文档库 最新最全的文档下载
当前位置:文档库 › TI MSP430FR2355超低功耗开发方案

TI MSP430FR2355超低功耗开发方案

TI MSP430FR2355超低功耗开发方案
TI MSP430FR2355超低功耗开发方案

TI MSP430FR2355超低功耗FRAM MCU开发方案

TI公司的MSP430FR2355是超低功耗MSP430FRx系列基于FRAM的微控制器(MCU),提供扩展的数据记录和安全功能,在FRAM微控制器系列产品中采用小型LQFP封装(7mm × 7 mm),集成了各种外设和超低功耗. FRAM(铁电存储器)是一种尖端的存储技术,在非易失存储器中集合了闪存和RAM的最好特性.

MSP430FR2355工作电压1.8V-3.6V,具有16位RISC架构,高达24MHz系统时钟和8MHz FRAM接

入,32KB可编FRAM,512B信息FRAM和4KB RAM,12路12位ADC,两个增强的比较器和集成的6位DAC 作为基准电压,四个智能模拟组合体(SAC-L3),三个16位计时器有三个捕获/比较寄存器(Timer_B3),一个16位计时器有七个捕获/比较寄存器(Timer_B7),32位硬件乘法器(MPY).器件的工作温度–40°到105°C,主要用在烟雾和热检测器,传感器发送器,电路中断器,传感器信号调理,有线工业通信,光模块以及其电池组管理和收费标签.本文介绍了MSP430FR2355主要特性,功能框图以及开发板MSP-EXP430FR2355 LaunchPad?主要特性,框图,电路图,材料清单和PCB设计图.

MSP430FR215x and MSP430FR235x microcontrollers (MCUs) are part of the MSP430? MCU value line portfolio of ultra-low-power low-cost devices for sensing and measurement applications. MSP430FR235x MCUs integrate four configurable signal-chain modules called smart analog combos, each of which can be used as a 12-bit DAC or a configurable programmable-gain Op-Amp to meet the specific needs of a system while reducing the BOM and PCB size. The device also includes a 12-bit SAR ADC and two comparators. The MSP430FR215x and MSP430FR235x MCUs all support an extended temperature range from –40° up to 105°C, so higher temperature industrial applications can benefit from the devices’FRAM data-logging capabilities. The extended temperature range allows developers to meet requirements of applications such as smoke detectors, sensor transmitters, and circuit breakers.

The MSP430FR215x and MSP430FR235x MCUs feature a powerful 16-bit RISC CPU, 16-bit registers, and a constant generator that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode typically in less than 10 μs.

The MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatile behavior of flash.

MSP430FR215x and MSP430FR235x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP-EXP430FR2355 LaunchPad? development kit and the MSP-TS430PT48 48-pin target development board. TI also provides free MSP430Ware? software, which is available as a component of Code Co mposer Studio? IDE desktop and cloud versions within TI Resource Explorer.

The MSP430 MCUs are also supported by extensive online collateral, training, and online support through the E2E? community forum.

MSP430FR2355主要特性:

? Embedded microcontroller

– 16-bit RISC architecture up to 24 MHz

– Extended temperature: –40°C to 105°C

– Wide supply voltage range from 3.6 V down to 1.8 V (operational voltage is restricted by SVS levels, see VSVSH- and VSVSH+ in PMM, SVS and BOR)

? Optimized low-power modes (at 3 V)

–Active mode: 142 μA/MHz

– Standby:

– LPM3 with 32768-Hz crystal: 1.43 μA (with SVS enable d)

– LPM3.5 with 32768-Hz crystal: 620 nA (with SVS enabled)

– Shutdown (LPM4.5): 42 nA (with SVS disabled)

? Low-power ferroelectric RAM (FRAM)

– Up to 32KB of nonvolatile memory

– Built-in error correction code (ECC)

– Configurable write protection

– Unified memory of program, constants, and storage

– 1015 write cycle endurance

– Radiation resistant and nonmagnetic

? Ease of use

– 20KB ROM library includes driver libraries and FFT libraries

? High-performance analog

– One 12-channel 12-bit analog-to-digital converter (ADC)

– Internal shared reference (1.5, 2.0, or 2.5 V)

– Sample-and-hold 200 ksps

– Two enhanced comparators (eCOMP)

– Integrated 6-bit digital-to-analog converter (DAC) as reference voltage

– Programmable hysteresis

– Configurable high-power and low-power modes

– One with fast 100-ns response time

– One with 1-μs response time with 1.5-μA low power

– Four smart analog combo (SAC-L3) (MSP430FR235x devices only)

– Supports General-Purpose Operational Amp lifi er (OA)

