文档库 最新最全的文档下载
当前位置:文档库 › 高分子化学与物理复习

高分子化学与物理复习

高分子化学与物理复习
高分子化学与物理复习

1.高分子的结构

1高分子链的近程结构(一级结构)

一、高分子的化学组成

二、结构单元的键接顺序

三.支化与交联

四、共聚物的结构

五.高分子链的构型

2高分子链的远程结构(二级结构)

一、聚合物的分子量

二、高分子的分子量分布

三、高分子链的构象

四.高分子链的柔顺性

五、高分子链的构象统计

3高分子的化学组成

1. 碳链高分子

2. 杂链高分子

3. 元素高分子

4. 无机高分子

1-3出题方式:如:

4支化与交联

1. 支化

支化高分子的性质与线形分子相似,可溶解,加热可融化;但结晶度大大降低。

2. 交联

交联的高分子不能溶解。交联高分子加热不能融化但在溶剂中可以溶涨,交联的程度越高,溶胀度越小。

5共聚物的结构

交替、无规、嵌段、接枝

6高分子链的构型

是指分子中由化学键所固定的原子在空间的几何排列。

构型不能用物理方法改变,改变构型必须通过化学键的断裂和重组。

1.旋光异构体

由手性碳原子(不对称碳原子)形成的。

(1)全同立构

全部由一种旋光异构体单元键接而成,取代基R 处在平面的同一侧

(2)间同立构

由两种旋光异构体单元交替键接而成,取代基R 交替处在平面两侧。 (3)无规立构

两种旋光异构单元完全无规键接,取代基R 无规分布在平面两侧。

7分子的立体构型不同,材料的性能也不同:

全同立构的聚苯乙烯可结晶,熔点为240 ?C ,而无规立构的聚苯乙烯不能结晶,软化温度为80 ?C ;

全同或间同的PP 易结晶,可纺丝成纤;而无规聚丙烯却是一种橡胶状的弹性体。 自由基聚合的高聚物大都是无规的,定向聚合可制得有规立构的高聚物。

8.几何异构体

顺式:取代基在双键的同一侧 反式:取代基在双键的两侧

顺式1,4-聚丁二烯:

分子与分子之间的距离较大,在室温下是一种弹性很好的橡胶。

反式1,4-聚丁二烯:

分子链结构比较规整,容易结晶,在室温下是弹性很差的塑料。

9.单分散性:

如果聚合物的分子量完全均一、大小相同,就称为单分散性。 阴离子聚合得到的产物接近单分散性。 (1)数均分子量 (2)重均分子量 (3)粘均分子量

对单分散性样品,则:

对单分散性试样,d=1 对多分散性试样,d>1

M

M n

W d =

10.高分子链的构象

1.内旋转

单键是由σ电子组成,电子云分布是轴对称的,因此高分子在运动时C-C 单键可以绕轴旋转,称为内旋转。 2.构象

是由单键内旋转而形成的分子在空间的不同形态(排列)。

*****11.响高分子链柔性的因素

***12.链段

由若干链节组成的一段链,是主链中能够独立运动的最小单位。

13.高分子间的相互作用力

1. 范德华力

(1)静电力

永久偶极-永久偶极之间的相互作用

是极性分子之间的永久偶极之间的相互吸引力。

作用能一般在13-20 kJ/mol(3-kcal/mol)之间。

(2)诱导力

永久偶极-诱导偶极之间的相互作用

是极性分子的永久偶极与它在其它分子上引起的诱导偶极之间的相互作用力。它不仅存在极性分子与非极性分子之间,也存在于极性分子与极性分子之间。诱导力的作用能一般

在6-13 kJ/mol(1.5~3kcal/mol)。

(3)色散力

瞬时偶极-瞬时偶极之间的相互作用

是分子瞬时偶极之间的相互作用力。色散力的作用能一般在0.8-8kJ/mol (0.2-2

kcal/mol)。色散力存在于一切极性和非极性分子之间。范德华力具有加和性。随分子量的加大,作用力也加大。高分子的分子间作用力,超过了化学键的键能。

高分子不存在气态形式。

14.高聚物的内聚能密度与其物理性能之间的关系

(A) CED < 300兆焦/米3

一般都是非极性高聚物,分子间力主要是色散力,分子间相互作用弱,加上分子链的柔顺性较好,使这些高聚物易于变形,富有弹性,可用做橡胶。

(B) CED >400兆焦/米3

分子链上有强极性基团,或者能形成氢键,分子间作用力大,因而有较好的机械强度和耐热性,再加上分子链结构比较规整,易于结晶、取向,成为优良的纤维材料。

(C) 300

这类分子间力居中,适合于做塑料使用。

15.聚合物的结晶形态

单晶属于折叠链晶片

分子链的取向

对于片状单晶,分子链的取向垂直于单晶平面

单晶的判别

衍射图上出现衍射点,而不是衍射环

球晶

属于折叠链晶片

球晶的判别

球晶在偏光显微镜下观察,呈特有的黑十字消光图案(Maltese Cross)。

分子链的取向

分子链通常总是沿垂直于球晶半径方向取向的

***16.聚合物晶胞

c轴方向:与主链中心轴平行的晶胞主轴方向。

高分子链链轴(c轴)方向原子间的化学键相互作用;

不同链间的范德华力或氢键相互作用不同;

形成的晶胞是各向异性的,因此聚合物可以形成立方晶系之外的其它六种晶系的晶胞。17.高分子链在晶体中的形态

完全伸展的平面锯齿链是能量上最有利的构象。

大小不同的取代基常引起链的扭曲。

平面锯齿链

三维空间螺旋构象

***18.聚合物的晶态结构模型

结晶高聚物的密度小于晶胞计算的密度

ρ<ρc ;说明结晶与非晶共存;

反应的不均匀性(非晶区渗入性大);

拉伸时的结晶(微晶取向);

熔融时间长(微晶大小不同)

19.折叠链模型

解释了:单晶、球晶---是以折叠链晶片为单元形成的

*****20.高分子链结构对结晶能力的影响

21.聚合物结晶的速度

晶核的形成

均相成核-链本身局部有序排列而形成的晶核;

(不断成核,晶体大小不等):

异相成核-成核发生在外来物表面,如容器壁、杂质,熔体中的晶种、

(同时成核,形成的晶体较均一)

晶粒的生长:

高分子链向晶核进一步扩散,规整排列,使晶粒发展的过程。

22.膨胀计法测定结晶总速率(会语言描述)

*****23、结晶速度的温度依赖性

结晶温度范围在玻璃化温度(Tg)与熔点(Tm)之间

4生长控制区、3快速结晶区、2成核控制区、1过冷区

关系曲线的解释

成核速度和结晶生长速度对温度具有不同的依赖性。

在高温时:晶核形成慢,生长速度快。

在低温时:晶核形成快,生长速度慢。

Tmax 与Tm 之间的关

Tmax ≈ 0.80 Tm ~ 0.85 Tm (K)

应用

提高结晶度—在Tg以上,Tm以下退火。

降低结晶度—迅速淬火到Tg以下。

得到大球晶—较高的温度下结晶

得到小尺寸球晶—低温下结晶(在Tg附近)

24、影响结晶速度的其它因素

1. 分子结构

与结晶能力的影响几乎完全一样。

分子链结构越简单、对称性越高、规整性越好、取代基空间位阻越小、链越柔顺,则聚合物的结晶速度越快。

2. 分子量

相同的结晶条件下,分子量越大,结晶速度越慢。体系粘度相关

3. 杂质

有些杂质能促进聚合物的结晶,这类杂质称为成核剂。聚合物中加入成核剂能明显加快聚合物的结晶速度,并且减小结晶尺寸,可改进聚合物的性能。

不起成核作用的杂质称为惰性杂质,会阻碍聚合物的结晶。

4. 外力

拉伸能加快聚合物的结晶过程

如天然橡胶在室温下结晶过程极其缓慢,需要几十年,在0℃下结晶也需要几百小时,如果将天然橡胶拉伸,几秒钟就能结晶。

*****25 结晶度及其对聚合物性能的影响

1. 结晶度的定义

2. 结晶度的测试方法

密度法

3. 结晶度对聚合物性能的影响

26.聚合物的熔融

即熔融过程发生在一个较宽的温度范围内,从聚合物结晶开始融化到融化完全的温度范围称为熔限。

熔融过程的解释结晶聚合物中含有完善程度不同的晶体。

27.影响聚合物熔点的因素

28.高聚物的取向现象

1. 取向

聚合物在某种外力作用下,分子链、链段和结晶聚合物中的晶粒等结构单元沿着外力方向择优排列。

取向态在一定条件下可保持相对稳定!

