为原料,在国内首家以规模化形式生产海藻糖,产品指标达到国际同类产品标准。先进的生产工艺技术和完整的质量保证体系为国内外市场提供了种质量过硬、价格合理的海藻糖系列产品,使生物制剂、化妆品、烘焙产品、水产畜产加工、米面制品、饮料和糖果以及农林种植等各个行业广泛受惠。

聚磷酸铵的应用及研究进展

聚磷酸铵的应用及研究进展

目录 0. 前言 (3) 1. APP的改性 (3) 1.1 偶联剂改性 (4) 1.2 三氯氰胺改性 (4) 1.3 表面活性剂改性 (5) 1.4 微胶囊化处理APP (5) 2. APP应用 (6) 2.1 APP改性PE及研究进展 (6) 2.2 APP改性PS及研究进展 (7) 2.3 APP改性PU及研究进展 (7) 2.4 APP改性POM及研究进展 (7) 3. 研究方向 (8)

摘要:本文首先介绍了对与APP的偶联剂改性、微胶囊化、表面活性剂改性以及三聚氰胺改性四种改性方法;利用APP改性PE、PU、PS、POM的方法以及被改性后材料阻燃性能、力学性能等方便的提高以及生活中的应用、研究进展,最后还介绍了APP的发展前景以及研究方向。 关键词:APP;改性方法;PE;PS;POM;PU; 0. 前言 聚磷酸铵(简称APP)是膨胀型阻燃剂(IFR)的重要组成部分,具有酸源及气源双重功能,具有含磷量高、含氮量多、热稳定性好、近于中性、阻燃效果好等优点,已成为阻燃技术研究领域中的一个热点[1]。APP通式(NH4)n+2PnO3n+1,外观呈白色粉末状,分水溶性和水难溶性,其中聚合度n在10~20之间为水溶性,称为短链APP;n>20为水难溶性的长链APP。APP的阻燃机理是受热脱水后生成聚磷酸强脱水剂,促使有机物表面脱水生成炭化物,加之生成的非挥发性磷的氧化物及聚磷酸对基材表面进行覆盖,隔绝空气而达到阻燃的目的,同时由于APP含有氮元素,受热分解释放出CO2、N2、NH3等气体,这些气体不易燃烧,阻断了氧的供应,达到了阻燃增效和协同效应的目的。 但是,目前受生产制备条件的限制,一般得到APP的聚合度只有几十。因此,APP具有一定的水溶性,而且与高分子材料的相容性较差,无法满足相应的力学性能要求。因此,对于以APP为主的膨胀型阻燃剂的研究主要集中在以下3个方面:(1)研究新的合成方法和工艺,提高APP的聚合度;(2)对现有APP产品进行表面改性(或微胶囊化);(3)开发膨胀型阻燃剂的高效协效剂。目的是设法提高膨胀型阻燃剂的阻燃效率,降低成本和添加量,改善其与有机材料的相容性,提高在潮湿环境下阻燃剂的抗溶出性能及APP的分解温度等。本文针对目前研究众多的APP为主的膨胀型阻燃剂的表面改性以及应用进行综述。 1. APP的改性 由于目前聚磷酸按的生产受到生产条件的限制,在生产工艺和设备落后的条件下,一般得到APP聚合度只有几十,而且其与有机材料的相容性不能完全达到相应的力学性能要求。另外,以APP为基础的膨胀型阻燃剂(IFR)在聚丙烯(PP)、