– Rail-to-rail input and output

– Multiple input selections

– Configurable high-power and low-power modes

– Configurable PGA mode supports

– Noninverting mode: ×1, ×2, ×3, ×5, ×9, ×17, ×26, ×33

– Inverting mode: ×1, ×2, ×4, ×8, ×16, ×25, ×32

– Built-in 12-bit reference DAC for offset and bias settings

– 12-bit voltage DAC mode with optional references

? Intelligent digital peripherals

– Three 16-bit timers with three capture/compare registers each (Timer_B3)

– One 16-bit timer with seven capture/compare registers each (Timer_B7)

– One 16-bit counter-only real-time clock counter (RTC)

– 16-bit cyclic redundancy checker (CRC)

– Interrupt compare controller (ICC) enabling nested hardware interrupts

– 32-bit hardware multiplier (MPY32)

– Manchester codec (MFM)

? Enhanced serial communications

– Two enhanced USCI_A (eUSCI_A) modules support UART, IrDA, and SPI

– Two enhanced USCI_B (eUSCI_B) modules support SPI and I2C

? Clock system (CS)

– On-chip 32-kHz RC oscillator (REFO)

– On-chip 24-MHz digitally controlled oscillator (DCO) with frequency locked loop (FLL) – ±1% accuracy with on-chip reference at room temperature

– On-chip very low-frequency 10-kHz oscillator (VLO)

– On-chip high-frequency modulation oscillator (MODOSC)

– External 32-kHz crystal oscillator (LFXT)

– External high-frequency crystal oscillator up to 24 MHz (HFXT)

– Programmable MCLK prescaler of 1 to 128

– SMCLK derived from MCLK with programmable prescaler of 1, 2, 4, or 8

? General input/output and pin functionality

– 44 I/Os on 48-pin package

– 32 interrupt pins (P1, P2, P3, and P4) can wake MCU from LPMs

? Development tools and software (also see Tools and Software)

–LaunchPad? development kit (MSP-EXP430FR2355)

– Target development board (MSP-TS43048PT)

– Free professional development environments

? Family members (also see Device Comparison)

– MSP430FR2355: 32KB of program FRAM, 512 bytes of data FRAM, 4KB of RAM

– MSP430FR2353: 16KB of program FRAM, 512 bytes of data FRAM, 2KB of RAM

– MSP430FR2155: 32KB of program FRAM, 12 bytes of data FRAM, 4KB of RAM

– MSP430FR2153: 16KB of program FRAM, 512 bytes of data FRAM, 2KB of RAM

? Package options

– 48-pin: LQFP (PT)

– 40-pin: VQFN (RHA)

– 38-pin: TSSOP (DBT)

– 32-pin: VQFN (RSM)

MSP430FR2355应用:

? Smoke and heat detectors

? Sensor transmitters

? Circuit breakers

? Sensor signal conditioning

? Wired industrial communications

? Optical modules

? Battery pack management

? Toll tags

图1. MSP430FR235x系列功能框图

开发板MSP-EXP430FR2355 LaunchP ad?

MSP430FR2355 LaunchPad? Development Kit (MSP-EXP430FR2355)

The MSP-EXP430FR2355 LaunchPad? Development Kit is an easy-to-use Evaluation Module (EVM) for the MSP430FR2355 microcontroller (MCU). The kit contains everything needed to start developing on the ultra-low-power MSP430FRx FRAM microcontroller platform, including onboard debug probe for programming, debugging, and energy measurements. The board also features onboard buttons and LEDs for quick integration of a simple user interface, an onboard Grove connector for external Grove sensors, as well as an ambient light sensor to showcase the integrated analog peripherals.

The 24-MHz MSP430FR2355 device features 32KB of embedded FRAM (ferroelectric random access memory), a nonvolatile memory known for its ultra-low power, high endurance, and high speed write access. Combined with 4KB of on-chip RAM, users have access to 32KB of memory to split between their program and data as required. For example, a data logging application may require a large data memory with relatively small program memory, so the memory may be allocated as required between program and data memory.

Rapid proto typing is simplified by the 40-pin BoosterPack? plug-in module headers, which support a wide range of available BoosterPack plug-in modules. You can quickly add features like wireless connectivity, graphical displays, environmental sensing, and much more. Design your own BoosterPack plug-in module or choose among many already available from TI and third-party developers.