2. 取向态与晶态的区别

取向态是一定程度上的一维或二维有序,而晶态结构是三维有序。

结晶态是热力学平衡态,取向态是热力学非平衡态。

3. 取向对性能的影响

(1) 沿取向方向的力学性能提高,与取向方向垂直的方向上则降低。

(2) 产生光学双折射现象。

(3) 使用温度也会提高,密度、玻璃化温度、结晶度提高。

取向的应用

1. 合成纤维的生产

合成纤维生产中,广泛采用牵伸工艺(即单轴拉伸)来提高纤维的强度。

未取向尼龙,σ:700-800kg/cm2;取向后σ:4700-5700 kg/cm2。

2. 薄膜的生产

双轴拉伸和吹塑。

3. 塑料的吹塑

飞机的机舱罩,安全帽。

2.聚合物的分子运动

*****1.力学状态和热转变

1.非晶态聚合物的温度—形变曲线

(1)物理意义

在恒定外力下,聚合物的形变随温度的变化曲线称为温度形变曲线,又称为热机械曲线,典型的非晶态聚合物的温度形变曲线如图所示。

(2)曲线的特点

T 较低时,呈刚性固体状,只发生非常小的形变;

T 升高到某一范围后,形变明显增加,随后达到一相对稳定的形变,试样变成柔软的弹性体,温度继续升高,形变不变;

T 进一步升高,形变量又逐渐增大,试样最后完全变成粘性的流体。

(3)三种力学状态

根据温度形变曲线的特征,可按温度区域划分为三种力学状态。

(A) 玻璃态

(B) 高弹态

(C) 粘流态

(4)两个转变温度

(A) 玻璃化转变和玻璃化转变温度

玻璃态与高弹态之间的转变,称为玻璃化转变,对应的温度称为玻璃化转变温度(Tg),简称玻璃化温度。

(B) 流动转变和粘流温度

高弹态与粘流态之间的转变温度称为粘流温度(Tf)。(流动转变这个提法很少)

(5)用分子的运动观点解释温度形变曲线

T g 以下,链段运动被冻结,只有支链、侧基和小链节能运动,高分子不能实现构象转变。

T g~ T f 之间,链段能够运动,但分子链仍不能运动。

T f 以上,所有的运动单元,包括整个分子。

玻璃化转变的定义有许多不同的表述方式

(6)分子量对温度形变曲线的影响

粘流温度随分子量的增大而急剧增大,而玻璃化温度变化不大,所以分子量增大时,高弹态区域向右延长变宽

温度形变曲线

2.晶态聚合物的温度-形变曲线

(1)轻度结晶的聚合物(结晶区为分散相)

晶区为分散相,温度形变曲线上仍然存在明显的玻璃化转变区;也会存在高弹态。

(2)高度结晶的聚合物(结晶区为连续相)

如果结晶度大于40%,晶区是连续相,材料变得坚硬,宏观上将觉察不到有明显的玻璃化转变,其温度形变曲线在熔点以前不出现明显的转折。

熔融后,是否进入粘流态,视分子量而定:

如果,分子量较小,T f < Tm,晶区熔化后,试样成为粘性流体。

如果分子量较大,Tf >Tm,晶区熔化后,进入高弹态,Tf 以上,进入粘流态。

3.玻璃化转变现象和玻璃化转变温度

玻璃化转变现象

聚合物的一种普遍现象(结晶和非晶)。发生玻璃化转变时,很多性能会发生剧变。如在转变区几度的范围内,模量会改变3-4个数量级。

玻璃化转变温度用T g 表示

4.玻璃化转变的自由体积理论

1.自由体积

物质中未被分子占据的以空穴形式存在的体积。

2. 自由体积理论(Fox和Flory提出)

认为液体或固体物质,其体积由两部分组成:已占体积和自由体积

聚合物的体积由高分子占有体积和未被高分子占有的自由体积组成。

自由体积为链段提供了必要的活动空间。

当处于高弹态聚合物冷却时,起先聚合物已占体积和自由体积逐渐减小,到Tg 时,自由体积将到达一最低值,没有足够的空间容纳链段运动,导致链段运动被冻结,发生玻璃化转变。

根据自由体积理论,聚合物的玻璃化温度是自由体积达到某一临界值时的温度,聚合物玻璃态是等自由体积状态。

5.WLF方程定义的自由体积

2.5%

*****6.影响玻璃化温度的因素

7.聚合物熔体的黏性流动定义

1 泊=0.1 Pa ?s

1 厘泊=0.001 Pa ?s

流动曲线

剪切应力(σ)与剪切速率(γ)的关系曲线

牛顿流体

粘度不随剪切应力和剪切速率的大小而改变,始终保持常数的流体,称为牛顿流体

非牛顿流体的剪切应力和剪切速率之间不呈直线关系,通常采用“幂次定律”的经验方程来描述其流动行为:

?σ = K γn

8.非牛顿流体的类型

假塑性流体

粘度随剪切速率的增加而减小,即剪切变稀

9.高聚物粘性流动的特点

高分子的流动是通过链段的位移运动来完成的

小分子流动的模型描述:

低分子液体中存在许多与分子尺寸相当的空穴。

外力使分子沿外力方向跃迁的几率大于其他方向。

10.影响粘流温度的因素 11.聚合物流动性的表征

1.熔体粘度 (1) 表观粘度

聚合物熔体和浓溶液都属非牛顿牛体,其剪切应力对剪切速率作图得不到直线,即其粘度有剪切速率依赖性。

用 σ/γ 定义的粘度不是常数,引入表观粘度的概念ηa ,定义:

非牛顿流体的幂次定律σ = K γ n

1-=n a K γ

η (2) 零切粘度

低剪切速率下,非牛顿流体表现出牛顿流体的特性,由σ 对γ 曲线的起始斜率可得到牛顿粘度。

定义剪切速率趋于零时的粘度为零切速率粘度,简称零切粘度:

*****12.熔融指数

在一定温度下,熔融状态的高聚物在一定负荷下,十分钟内从规定直径和长度的标准毛细管中流出的重量(克数)。熔融指数越大,则流动性越好,熔融指数的单位为克。 (没有明确的物理意义,但可作为流动性好坏的指标)

*****13.高聚物熔体的流动曲线

胀塑性流体(剪切变稀)流体。

(1)剪切速率很低时,呈现恒定的粘度η0(第一牛顿区)。 (2)中间范围,粘度随剪切速率的增加而减小。(假塑性区) (3)很高剪切速率下,又呈现恒定的粘度η∞ (第二牛顿区)。

高聚物熔体粘度随剪切速率变化的规律可以用链缠结观点来解释。

(剪切速率由小到大:链缠结的破坏速率=重建速率;破坏速率大于重建速率;完全破坏) 也可以从分子链的取向来解释。

(剪切速率由小到大:不足以使链段取向;越来越多;完全取向)