海藻糖的应用

功效应用例 糕点抑制淀粉老化(抑制硬化、维持透明感) 降低甜味、提高糖度、 增加耐冻性(抑制冷冻变质、抑制冰晶形成、维持保形性) 抑制失水(提高保水性) 改善口感,防止吸湿(维持酥脆感) 防止过度上色 防止砂糖析出结晶 提升气泡稳定性(取代乳化剂) 抑制油脂酸败异味 保持鲜度 调整水分量 减少加热后的不良气味 团子、大福 豆馅、鲜奶油 冷冻烘焙产品 鲜奶油、豆馅 派、饼干 鲜奶油、豆馅 羊羹、磅蛋糕 海绵蛋糕、戚风蛋糕 冷冻蛋糕、派类 冷藏蛋糕所用的鲜果 各式糕点 巧克力、可可豆 糖果、面包降低甜味,改善口感 防止过度上色 防止回潮 改善口感(维持脆爽) 保持口感(抑制老化) 增加耐冻性 提升气泡稳定性(取代乳化剂) 糖果、蜂蜜蛋糕 白面包、饼干 糖果、豆类零食 糖果、饼干 米粉、面包、三明治 冷冻面食半成品 吐司面包 冷饮、甜点降低甜味,改善口感 抑制蛋白质变性 防止离水 抑制冰晶成长 提升牛奶口感(减少加热后的不良气味) 提高保形性 防止吸湿 冰淇淋、果冻 布丁、果冻、慕斯 冷冻布丁、果冻 雪酪 卡士达馅、牛奶布丁 果冻、慕斯 水果脆片

饮料低着色性 低甜味 矫香矫臭 提高溶解度 抗氧化 缓释能量 果蔬汁、氨基酸饮料 各式饮料 含柠檬、牛奶、豆奶、 矿物质等的饮品 含钙、多酚类饮料 果蔬汁 运动饮料 面类抑制淀粉老化 防止面条结团 防止面条过软 防止干燥 缩短煮面时间 乌冬面、饺子皮、拉 面、荞麦面 调味料抑制吸湿放湿 抑制淀粉老化 抑制蛋白质变性(减少浮渣) 增加耐冻性 抑制异味 防止过度上色 提高固形物含量(延长保质期,防止水分转移) 粉末调味料 含淀粉的液状调味料 肉类用调味料 沙拉酱、酱汁 液状调味料 液状调味料 液状调味料 水产品加工抑制蛋白质变性 抑制淀粉老化 抑制吸湿放湿 提升风味 改善口感(弹性、松脆) 防止褐变 减少鱼腥味 减少异味 防止崩解 提升耐冻性 冷冻鱼糜、炸鱼板 含淀粉的鱼糜 海苔、干燥鱼贝 冷冻鱼糜、海鲜佃煮 鱼板、蟹肉棒、竹轮 鱿鱼丝,、吻仔鱼 秋刀鱼、青花鱼 各式水产品 红烧鱼 加工鱼片