开发板MSP-EXP430FR2355 LaunchPad?主要特性:

? MSP ULP FRAM technology based MSP430FR2355 16-bit MCU

? EnergyTrace technology available for ultra-low-power debugging

? 40-pin LaunchPad development kit standard leveraging the BoosterPack plug-in module ecosystem ? Onboar d eZ-FET debug probe

? 2 buttons and 2 LEDs for user interaction

? Ambient light sensor for the Out-of-Box Experience demo

? Grove connector for external Grove sensors

开发板MSP-EXP430FR2355 LaunchPad?包括:

? 1 MSP-EXP430FR2355 LaunchPad Development Kit

? 1 Mic ro USB cable

? 1 Quick Start Guide

图2. 开发板MSP-EXP430FR2355 LaunchPad?外形图

图3. 开发板MSP-EXP430FR2355 LaunchPad?概述图

图4. 开发板MSP-EXP430FR2355 LaunchPad?框图

图5. 开发板MSP-EXP430FR2355 LaunchPad?电路图(1)

图6. 开发板MSP-EXP430FR2355 LaunchPad?电路图(2)

图7. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(1)

图8. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(2)

图9. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(3)

图10. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(4)

图11. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(5)

图12. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(6)

图13. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(7)

图14. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(8)

图15. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(9)

图16. 开发板MSP-EXP430FR2355 LaunchPad? PCB设计图(10)

集成电路的功耗优化和低功耗设计技术

集成电路的功耗优化和低功耗设计技术 摘要:现阶段各行业的发展离不开对能源的消耗,随着目前节能技术要求的不 断提升,降低功耗成为行业发展的重要工作之一。本文围绕集成电路的功耗优化 以及低功耗设计技术展开分析,针对现阶段常见的低功耗设计方式以及技术进行 探究,为集成电路功耗优化提供理论指导。 关键词:集成电路;功耗优化;低功耗 目前现代节能技术要求不断提升,针对设备的功耗控制成为当前发展的主要问题之一。 针对数字系统的功耗而言,决定了系统的使用性能能否得到提升。一般情况下,数字电路设 计方面,功耗的降低一直都是优先考虑的问题,并且通过对整个结构进行分段处理,同时进 行优化,最后总结出较为科学的设计方案,采用多种方式降低功耗,能够很大程度上提升设 备的使用性能。下面围绕数字电路的功耗优化以及低功耗设计展开分析。 一、设计与优化技术 集成电路的功耗优化和低功耗设计是相对系统的内容,一定要在设计的每个环节当中使 用科学且合理的技术手段,权衡并且综合考虑多方面的设计策略,才能够有效降低功耗并且 确保集成电路系统性能。因为集成电路系统的规模相对较大且具有一定的特殊性,想要完全 依靠人工或者手动的方式来达到这些目的并不现实且缺少可行性,一定要开发与之对应的电 路综合技术。 1 工艺级功耗优化 将工艺级功耗应用到设计当中,通常情况下采取以下两种方式进行功耗的降低: 首先,根据比例调整技术。进行低功耗设计过程中,为了能够实现功耗的有效降低会利 用工艺技术进行改善。在设计过程中,使用较为先进的工艺技术,能够让设备的电压消耗有 效缩减。现阶段电子技术水平不断提升,系统的集成度也随之提高,目前采用的零件的规格 也逐渐缩小,零件的电容也实现了良好的控制,进而能够很大程度上降低功耗。借助比例技术,除了能够将可见晶体管的比例进行调整,而且也能够缩小互连线的比例[1]。目前在晶体 管的比例缩小方面,能够依靠缩小零件的部分重要参数,进而在保持性能不被影响的情况下,通过较小的沟道长度,确保其他的参数不受影响的栅压缩方式,进而将零件的体积进行缩减,同时也缩短了延长的用时,使功耗能够有效降低。针对互连线缩小的方式主要将互连线的整 个结构进行调整,工作人员在进行尺寸缩减的过程中,会面临多方面的难题,比如系统噪音 无法控制,或者降低了电路使用的可靠性等等。 其次,采用封装技术进行降低。采用封装技术,能够让芯片与外部环境进行有效的隔离,进而避免了外部环境给电气设备造成一定的破坏与影响,在封装阶段,芯片的功耗会受到较 大的影响,因此需要使用更加有效的封装手段,才能够提升芯片的散热性,进而有效降低功 耗[2]。在多芯片的情况下,因为芯片与其他芯片之间的接口位置会产生大量的功耗,因此针 对多芯片采取封装技术,首先降低I/0接口的所有功能,接着解决电路延迟的问题,才能够 实现对集成电路的优化。 2 电路功耗优化 一般情况下,对电路级的功耗会选择动态的逻辑设计。在集成电路当中,往往会包含多 种电路逻辑结构,比如动态、静态等等,逻辑结构从本质上而言具有一定的差异性,这种差 异性也使得逻辑结构有着不同作用的功能。动态逻辑结构有着较为典型的特性[3]。静态的逻 辑结构当中所有的输入都会对接单独的MOS,因此逻辑结构功耗更大,动态的逻辑结构当中 电路通常具备N、M两个沟道,动态电路会利用时钟信号采取有效的控制,进而能够实现预