*****14.影响聚合物熔体粘度的因素

15. 聚合物熔体的弹性现象

1.韦森堡效应

当高聚物熔体在搅拌时,熔体会沿旋转轴向上爬升,这种现象称为韦森堡效应(Weissenberg),或称为爬杆现象。

2. 挤出物胀大现象

聚合物熔体从小孔、毛细管或狭缝中挤出时,挤出物的直径或厚度会明显地大于模口的尺寸,这种现象叫做挤出物胀大,或称离模膨胀,或出口膨胀,也称巴拉斯效应(Barus)。通常定义挤出物的最大直径(D)与模口直径(D0)的比值来表征胀大比B=D/D0

一般来说,分子量越大,流速越快,挤出机机头越短,温度越低,则膨胀程度越大。3. 流动的不稳定性和熔体破裂现象

剪切速率不大时,高聚物熔体挤出物表面光滑。但剪切速率超过某一临界值后,挤出物的外观表面粗糙,直至破裂成碎块,这些现象称为不稳定流动或弹性湍流。

熔体破裂指其中最严重的情况。

3.聚合物的溶液

1. 聚合物溶解的特点

1.聚合物溶解的过程

溶解分两个阶段进行:先溶胀,后溶解。

溶剂小分子尺寸小,扩散速度快,首先深入聚合物内,使得聚合物的体积膨胀,称为溶胀。 2. 溶解度与分子量有关

分子量大的溶解度小,分子量小的溶解度大。 3.溶解性与聚合物的结构有关 线形和支化聚合物可以溶解;

交联聚合物只能溶胀,不能溶解,交联度大的溶胀度小,交联度小的溶胀度大。 4.溶解速度与聚集态结构有关

非晶态聚合物:溶剂分子容易渗入高聚物内部使之溶胀和溶解。 晶态高聚物:溶解困难。加热到熔点附近才能溶解;(聚合物和溶剂)如果发生强烈的相互作用,例如形成氢键(放热),则在室温下也可溶解。

*****2.溶度参数

内聚能密度的平方根,用δ 来表示:

3.溶解过程的热力学解释

溶解过程的自由能变化为:

m m m S T H G ?-?=?

时,溶解自发进行; 时,则不能溶解。

在溶解过程中,分子的排列趋于紊乱,?S m > 0,因此,溶解与否取决于二者的相对大小。

***4.溶解过程

(1)极性聚合物溶于极性溶剂

高分子与溶剂分子间的相互作用很强烈,溶解时放热, ?Hm < 0,?Gm < 0,溶解能够进行。

(2)非极性聚合物的溶解

一般是吸热的, ?Hm > 0,只有 ?Hm< T ?Sm 时,溶解才能自发进行。 升高温度或减小?Hm ,有利于溶解。

假定混合过程没有体积变化,可沿用小分子的Hildebrand 溶度公式计算混合热?Hm :

只有溶度参数相差足够小时,才能溶解

5.溶剂的选择

1.非晶聚合物

(1) 若是非极性:选择溶度参数相近的溶剂,“相似相溶”

(2) 若是极性:溶度参数与极性都要与聚合物相近。

2.晶态聚合物

(1) 非极性结晶聚合物

溶解包括结晶部分的熔融和高分子与溶剂的混合,两者都是吸热过程。

溶度参数相近,加热PE: 120 ?C-四氢奈,

(2) 极性结晶聚合物

如能生成氢键,室温下就能溶解。

3.混合溶剂

混合溶剂的溶度参数大致可以按下式计算:

两种纯溶剂的体积分数

两种纯溶剂的溶度参数

6.端基分析测数均分子量

条件

化学结构明确,分子中有可供分析的端基。

聚酰胺、聚酯等

W:试样重量;n:试样摩尔数

ng:测得的聚合物试样中端基的摩尔数

xg:每个高分子中所含被分析的末端基的数目

7.沸点升高和冰点下降

基本原理

利用溶液的依数性

依数性是指溶液的热力学性质只与溶液中溶质的分子数有关,而与溶质分子的化学组成无关。在溶剂中加入不挥发性的溶质后,溶液的蒸汽压下降,导致溶液的沸点升高,溶液的冰点降低。

沸点升高值?Tb 和冰点降低值?Tf 正比于溶质的摩尔数,即溶液的浓度C,与溶质的分子量M成反比。

C: 一千克溶剂中所含溶质的克数

Kb 和Kf 分别是溶剂的沸点升高常数和冰点降低常数(度/重量摩尔浓度)

*****8.膜渗透压法

C :溶液浓度(g/cm3),M :溶质分子量。 若以g/cm2为单位,则:

K mol cm g R ???=/10478.84

高分子溶液不是理想溶液,渗透压和浓度的比值C /∏(量纲是厘米)与浓度有关:

式中A2、A3 分别称为第二、第三维利系数,它们表示与理想溶液的偏差。

根据Flory-Huggins 的晶格模型,可推导出:

1~V -是纯溶剂的摩尔体积

χ1 -Huggins 参数

χ1称为高分子与溶剂的相互作用参数,或称为Huggins 参数,它反映了高分子与溶剂混合

中相互作用能的变化。RT χ1的物理意义是指当一个溶剂分子放入高分子中所产生的能量变化。

当χ1=1/2时,高分子溶液符合理想溶液的条件;

当χ1<1/2时,溶解过程的自发趋势更强,此时的溶剂称为该高分子的良溶剂; 当χ1>1/2时,高分子溶解过程趋于困难,相应的溶剂称为该高分子的劣溶剂。

A2的数值也可以看做是高分子链段间和高分子与溶剂分子之间相互作用的一种量度,它和高分子在溶液里的形态有密切关系。

在良溶剂中,高分子线团受溶剂化作用力的影响,呈现舒张松散状况,A2是正值,即χ1<1/2。

劣溶剂中,线团会紧缩,高分子在这种溶剂中不能溶解,χ1>1/2。 当A2=0时,链段间的吸引力和链段与溶剂分子间的引力相抵消,这时的溶液近似理想溶液,

这时的温度称为θ温度,χ1=1/2。

*****9.粘度法测粘均分子量

*****10. 凝胶渗透色谱法(GPC)

4. 聚合物的力学性能

1. 描述力学性能的基本物理量

5.高分子化学-绪论

1、基本概念

一个大分子往往是由许多相同的、简单的重复结构单元连接而成。

重复结构单元(Repeating Structure Unit):大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节(Chain Element)

结构单元(Structure Unit):单体分子通过聚合反应进入大分子链的基本单元。结构单元的元素组成可以与单体的元素组成相同,也可以不同。

单体单元(Monomer Unit):单体分子通过聚合反应形成的元素组成与单体完全相同的结构单元。

聚合度(Degree of Polymerization):聚合物分子量大小的一个指标,在聚合物的分子结构式中以n 表示,也称为链节数。

有两种表示方法:

以大分子链中的结构单元数目表示,记作X n

以大分子链中的重复单元数目表示,记作DP

2. 三大合成材料

塑料(Plastics)橡胶(Rubber)纤维(Fiber)

***3. 常用聚合物的俗名及英文

4. 按单体和聚合物的组成和结构变化分类

加聚反应(Addition Polymerization):烯类单体因加成而聚合起来的反应加聚反应的生成物称加聚物(Addition Polymer)

特点:

·聚合物的结构单元与单体组成相同,分子量是单体分子量的整数倍

缩聚反应(Polycondensation):单体经多次缩合而聚合起来的反应

缩聚反应的主产物为缩聚物(Condensation Polymer)。

特点:

·官能团之间反应,缩聚物有特征结构官能团;

·有低分子副产物;

缩聚物和单体分子量不成整数倍。

5. 按聚合机理(Mechanism)或动力学(Kinetics)分类

连锁聚合(Chain Polymerization)

逐步聚合(Stepwise Polymerization)

6. 常用的聚合物的分子量(万)

*****7.分子量的计算

6.缩聚及其他逐步聚合反应

1. 官能度:

单体实际参加反应的官能团数目。

*****2.“官能团等活性”假定:

在一定的聚合度范围内,单体、低聚体、多聚体或高聚物,其两端基团的反应能力(基团活性)不随分子链的变化而变化,每一步反应的平衡常数K相同。

*****3. 聚合度与反应程度p的关系

以等摩尔的二元酸和二元醇缩聚为例。

N0:体系中的羧基数或羟基数,等于二元酸与二元醇的分子总数,也等于反应时间t时的结构单元数。

N:反应到t 时体系中残留的羧基数或羟基数,等于聚酯的分子数。

平均聚合度:大分子链的平均结构单元数。

反应程度p:

参加反应的基团数(N0-N)占起始基团数(N0)的分率

符合此式须满足官能团数等摩尔的条件;聚合度将随反应程度而增加。

*****4. 不可逆的缩聚动力学

若将体系中的低分子副产物不断排出,则反应向正方向进行。如聚酯反应采用减压脱水使平衡向产物方向移动,可视为不可逆。

羧酸和醇的酯化为可逆平衡反应,如及时排除副产物水,符合不可逆条件。

自催化:

外加酸催化:

外加酸时聚合速率由酸催化和自催化组成,但往往忽略自催化速率。

为了缩短到达平衡的时间,往往外加无机加强酸作催化剂,称外加酸催化缩聚。

外加酸氢离子浓度[H+]几乎不变,与k1、k2、k3、KHA合并成k’,[COOH]=[OH]=c

*****5.影响缩聚平衡的因素、平衡常数与聚合度

令羧基的起始浓度为c0 ,t 时刻的浓度为c;分别考虑水不排除和水部分排除(即残留水分的浓度为nw )两种情况:

苏教版九年级物理上册知识点汇总

苏科版九年级物理上册复习 (一) 简单机械 1. 杠杆:一根在力的作用下能绕着固定点转动的硬棒就叫杠杆。 2. 什么是支点、动力、阻力、动力臂、阻力臂? (1)支点:杠杆绕着转动的点(o) (2)动力:使杠杆转动的力(F 1) (3)阻力:阻碍杠杆转动的力(F 2) (4)动力臂:从支点到动力的作用线的距离(L 1)。 (5)阻力臂:从支点到阻力作用线的距离(L 2) 3. 杠杆平衡的条件:动力×动力臂=阻力×阻力臂.或写作:F 1L 1=F 2L 2 或写成 2112L L F F 。这个平衡条件也就是阿基米德发现的杠杆原理。 4. 三种杠杆: (1)省力杠杆:L 1>L 2,平衡时F 1F 2。特点是费力,但省距离。(如钓鱼杠,理发剪刀等) (3)等臂杠杆:L 1=L 2,平衡时F 1=F 2。特点是既不省力,也不费力。(如:天平) 5. 定滑轮特点:不省力,但能改变动力的方向。(实质是个等臂杠杆) 6. 动滑轮特点:省一半力,但不能改变动力方向,要费距离.(实质是动力臂为阻力臂二倍的杠杆) 7. 滑轮组:使用滑轮组时,滑轮组用几段绳子吊着物体,提起物体所用的力就是物重和动滑轮总重的几分之一, 即: F= 1 n (G 物+G 动) 8.距离关系:S=nS 0 S-绳子自由端移动距离S S 0-重物移动的距离; n-绕过动滑轮和系在动滑轮轴框上的绳子的股数 (二) 机械功和机械能 1. 功的两个必要因素:一是物体受到的力;二是物体在力的方向上通过的距离。 2. 功的定义:功(W)等于力(F)跟物体在力的方向上通过的距离(s)的乘积。 3. 功的公式:功=力×距离;W=Fs ;单位:W →焦;F →牛顿;s →米。 1焦=1牛·米. 把一个鸡蛋举高1m ,做的功大约是0.5 J

高分子化学重点

第一章 绪论 单体:能通过聚合反应形成高分子化合物的低分子化合物,即合成聚合物的原料。 高分子:一个大分子由许多简单的结构单元通过共价键重复键接而成,并具有一定机械性能。 结构单元:在大分子链中出现的以单体结构基础的原子团称为结构单元。 重复单元:大分子链上化学组成和结构均可重复的最小单元,可能与结构单元相同,也可能由2个或多个结构单元组成。 单体单元:与单体中原子种类及个数相同的结构单元,仅电子结构有所变化。 重复单元或结构单元类似大分子链中的一个环节,故俗称链节 由一种单体聚合而成的高分子称为均聚物; 由两种或两种以上的单体聚合而成的高分子则称为共聚物. 结构单元=单体单元=重复单元=链节 聚合度:聚合度是衡量高分子大小的一个指标。 合成尼龙-66具有另一特征: H 2N(CH 2)6NH 2 + HOOC(CH 2)4COOH H--NH(CH 2)6NH--CO(CH 2)4CO--OH n (2n-1) H 2O + 结构单元 结构单元 重复结构单元 有两种表示法:[1]以大分子链中的结构单元数目表示,记作: [2]:以大分子链中的重复单元数目表示,记作: 单元的分子量 结构单元=重复单元=链节1 单体单元 单体在形成高分子的过程中要失掉一些原子 结构单元 1 重复单元 1 单体单元 重复单元=链节 三大合成材料:橡胶,塑料,纤维 玻璃化温度:聚合物从玻璃态到高弹态的热转变温度。 分子量及其分布 数均分子量:按聚合物中含有的分子数目统计平均的分子量高分子样品中所有分子的总重量除以其分子(摩尔)总数 ∑∑∑∑∑∑= = = =i i i i i i i i i n M x M W W N M N N W M ) ( n x DP n DP x n ==

初二物理上册知识点-苏教版

八年级上学期物理知识点汇编(声、光、透镜、物态变化、电流和电路) 西充中学李树林第一章声现象 一、声音的产生: 1、声音是由物体的振动产生的;(人靠声带振动发声、蜜蜂靠翅膀下的小黑点振动发声,风声是空气振动发声,管制乐器考里面的空气柱振动发声,弦乐器靠弦振动发声,鼓靠鼓面振动发声,钟考钟振动发声,等等); 2、振动停止,发生停止;但声音并没立即消失(因为原来发出的声音仍在继续传播); 3、发声体可以是固体、液体和气体; 4、声音的振动可记录下来,并且可重新还原(唱片的制作、播放); 二、声音的传播 1、声音的传播需要介质;固体、液体和气体都可以传播声音;声音在固体中传播时损耗最 少(在固体中传的最远,铁轨传声),一般情况下,声音在固体中传得最快,气体中最慢(软木除外); 2、真空不能传声,月球上(太空中)的宇航员只能通过无线电话交谈; 3、声音以波(声波)的形式传播; 注:由声音物体一定振动,有振动不一定能听见声音; s;声音在4、声速:物体在每秒内传播的距离叫声速,单位是m/s;声速的计算公式是v= t 空气中的速度为340m/s; 三、回声:声音在传播过程中,遇到障碍物被反射回来,再传入人的耳朵里,人耳听到反射 回来的声音叫回声(如:高山的回声,夏天雷声轰鸣不绝,北京的天坛的回音壁) 1、听见回声的条件:原声与回声之间的时间间隔在0.1s以上(教师里听不见老师说话的回声,狭小房间声音变大是因为原声与回声重合); 2、回声的利用:测量距离(车到山,海深,冰川到船的距离); 四、怎样听见声音 1、人耳的构成:人耳主要由外耳道、鼓膜、听小骨、耳蜗及听觉神经组成; 2、声音传到耳道中,引起鼓膜振动,再经听小骨、听觉神经传给大脑,形成听觉; 3、在声音传给大脑的过程中任何部位发生障碍,人都会失去听觉(鼓膜、听小骨处出现障 碍是传导性耳聋;听觉神经处出障碍是神经性耳聋); 4、骨传导:不借助鼓膜、靠头骨、颌骨传给听觉神经,再传给大脑形成听觉(贝多芬耳聋 后听音乐,我们说话时自己听见的自己的声音);骨传导的性能比空气传声的性能好; 5、双耳效应:生源到两只耳朵的距离一般不同,因而声音传到两只耳朵的时刻、强弱及步 调亦不同,可由此判断声源方位的现象(听见立体声); 五、声音的特性包括:音调、响度、音色; 1、音调:声音的高低叫音调,频率越高,音调越高(频率:物体在每秒内振动的次数,表 示物体振动的快慢,单位是赫兹,振动物体越大音调越低;) 2、响度:声音的强弱叫响度;物体振幅越大,响度]越强;听者距发声者越远响度越弱; 3、音色:不同的物体的音调、响度尽管都可能相同,但音色却一定不同;(辨别是什么物体法的声靠音色) 注意:音调、响度、音色三者互不影响,彼此独立; 六、超声波和次声波 1、人耳感受到声音的频率有一个范围:20Hz~20000Hz,高于20000Hz叫超声波;低于20Hz 叫次声波;