聚磷酸铵的合成及改性研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

聚磷酸铵的合成及改性研究进展 作者:张晖, 赖小莹, 艾常春, 何宾宾, 胡意, 刘洋, 冯碧元, ZHANG Hui, LAI Xiao-ying, AI Chang-chun, HE Bin-bin, HU Yi, LIU Yang, FENG Bi-yuan 作者单位:张晖,ZHANG Hui(云南磷化集团有限公司,云南昆明,650113), 赖小莹,艾常春,冯碧元,LAI Xiao-ying,AI Chang-chun,FENG Bi-yuan(国家磷资源开发利用工程技术研究中心,云南昆明650113;武汉工 程大学,湖北武汉430074), 何宾宾,HE Bin-bin(云南磷化集团有限公司,云南昆明650113;国家磷资源 开发利用工程技术研究中心,云南昆明650113), 胡意,刘洋,HU Yi,LIU Yang(武汉工程大学,湖北武汉 ,430074) 刊名: 武汉工程大学学报 英文刊名:Journal of Wuhan Institute of Technology 年,卷(期):2012,34(10) 参考文献(41条) 1.Gou S L;Wen Y C A novel process to prepare ammonium polyphosphate with crystalline form Ⅱ and its comparison with melamine polyphosphate 2010(01) 2.高苏亮;戴进峰;李斌改性聚磷酸铵对三嗪类膨胀阻燃聚丙烯性能的影响[期刊论文]-塑料科技 2009(07) 3.马庆文高聚合度聚磷酸铵的制备 2007 4.张世伟;李天祥水难溶性聚磷酸铵的合成技术研究进展[期刊论文]-化工中间体 2006(01) 5.郭冬冬高效无机阻燃剂-聚磷酸铵的制备研究 2009 6.宋同彬;古思廉;梅毅I-型聚磷酸铵晶型转化研究 2010(203) 7.郝冬梅;林倬仕;陈涛不饱和聚酯树脂微胶囊化聚磷酸铵对阻燃聚丙烯性能的影响 8.徐定红;秦军;于杰不同聚合度聚磷酸铵对HDPE阻燃性能影响研究 9.杨杰;陶文亮聚磷酸铵的改性一聚磷酸酯的研究进展[期刊论文]-贵州化工 2009(04) 10.李蕾;杨荣杰;王雨钧聚磷酸铵(APP)的合成与改性研究进展[期刊论文]-消防技术与产品信息 2003(01) 11.傅亚;陈君和;贾云高聚合度Ⅱ-型聚磷酸铵的合成[期刊论文]-合成化学 2005(06) 12.骆介禹;骆希明结晶I型和Ⅱ型聚磷酸铵的性能差异.上册 2005(05) 13.曹建喜;罗立文;郭冬冬高效无机阻燃剂聚磷酸铵的合成[期刊论文]-中国石油大学学报(自然科学版) 2009(06) 14.Camino G;Costa L;Trossarelli L Study of the mechanism of intumescence in fire retardantpolymers:Part Ⅱ-Mechanism of action in polypropylene ammonium polyphosphate pentaerythritolmixtures 1984(01) 15.蔡晓霞;王德义;彭华乔聚磷酸铵/膨胀石墨协同阻燃EVA的阻燃机理[期刊论文]-高分子材料科学与工程 2008(01) 16.倪健雄核-壳型聚磷酸铵阻燃剂的制备及其阻燃聚氨酯性能与机理的研究 2009 17.殷锦捷;姜军聚磷酸铵对聚丙烯/聚乙烯复合材料阻燃性能的影响 2008(70) 18.张青;陈英红;武慧智聚磷酸铵基复合膨胀型阻燃剂的制备及其对聚甲醛的阻燃作用 2011(11) 19.Thomas S;Renate A Process for the preparation of ammonium polyphosphate 1992 20.Thomas S;Wolfgang B;Herbert N Process for the preparation of ammonium polyphosphate 1994 21.Shen C Y Preparation and characterization of crystalline long-chain ammonium polyphosphates 1969(02) 22.丁著明;范华阻燃剂聚磷酸铵的生产和应用 2003(01) 23.黄祖狄;赵光琪长链聚磷酸铵的合成 1986(11) 24.吴大雄;郭家伟超细聚磷酸铵的制备及有机包覆[期刊论文]-化工新型材料 2008(09) 25.张正元;张志业聚磷酸铵的合成[期刊论文]-磷肥与复肥 2008(02) 26.刘丽霞;陶文亮;李龙江聚磷酸铵的合成及其阻燃性能研究[期刊论文]-贵州化工 2009(01) 27.张健聚磷酸铵合成工艺研究[学位论文] 2005 28.唐慧鹏微胶囊化多聚磷酸铵的制备及其在聚丙烯中的应用[学位论文] 2010 29.Pieper W;Staendeke H;Elsner G Method for the preparation of hydrolysis-stable finely divided flame retardants based on ammonium polyphosphate 1986 30.Kun W;Zheng Z W;Yuan H Microencapsulated ammonium polyphosphate with urea-melamineformaldehyde