高分子材料化学重点知识点总结只是分享

第一章水溶性高分子 水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格)

教科版九年级物理上册全册练习题

教科版九年级物理上册全册练习题 分子动理论 一、单选题 1.下列有关分子动理论的说法中正确的是() A.“破镜难重圆”是因为固体分子间只存在着斥力 B.松软的大馍用手一捏体积会大大缩小,这说明分子间存在间隙 c.在空调房间吸烟时,会看到烟雾在空中弥漫,这是分子的无规则运动 D.用热水相比较冷水更容易去掉衣物上污渍说明温度越高分子的无规则运动越剧烈 2.下列现象能说明分子在做无规则运动的是() A.我国北方地区发生沙尘暴时,空气中弥漫着大量的沙尘 B.五月份怀化市部分地区发生洪灾,河水中夹带着大量泥沙c.春天来了,怀化乡村桃花盛开,处处闻到浓浓的花香 D.冬季,寒潮来临,温度骤降,雪花漫天飞舞 3.关于粒子和宇宙的认识,正确的是() A.原子、电子、质子中,尺度最小的是电子 B.磁铁吸引铁钉,说明分子间存在引力 c.原子、中子和电子就像行星绕太阳运动一样在绕原子核运动

D.在探索比分子更小的微观粒子的历程中,人们首先发现了质子 4.下列现象中不能用分子热运动观点解释的是() A.酒香不怕巷子深 B.把青菜用盐腊成咸菜 c.沙尘暴起,尘土满天D.衣橱里的樟脑球逐渐变小 5.在“爱生活,爱物理”观察实践活动中,小明同学细心观察,发现原来生活中处处有物理,在他所观察到的现象和对现象的分析中,错误的是() A.吸油烟机的风扇和照明灯泡是串联的 B.打开冰箱门能闻到冰箱中榴放进冷水中,工件的温度会________,冷水的内能会________,冷水的内能是通过________的方式改变的. 17.“钻木”能“取火”,说明________可以改变物体的内能;“烤火”能“取暖”,说明________可以改变物体的内能.18.同学们过春节都喜欢放鞭炮,其中有一种“甩炮”,不需用火点燃,只要稍用力将它摔向地面,鞭炮就可以炸响.鞭炮与地面发生碰撞时,通过________的方式,使它的内能增加,这是________能转化为内能. 19.如图,夏季,在高速公路服务区内,交警会强制一些重型汽车在降温池里停留一会,这是因为汽车在高速行驶过程中,通过________方式增加轮胎的内能,使轮胎的温度________(选填“升高”“降低”);轮胎停在水中,通过

高分子材料化学重点知识点总结

水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(3H);阴离子交换树脂(3);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10溶液再生;b. 型强碱型阴离子交换树脂则用4溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格) 高吸油树脂类型及制备方法:(1)聚丙烯酸酯类(2)聚烯烃类树酯(3)丙烯酸酯和烯烃共聚物(4)聚氨酯吸油泡沫

(完整版)高分子化学重点

1.解释重复单元,结构单元,单体单元,单体含义 单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子化合物 重复单元:重复组成高分子分子结构的最小的结构单元。 结构单元:构成高分子主链结构组成的单个原子或原子团。 单体单元:高分子分子结构中由单个单体分子衍生而来的 最大的结构单元 2 聚合度:单个聚合物分子中所含单体单元的数目。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以D P 表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以X n 表示 3 阻聚常数即阻聚剂的链转移常数,C s =K t r /K p 4.半衰期:指引发剂分解至起始浓度一半所需时间 5.凝胶点:开始出现凝胶瞬间的临界反应程度 6.凝胶现象:在交联逐步聚合反应过程中,随着聚合反应的进行,体系粘度突然增大,失去流动性,反应及搅拌所产生的气泡无法从体系中逸出,可看到凝胶或不溶性聚合物明显生成的实验现象 7.自动加速效应竞聚率:随着聚合反应的进行,单体转化率(c %)逐步提高,【I 】【M 】逐渐下降,聚合反应速率R p 理应下降,但在许多聚合体系中,R p 不但不下降,反而显著升高,这种现象是没有任何外界因素影响,在反应过程中自动发生的,因而称为自动加速现象;是指聚合反应中期,反应速率自动增加的现象。 8.竞聚率:同一种自由基均聚和共聚链增长速率常数之比,r 1=k 11/k 12 r 2=k 22/k 21 9.乳液聚合:单体在水中分散成乳液状态的聚合。体系有单体、水、水溶性引发剂、水溶性乳化剂组成。 10.引发剂:通常是一些可在聚合温度下具有适当的分解速率,生成自由基,并能引发单体聚合的化合物。 11.胶束:表面活性剂在溶液中的浓度达到某一临界值,如果浓度继续增加,表面活性剂分子中的长链亲油基团通过分子间吸引力相互缔合,自身相互抱成团,而亲水基团则伸向水中,与水分子结合形成聚集体,即胶束。 12.配位聚合:是指采用金属有机化合物与过渡金属化合物的络合体系作为引发剂的聚合反应。 13.交联:是使线型聚合物转化成为具有三维空间网状结构、不溶不熔的聚合物过程。 14.逐步聚合 :通常是由单体所带的两种不同的官能团之间发生化学反应而进行的。 15.时温等效原理 16.缩聚反应:带有两个或者两个以上官能团的单体之间连续、重复进行的缩合反应,称为缩合聚合反应,即缩聚反应。 17.数均分子量:聚合物中用不同分子量的分子数目统计的平均分子量。 18诱导期:在聚合反应初期,引发剂分解产生的初级自由基首先被体系中杂质消耗,使聚合反应速率实际为零,故此阶段称为诱导期 19阻聚剂:能与链自由基反应生成非自由基或不能引发单体聚合的低活性自由基而使聚合反应完全停止的化合物。 20 链转移速率常数是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应的竞争能力。向单体的链转移常数p M tr M k k C , 21 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大。通常没有小分子副产物生成。 22 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。 简答题 1.逐步聚合的实施方法 有熔融聚合、溶液聚合、界面缩聚、固相缩聚等 (1)熔融缩聚是单体和聚合产物均处于熔融状态下的聚合反应。是最简单的缩聚方法。只有单体和少量催化剂。优点:产物纯净,分离简单;通常以釜式聚合,生产设备简单;是工业上和实验室常用的方法。 (2)溶液缩聚是单体在溶剂中进行的一种聚合反应.溶剂可以是纯溶剂,也可以是混合溶剂.所用的单体一般活性较高,聚合温度可以较低,副反应也较少。用于一些耐高温高分子的合成,如聚砜、聚酰亚胺聚苯醚 (3)界面缩聚是将两种单体溶于两种互不相溶的溶剂中,混合后在两相界面处进行的缩聚反应。单体活性高,反应快,可在室温下进行;产物分子量可通过选择有机溶剂来控制;对单体纯度和当量比要求不严格,反应主要与界面处的单体浓度有关;原料酰氯较贵,溶剂回收麻烦,应用受限。 (4) 固相缩聚是在玻璃化温度以上、熔点以下的固态所进行的缩聚。它是上述三种方法的补充。 2.连锁聚合和逐步聚合的三个主要区别 答(1)增长方式:连锁聚合总是单体与活性种反应,逐步聚合是官能团之间的反应,官能团可以来自于单体、低聚体、多聚体、大分子 (2)单体转化率:连锁聚合的单体转化率随着反应的进行不断提高,逐步聚合的单体转换率在反应的一开始就接近100% (3)聚合物的分子量:连锁聚合的分子量一般不随时间而变,逐步聚合的分子量随时间的增加而增加。 3 控制线性缩聚反应的分子量可以采取什么措施? 因为缩聚物的分子两端仍保留着可继续反应的官能团,因此控制聚合物反应的分子量可以采取端基封锁的控制方法:在两官能团等当量的基础上使某官能团稍过量或加入少量单官能团物质。官能团的极少过量,对产物分子量就有显著影响;在线形缩聚中,要得到高分子量,必须保持严格的等当量比。

最新新教科版九年级物理上册知识点汇总

九年级物理上册知识要点 1、分子运动论的初步内容为: (1)物质是由分子组成的。(2)一切物质分子都在不停地做无规则运动。(3) 分子间存在引力和斥力。不同物质在相互接触时,彼此进入对方的现象叫扩散。扩散现象说一切物质分子都在不停地做无规则。 2、内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。 物体的内能与温度有关:物体的温度越高,分子运动越快,内能就越大。 改变物体的内能两种方法做功和热传递,这两种方法对改变物体的内能是等效的 物体对外做功,物体的内能减少;外界对物体做功,物体的内能增加。 物体吸收热量,当温度升高时,物体内能增加;物体放出热量,当温度降低时,物体内能减少。 3、热量(Q):在热传递过程中,转移内能的多少叫热量。(物体含有热量的说法是错误的)。热传递发生的条件是物体或物体的不同部分之间有温度差。 4、比热容(c ):单位质量的某种物质温度升高(或降低) 1℃,吸收(或放出)的热量叫做这种物质的比热容。比热容的单位是: J/(kg·℃) 。 比热容是物质的一种属性,它不随物质的形状、大小、温度的改变而改变,只要物质相同,状态一定,比热容就相同。 水的比热容是:C=4.2×103J/(kg·0C),它表示的物理意义是:每千克的水温度升高(或降低)10C时,吸收(或放出)的热量是4.2×103J。 5、热量的计算:Q吸=cm(t-t0) =cm△t(Q吸是吸收热量,单位是 J ;c 是物体比热容,单位是:J/(kg·℃);m是质量;t0是初温;t 是末温 . Q放=cm(t0-t),其中to-t=Δt指物质降低的温度。 6、热值(q ):单位质量某种燃料完全燃烧放出的热量,叫热值。单位是: J/kg 。 燃料燃烧放出热量计算:Q=mq;(Q是放出热量,单位是J;q是热值,单位是J/kg。 7、热机是利用燃料燃烧获得的内能转化为机械能的机器。在压缩冲程中机械能转化成内能。在做功冲程中内能转化为机械能。 汽油机的一个工作循环由吸气、压缩、做功、排气四个冲程组成,每个工作循环活塞上下运动两次,曲轴转动 2周,对外做功 1 次。 在热机中,用来做有用功的那部分能量跟完全燃烧所获得的能量之比叫热机的效率。热机的效率总小于 1。 8、电源:能提供电能的装置。电源的作用是在电源内部不断的使正极聚集正电荷,负极聚集负电荷。在电源外部电流是从正极流向负极。 电源是把其它形式能转化为电能。如干电池是把化学能转化为电能。发电机则由机械能转化为电能。 用电器使用电能进行工作时,把电能转化为其它形式的能。 9、电路是由电源、开关、导线、用电器组成。 电路有三种状态:(1)通路:接通的电路叫通路;(2)开路:断开的电路叫开路;(3)短路:直接把导线接在电源两极上的电路叫短路。 电路图:用电路元件符号表示电路元件实物连接的图叫电路图。 10、串联:把用电器顺次连接起来,叫串联。(电路中任意一处断开,电路中都没有电流通过) 并联:把用电器并列地连接起来,叫并联。(并联电路中各个支路是互不影响的) 11、物理学中用电流来表示电流的大小。电流I的单位是:国际单位是:安培;常用单位是:毫安(mA)、微安(μA)。1安培= 103毫安= 106微安。 测量电流的仪表是:电流表,它的使用规则是:①电流表要串联在电路中;②接线柱的接法要正确,

高分子化学知识总结

一、绪论 1.聚合物的分类及命名可按来源、合成方法、用途、热行为、结构等来分类,主要是按主链结构来分类,分为:(1)碳链聚合物,(2)杂链聚合物,(3)元素有机聚合物; 2.聚合物的命名 (1)单体来源命名法 烯类聚合物单体名前加“聚”; 两种单体合成的,取二者简名加后缀“树脂”“橡胶”; 杂链聚合物按其特征结构命名; *有些聚合物按单体名来命名容易引起混淆,例如[]22OCH CH --,可以从环氧乙烷、乙二醇、氯丙醇或氯甲醚来合成,因为环氧乙烷单体最常用,故通常称作聚环氧乙烷,按结构该聚合物应称作聚氧乙烯。 (2)系统命名法 命名原则和程序:先确定重复单元结构,再排好其中次级单元次序,给重复单元命名,最后冠以“聚”字,就成为聚合物的名称。写次级单元时候,先写侧基最少的元素,再写有取代的亚甲基,然后写无取代的亚甲基。 3.聚合反应 (1)按单体-聚合物结构变化分类 缩聚 官能团单体多次缩合成聚合物的反应,除形成缩聚物外,还有水、醇、 氨或氯化氢等低分子产物产生 加聚 烯类单体π键断裂而后加成聚合起来的反应称作加聚,产物称作加聚 物。加聚物结构单元的元素组成与其单体相同,仅仅是电子结构有所变化,因此加聚物的分子量是单体分子量的整数倍 开环聚合 环状单体σ键断裂而后聚合成线形聚合物的反应,反应时无低分子副 产物产生 (2)按聚合物机理分类 逐步聚合 多数缩聚和聚加成反应属于逐步聚合,其特征是低分子转变成高分 子是缓慢逐步进行的,每步反应的速率和活化能大致相同,单体分子首先聚合成二、三、四具体等低聚物(齐聚物),短期内单体转化率很高,随后,低聚物间相互缩聚分子量缓慢增加,直至集团反应程度很高分子量才达到较高的数值 *连锁聚合 多数烯类单体的加聚反应属于连锁聚合。有自由基、阴离子或阳离 子聚合,自由基聚合过程中,分子量变化不大,除微量引发剂外,体系始终由单体和高分子量聚合物组成,没有分子量递增的中间产物,转化率随时间而增大,单体则相应减少。活性阴离子聚合的特征是分子量随转化率的增大而线性增加。 4.分子量是影响强度的重要因素,聚合物强度随着分子量的增大而增加。 5.平均分子量 (1)数均分子量n M (通常由渗透压,蒸汽压等依数性方法测定)定义:某 体系的总质量m 被分子总数所平均。