中药紫苏子的研究进展及应用

中药紫苏子的研究进展及应用 发表时间:2015-01-13T09:23:53.263Z 来源:《医药界》2014年10月第10期供稿作者:龚新月1曹栀1徐升2张先元2李娜2董滟 [导读] 提高记忆力、改善视力在食物中加入富含ɑ-亚麻酸饲料进行子鼠二代培养,可提高子代小鼠的学习记忆能力,使子代小鼠视网膜中的DHA增加,视网膜反射能增强 龚新月1曹栀1徐升2张先元2李娜2董滟2(通讯作者)(1.成都中医药大学临床医学院四川成都610072)(2.成都中医大学附属医院呼吸科四川成都610072) 【中图分类号】R283.6【文献标识码】A【文章编号】1550-1868(2014)10在中国,紫苏子(PerillaFrutescensSeed)是一味治疗咳喘、便秘的中药,其味辛、性温,无毒,以降气消痰、平喘、润肠功效见长,中医长期用于治疗痰壅气逆、咳嗽气喘和肠燥便秘等疾病。紫苏子来源于唇形科紫苏(Perillafrutescens(L.)Brill.)的干燥成熟果实[1],含有大量的人体必需脂肪酸,是目前最富含α-亚麻酸的植物资源,具有巨大的医疗价值与开发潜力。为使此药能更好的服务于临床实践,笔者查阅近年来国内外研究紫苏子的相关文献,将紫苏子的本草沿革、化学成分及药理作用等综述如下:1.本草沿革紫苏子原称“苏”之“子”,入药始载于魏晋《名医别录·卷第二》:“苏”,“味辛,温。主下气,除寒中,其子尤良。[2]”“紫苏子”作为本草正名,始见于唐初《药性论》,《本草衍义》谓“苏,此紫苏也,背面皆紫色佳子治肺气喘急”,至明代,对紫苏子的描述更为详尽,李时珍《本草纲目》记载:“九月半枯时收子,子细如芥子而色黄赤,亦可取油如荏油”。并载:“苏子与叶同功,发散风气宜用叶,清利下气宜用子也”。明代《韩氏医通》中所载三子养亲汤,具有顺气降逆,止咳平喘之功效。方中,紫苏子降气化痰为君药,取“子以养亲”之意。 综观历代本草,其中所记载的紫苏子主要来源于唇形科植物紫苏,且古今均是运用其降气消痰,平喘,润肠之功效。 2.化学成分紫苏子主要化学成分包括脂肪酸、氨基酸、微量元素等。采用GC2MS法对脂肪酸的组成进行鉴定表明紫苏子油主要含4种脂肪酸:α-亚麻酸、亚油酸、硬脂酸、软脂酸[3]。紫苏子总氨基酸的量为18.9%,其中,必需氨酸的含量占8.039%。紫苏子含有丰富的矿质元素,Fe、Mn、Cu、Zn等生物必需的微量元素含量丰富。此外,从紫苏子中还检测到芹菜素、木犀草素等黄酮类成分。 3.药理研究进展及应用3.1止咳、祛痰、平喘研究发现,紫苏子提取的脂肪油有明显的止咳和平喘作用。王永奇等[4]研究表明紫苏子水提物、醇提物和醚提物和水提取物有较好的镇咳祛痰作用,炒紫苏子水提物的大剂量组和炒紫苏子醚提物的小剂量组均有明显的平喘效果,其平喘效果与氨茶碱的平喘效果相当。据此推测紫苏子可与其他药物协同治疗慢支炎、支气管哮喘、慢阻肺等呼吸系统疾病。 3.2抗炎、抗过敏晚近研究发现,炒紫苏子乙醇提取物具有明显的抗过敏作用,其有效成分是以木犀草素为代表的酚类化合物。分析其抗过敏的机制可能是木犀草素等酚类化合物能抑制组胺、白三烯及PGD2的释放[5]。