(完整版)苏科版九年级物理上册知识点总结

苏科版物理九年级上册知识梳理 第十一章 简单机械和功 一、杠杆 杠杆:一根在力的作用下可绕一固定点转动的硬棒。(可以是任意形状的,不一定是直的) 支点:杠杆绕着转动的点。 动力:使杠杆转动的力。 阻力:阻碍杠杆转动的力。——方向判断 动力臂:从支点到动力作用线的距离。 阻力臂:从支点到阻力作用线的距离。 支点、动力、阻力作用点都在杠杆上 杠杆的平衡条件(实验)——杠杆原理 动力×动力臂=阻力×阻力臂(F 1L 1= F 2L 2) 省力杠杆(费距离):动力臂大于阻力臂——动力小于阻力 费力杠杆(省距离):动力臂小于阻力臂——动力大于阻力 等臂杠杆(不省力也不费力):动力臂等于阻力臂——动力等于阻力 (举例) 二、滑轮——绕轴能转动的轮子——杠杆的变形。 定滑轮:轴的位置固定不动的滑轮。——等臂杠杆(动阻力相等,可改变动力的方向) 动滑轮:轴的位置随被拉的物体一起运动的滑轮。——支点在一侧的不等臂杠杆(动力臂是阻力臂的两倍,使用时可以省一半的力,但不可以改变动力方向)。 滑轮组:定滑轮和动滑轮组合成滑轮组,既省力又可改变力的方向)。——两种绳子绕法 用滑轮组起吊重物时,滑轮组用几段绳子吊物体,提起物体的力就是物重的几分之几。 F=(G+G 动)/n n 是与动滑轮相连的绳子段数 三、功——无既省力又省距离的机械 功(机械功):力与物体在力的方向上通过距离的乘积。 做功的两要素:作用在物体上的力和物体在力的方向上通过的距离。(公式:W=FS 单位:J ) 四、功率 功率:单位时间内所做的功。(表示做功快慢的物理量)公式: P=W/t P=FV 单位:W 五、机械效率(实验) 1 2 L 1 L 2 F 1 F 2 l 2 l 1 O F 1 F 2 O l1 l2

九年级物理上册知识点新版教科版

2013年九年级物理上册知识点(新版教科 版) 九年级物理上册基础复习 一、分子动理论与内能 1、分子动理论的基本内容:(1)物质由大量分子构成,分子间存在间隙;(2)分子在永不停息的做无规则运动;(3)分子间同时存在相互作用的引力和斥力。 2、内能:物体内部所有分子作无规则运动的动能和分子势能的总和。(1)内能的大小与所有分子运动的平均速度和分子间距离有关,表现为物体内能的大小与温度和物体体积有关。(2)内能改变的两种方法:做功和热传递。 3、热值:单位质量的燃料完全燃烧所放出的热量。用q表示。单位J/kg。公式:q=Q/m。 3、比热容:1kg的某种物质,温度上升1℃吸收的热量,叫做这种物质的比热容。用符号c表示。 (1)比热容是表示吸热能力的物理量。 (2)比热容是物质的一种特性,它只和物体的种类和状态有关 (3)比热容的单位:焦/(千克摄氏度),符号: J/(kg℃)。

(4)利用水的比热容大,可用水做冷却剂和取暖剂调节气候等。 4、热量计算公式。 (1)吸热公式:Q吸=cm(t-t0)其中c表示这种物质的比热容,t表示末温,t0表示初温,t-t0表示物体升 高的温度,用△t表示t-t0,则Q吸=cm△t。 (2)放热公式:Q放=cm(t0-t)其中t0-t表示物体 降低的温度,用△t表示t0-t, 则Q放=cm△t。 二、改变世界的热机 (1)内燃机在汽缸内燃烧汽油或柴油。大多数汽车里的内燃机是燃烧汽油的,也叫汽油机。 (2)汽油机的构造:排气门、进气门、火花塞、汽缸、活塞、连杠、曲轴。 (3)汽油机的工作原理:活塞从汽缸的一端运动到另一端的过程,叫做一个冲程。 汽油机有吸气、压缩、做功、排气四个冲程、 吸气冲程:进气门打开,排气门关闭,活塞向外运动,汽油和空气的混合物进入气缸。 压缩冲程:进气门和排气门都关闭,活塞向内运动,燃料混合物被压缩。 做功冲程:在压缩冲程结束时,火花塞产生电火花,

有机化学知识点总结归纳(全)

催化剂 加热、加压 有机化学知识点归纳 一、有机物的结构与性质 1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。 2、常见的各类有机物的官能团,结构特点及主要化学性质 (1)烷烃 A) 官能团:无 ;通式:C n H 2n +2;代表物:CH 4 B) 结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C 原子的四个价键也都如此。 C) 物理性质:1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。 一般地,C1~C4气态,C5~C16液态,C17以上固态。 2.它们的熔沸点由低到高。 3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。 4.烷烃都不溶于水,易溶于有机溶剂 D) 化学性质: ①取代反应(与卤素单质、在光照条件下) , ,……。 ②燃烧 ③热裂解 C 16H 34 C 8H 18 + C 8H 16 ④烃类燃烧通式: O H 2 CO O )4(H C 222y x y x t x +++????→?点燃 ⑤烃的含氧衍生物燃烧通式: O H 2 CO O )24(O H C 222y x z y x z y x +-+ +????→?点燃 E) 实验室制法:甲烷:3423CH COONa NaOH CH Na CO +→↑+ 注:1.醋酸钠:碱石灰=1:3 2.固固加热 3.无水(不能用NaAc 晶体) 4.CaO :吸水、稀释NaOH 、不是催化剂 (2)烯烃: A) 官能团: ;通式:C n H 2n (n ≥2);代表物:H 2C=CH 2 B) 结构特点:键角为120°。双键碳原子与其所连接的四个原子共平面。 C) 化学性质: CH 4 + Cl 2CH 3Cl + HCl 光 CH 3Cl + Cl 2 CH 2Cl 2 + HCl 光 CH 4 + 2O 2 CO 2 + 2H 2O 点燃 CH 4 C + 2H 2 高温 隔绝空气 C=C 原子:—X 原子团(基):—OH 、—CHO (醛基)、—COOH (羧基)、C 6H 5— 等 化学键: 、 —C ≡C — C=C 官能团 CaO △

完整高分子化学知识点

2.名词解释 交替共聚物:两种单体在大分子链上严格交替相间排列。 嵌段聚合:两种或两种以上单体分别聚合成链节(或链段)生成嵌段共聚物的一类共聚合反应。活性聚合:阴离子聚合由链引发、链增长和链终止三个基元反应组成,如聚合体系纯净、无质子供体,阴离子聚合可控制其终止反应,这种无终止;无链转移的聚合反应即为活性聚合。特征为(1)无链终止;(2)无链转移;(3)引发反应比增长反应快,反应终了时聚合链仍是活的。 异构化聚合:指在链增长反应过程中常常发生原子或原子团的重排过程的反应。反应程度:高分子缩聚反应中用以表征高分子聚合反应反应深度的量。计算方法为参加反应的官能团数占起始官能团数的比例。 转化率:进入共聚物的单体量占起始单体量M的百分比。笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单体分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。 诱导分解:诱导分解(Induced Decomposition)自由基向引发剂转移的反应为诱导分解。自由基发生诱导分解反应将使引发剂的效率降低,同时也使聚合度降低平均官能度:有两种或两种以上单体参加的混缩聚或共缩聚反应中在达到凝胶点以前的线形缩聚阶段,反应体系中实际能够参加反应的官能团数与单体总物质的量之比。(每一份子平均带的官能度) 凝胶点:开始出现凝胶瞬间的临界反应程度Pc。高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。计量聚合:指链引发速率在阴离子聚合反应中严格控制条件,以得到接近单分散的聚合物为目的的聚合反应。 配位聚合:单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)链中增长形成大分子的过程。这种聚合本质上是单体对增长链Mt-R键的插入反应,所以又称为插入聚合。(配位聚合具有以下特点:活性中心是阴离子性质的,因此可称为配位阴离子聚合;单体π电子进入嗜电子金属空轨道,配位形成π络合物;π络合物进一步形成四圆环过渡态;单体插入金属-碳键完成链增长;可形成立构规整聚合物。配位聚合引发剂有四种:Z-N催化剂;π烯丙基过渡金属型催化剂;烷基锂引发剂;茂金属引发剂。其中茂金属引发剂为新近的发展,可用于多种烯类单体的聚合,包括氯乙烯。) 线形缩聚:是两种或者以上的双官能团单体聚合最终生成物是长链的线性大分子 理想衡比共聚:不论单体配比和转化率如何,共聚物组成总是与单体组成完全相等,共聚物组成曲线是一条对角线。 动力学链长:是指活性中心(自由基)从产生到消失所消耗的单体数目 立构规整度:是立构规整聚合物占总聚合物的分数,是评价聚合物性能、引发剂定向聚合能力的一个重要指标。 降解:大分子分解成较小的分子。(分子量变小的反应) 老化:聚合物及其制品在加工、贮存及使用过程中,物理化学性质及力学性能逐步变坏,这种现象称老化。PMA聚丙烯酸甲酯PAN 聚丙烯腈PTFE 聚四氟乙烯 SMA 苯乙烯-马来酸酐(顺丁烯二酸酐)AIBN 偶氮二异丁腈ABVN 偶氮二亿庚腈BPO 过氧化二苯甲酰PP 聚丙烯 PS 聚苯乙烯PMMA 聚甲基丙烯酸甲酯PVA 聚乙烯醇PAN 聚丙烯晴PET 聚酯PA66 6 尼龙66PA6 尼龙. PET:聚对苯二甲酸乙二醇酯PVAc聚醋酸乙烯酯ABS 丙烯醇-丁二烯-苯乙烯共聚物3影响线形缩聚聚合物的分子量因素答:反应程度,平衡常数,。Xn=1/1-p=√k+1;

最新-潘祖仁第五版高分子化学知识点 精品

潘祖仁第五版高分子化学知识点 篇一:高分子化学第五版潘祖仁第一章思考题1举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。 答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。 在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。 在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。 如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。 以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以表示。 2举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。 聚合物()可以看作是高分子()的同义词,也曾使用的术语。 从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。 根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。 多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。

(完整版)苏教版物理八年级上册知识点(详细全面精华)

初中物理知识点复习(八年级上册) 第一章声现象 一、声音的产生: 1、声音是由物体的振动产生的;(人靠声带振动发声、蜜蜂靠翅膀下的小黑点振动发声,风声是空气振动发声,管制乐器靠里面的空气柱振动发声,弦乐器靠弦振动发声,鼓靠鼓面振动发声,钟靠钟振动发声,等等); 2、振动停止,发声停止;但声音并没立即消失(因为原来发出的声音仍在继续传播);(注:发声的物体一定振动,有振动不一定能听见声音) 3、发声体可以是固体、液体和气体; 4、声音的振动可记录下来,并且可重新还原(唱片的制作、播放); 二、声音的传播 1、声音的传播需要介质;固体、液体和气体都可以传播声音;一般情况下,声音在固体中传得最快,气体中最慢; 2、真空不能传声,月球上(太空中)的宇航员只能通过无线电话交谈; 3、声音以声波的形式传播; 4、声速:物体在每秒内传播的距离叫声速,单位是m/s;声速跟介质的种类和温度有关;声速的计算公式是v=s/t;声音在15℃的空气中的速度为340m/s; 三、回声:声音在传播过程中,遇到障碍物被反射回来,再传入人的耳朵里,人耳听到反射回来的声音叫回声(如:高山的回声,北京的天坛的回音壁) 1、听见回声的条件:原声与回声之间的时间间隔在0.1s以上(教室里听不见老师说话的回声,狭小房间声音变大是因为原声与回声叠加重合); 2、回声的利用:测量距离(车到山的距离,海的深度,冰川到船的距离); 四、怎样听见声音 1、人耳的构成:人耳主要由外耳道、鼓膜、听小骨、耳蜗及听觉神经组成; 2、声音传到耳道中,引起鼓膜振动,再经听小骨、听觉神经传给大脑,形成听觉; 3、在声音传给大脑的过程中任何部位发生障碍,人都会失去听觉(鼓膜、听小骨处出现障碍是传导性耳聋;听觉神经处出障碍是神经性耳聋) 4、骨传导:不借助鼓膜、靠头骨、颌骨传给听觉神经,再传给大脑形成听觉(贝多芬耳聋后听音乐,我们说话时自己听见的自己的声音);骨传导的性能比空气传声的性能好; 5、双耳效应:声源到两只耳朵的距离一般不同,因而声音传到两只耳朵的时刻、强弱

教科版九年级物理上册全册同步练习(含解析共66套)

教科版九年级物理上册全册同步练习(含解析 共66套) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

教科版九年级物理上册全册同步练习(含解析共66套) 热机的原理及其分类初中物理热机的原理及其分类 【考点精讲】 1. 内能的应用表现为两个方面,一是加热物体,二是对物体做功。利用内能做功的过程,是内能转化为其它形式能的过程。热机就是通过燃料燃烧获得内能并转化为机械能的机器。现代的交通工具要使用热机,现代的火电站和热电站也要靠热机把内能转化为机械能,然后再带动发电机发电。 2. 蒸汽机是最早的热机,1769年瓦特改进了蒸汽机,发明了冷凝器、蒸汽汽缸等部件,设计了将活塞直线运动转化成飞轮的动力机器。 3. 形形色色的热机:蒸汽轮机、内燃机、喷气发动机、火箭发动机等等。 【典例精析】例题1 下列例子中利用内能做功的是() A. 点燃的爆竹腾空而起 B. 用摩擦的方法使物体温度升高 C. 冬天在室外跑步或跺脚使脚的温度升高 D. 冬天时,房间内用暖气取暖思路导航:点燃的爆竹腾空而起,爆竹内气体对外做功,内能转化为机械能,内能减小,A项正确;用摩擦的方法使物体温度升高、冬天在室外跑步或跺脚使脚的温度升高都是利用做功的方法使物体的内能增大,不属于内能的利用,B、C两项错误;冬天时,房间内用暖气取暖是利用内能来加热物体,故D错误。答案:A 例题2 我国“长征”系列火箭成功地把多颗卫星发射到预定的轨道,火箭点火后,高温高压燃气迅速膨胀向外喷出,燃气的温度下降,火箭则获得推力高速上升,并达到一定速度,在这个过程中,下列哪一说法是正确的() A. 燃气的一部分内能转化为箭身的机械能 B. 燃气的全部内能转化为箭身的机械能 C. 燃气的一部分机械能转化为内能 D. 燃气的全部机械能转化为内能思路导航:火箭是热机的一种,它的工作原理就是将内能转化为机械能。但燃气的内能除了转化为内能外,还有一部分直接向外散热,一部分克服火箭与大气的摩擦做功,所以燃气的一部分内能转化为箭身的机械能,选A。答案:A 【总结提升】火箭发动机①火箭本身就是一部热机,工作时燃料的化学能转化为火箭的机械能。②火箭的工作过程:燃料和氧化剂在燃烧室内混合、燃烧,产生高温燃气,燃气通过喷管向后高速喷

高分子化学知识点总结

第一章绪论 1.1 高分子的基本概念 高分子化学:研究高分子化合物合成与化学反应的一门科学。 单体:能通过相互反应生成高分子的化合物。 高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。 主链:构成高分子骨架结构,以化学键结合的原子集合。 侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。 端基:连接在主链末端原子上的原子或原子集合。 重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。 结构单元:单体分子通过聚合反应进入大分子链的基本单元。(构成高分子链并决定高分子性质的最小结构单位称为~)。 单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 聚合反应:由低分子单体合成聚合物的反应。 连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 1.2 高分子化合物的分类 1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。④无机高分子:主链与侧链均无碳原子的高分子。 2)按用途分可分为:塑料、橡胶、纤维三大类,如果再加上涂料、粘合剂和功能高分子则为六大类。塑料:具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。橡胶:具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。纤维:聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。 3)按来源分可分为:天然高分子、合成高分子、半天然高分子(改性的天然高分子) 4)按分子的形状分:线形高分子、支化高分子、交联(或称网状)高分子 5)按单体分:均聚物、共聚物、高分子共混物(又称高分子合金) 6)按聚合反应类型分:缩聚物、加聚物 7)按热行为分:热塑性聚合物:聚合物大分子之间以物理力聚集而成,加热时可熔融,并能溶于适当溶剂中。热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分

相关文档