Yun-KyoungYim等[6]研究表明紫苏子油联合针灸治疗可通过恢复Th1/Th2免疫系统失衡及抑制嗜酸性粒细胞的炎症反应,从而在支气管哮喘的治疗中发挥抗炎和调节免疫系统的作用。 3.3降血脂、降胆固醇王雨等[7]研究以0.8、4.2、25.0g/kg剂量的紫苏子掺入高脂饲料中喂饲大鼠30d,各组动物生长、活动正常。各剂量组动物体重、食物利用率与高脂对照组比较,差异无显著性;各剂量组的血清TC、TG明显降低,各剂量组的HDLC无明显变化。TaoZhang等[8]也发现紫苏子油可促进小鼠肝脏的脂肪酸的氧化,并抑制肝脂肪酸合成,从而显著降低甘油三酯、总胆固醇。 3.4降血压在我国,高血压是一种常见病、多发病,是冠心病、心肌梗死、脑卒中的主要危险因素之一,严重危害人类的健康,目前临床上使用的降压药对肝肾功能多有不良反应。为寻找无毒副作用的降压药,吴旭锦等[9]通过腹腔注射左旋硝基精氨酸15mg/(kg·d),构建大鼠高血压模型,发现紫苏子油纳米乳明显抵抗大鼠尾动脉血压的升高。另据研究发现,紫苏子油可使伴有脑中风易发症的自发性高血压大鼠平均生存时间延长15%~17%,收缩压下降10%左右,血小板凝集性显著降低。 3.5保护肝功能、降转氨酶现代药理研究表明,紫苏子含有的酚性成分具有强抗氧化、抗脂质过氧化、抗炎作用及基于此的肝损伤保护作用[10]。耿芹[11]等研究发现主要含有迷迭香酸、迷迭香酸苷及黄酮类物质的紫苏子醇提物,通过改善三羧酸循环的代谢情况而对CCl4引起的肝脏线粒体功能紊乱有改善作用,对CCl4致小鼠急性肝损伤有较好的保护作用,其作用强度在生药当量20g.kg-1时,作用效果与联苯双酯临床等效剂量相当。 3.6抗氧化、抗衰老1956年英国学者哈曼(Harman)提出的自由基学说认为:电离辐射、氧化性环境、污染等常会诱导体内自由基的产生和蓄积,从而引起细胞损伤、凋亡。现代医学认为,自由基是导致衰老的重要因素之一。炒紫苏子成分中含有多元酚结构,能提供大量的酚羟基还原自由基,从而起到抗自由基作用[12]。 3.7提高免疫力王钦富[13]等研究发现炒紫苏子醇提物可明显增强小鼠的淋巴细胞转化率,升高血清溶血素水平,增强IL-2生物活性,提高溶菌酶含量,提高IFN-γ水平,表明炒紫苏子醇提物对小鼠细胞免疫功能、体液免疫功能和非特异免疫功能具有增强作用,并有明显的量效关系。 3.8抗肿瘤吴旭锦等[14]将紫苏子油制备成一种水包油型纳米乳,并进行其对体外培养的小鼠乳腺癌细胞EMT-6的凋亡诱导试验,从胞形态学、生物化学等多方面的考察结果表明,紫苏子油纳米乳能诱导体外培养的小鼠乳腺癌细胞EMT-6发生凋亡,从而发挥抗肿瘤的作用。 3.9提高记忆力、改善视力在食物中加入富含ɑ-亚麻酸饲料进行子鼠二代培养,可提高子代小鼠的学习记忆能力,使子代小鼠视网膜中的DHA增加,视网膜反射能增强[15]。因此,紫苏子中的脂肪油提取物具有促进小鼠的学习记忆能力的作用。以上研究表明紫苏子促进学习记忆能力作用的机制可能是与其富含的a-亚麻酸有关。 4总结目前,紫苏子化学成分比较明确,主要包括脂肪酸、氨基酸、微量元素、芹菜素、木犀草素等。其药理研究,多集中在呼吸、心血管、消化等方面,具有止咳平喘、降血脂、护肝、抗肿瘤等作用。有研究报道,补充紫苏子油能延缓IgA肾病的进展,此外,

相关文档