集成电路低功耗设计方法研究【文献综述】

毕业设计文献综述 电子信息科学与技术 集成电路低功耗设计方法研究 摘要:随着IC制造工艺达到纳米级,功耗问题已经与面积、速度一样受到人们关注,并成为制约集成电路发展的关键因素之一。同时,由于电路特征尺寸的缩小,之前相比于电路动态功耗可以忽略的静态漏功耗正不断接近前者,给电路低功耗设计提出了新课题,即低漏功耗设计。本文将分析纳米工艺下芯片功耗的组成和对低漏功耗进行研究的重要性,然后介绍目前主要的低功耗设计方法。此外,由于ASIC技术是目前集成电路发展的趋势和技术主流,而标准单元是ASIC设计快速发展的重要支撑,本文在最后提出了标准单元包低漏功耗设计方法,结合电路级的功耗优化技术,从而拓宽ASIC功耗优化空间。 关键字:低功耗,标准单元,ASIC设计 前言: 自1958年德克萨斯仪器公司制造出第一块集成电路以来,集成电路产业一直以惊人的速度发展着,到目前为止,集成电路基本遵循着摩尔定律发展,即集成度几乎每18个月翻一番。 随着制造工艺的发展,IC设计已经进入了纳米级时代:目前国际上能够投入大规模量产的最先进工艺为40nm,国内的工艺水平正将进入65nm;2009年,Intel酷睿i系列创纪录采用了领先的32nm 工艺,并且下一代22nm工艺正在研发中。但伴随电路特征尺寸的减小,电路功耗数值正呈指数上升,集成电路的发展遭遇了功耗瓶颈。功耗问题已经同面积和速度一样受到人们重视,成为衡量IC设计成功与否的重要指标之一。若在设计时不考虑功耗而功利地追求集成度的提高,则可能会使电路某些部分因功耗过大引起温度过高而导致系统工作不稳定或失效。如Intel的1.5GHz Pentium Ⅳ处理器,拥有的晶体管数量高达4200万只,功率接近95瓦,整机生产商不得不为其配上了特大号风扇来维持其正常工作。功耗的增大不仅将导致器件的可靠性降低、芯片的稳定性下降,同时也给芯片的散热和封装带来问题。因此,功耗已经成为阻碍集成电路进一步发展的难题之一,低功耗设计也已成为集成电路的关键设计技术之一。 一、电路功耗的组成 CMOS电路中有两种主要的功耗来源,动态功耗和静态功耗。其中,动态功耗包括负载电容的充放电功耗(交流开关功耗)和短路电流引起的功耗;静态功耗主要是由漏电流引起的功耗,如图1所示。

企业财务系统的身份认证和电子签名解决方案

企业财务系统的CA身份认证和电子签名解决方案 1、用户需求: 总结用户需求如下: ●财务系统需要提升安全级别。财务系统的基本情况如下: ?财务系统的系统结构、操作系统、开发语言等(略) ?三种主要应用功能:预算申请、审批、修正;费用的申报;对财务系统查阅。 ●需要解决单纯的用户名/密码登录的脆弱性问题,确保登录财务系统的身 份的真实性。 ●需要对财务系统的操作、交易实现签名,满足不可抵赖性、事后溯性的 应用需求。 2、解决方案 具体设计方案如下: ●建设数字证书认证服务器,解决服务器和个人用户身份真实性的问题。 具体建设方案如下: ?证书服务器负责证书的日常管理。 ?管理终端完成证书的申请和发放工作。 ?为应用服务器颁发服务器证书,为个人用户颁发个人证书。登录时,实现双向验证,确保应用服务器身份和个人身份的真实性。 ?用户手持USB KEY,带有密码芯片算法的KEY,存储量大于等于32K。 用于私钥存储,确保私钥的安全。 ?采用SQL数据库,用于证书服务器生成证书和CRL的存储 ●建设数字签名中间件,对用户在财务系统中的操作实现数字签名,实现 抗抵赖的功能。具体建设方案如下: ?将数字签名服务器与应用服务器共同部署; ?在IE中部署签名插件; ?用户的操作需要用私钥进行签名; ?服务器端对用户的签名数据进行验签;

?应用数据和签名数据进行分别的存储。 具体部署的拓扑图如下(略) 3、用户收益 采用本方案后用户收益如下: ●通过强身份认证手段的采用,确保所有登录财务系统用户的身份的真实 性 对财务系统的操作、交易实现签名,满足不可抵赖性、事后溯性的应用需求。 ---------------------------------------------------------------------------------------------------------------------- 北京安软天地科技有限公司 专业的应用安全服务提供商,主要提供CA系统、SSL VPN设备,以及身份认证、电子签名、电子印章、文档保护、加密解密等解决方案,在金融、政府、电力、石油石化行业有大规模成熟应用。

过程装备中数据采集系统的低功耗设计

收稿日期:2002 08 05 作者简介:黄志勇(1978 ),男,江西南昌人,硕士生,研究方向为便携式数据采集系统的开发与研制。 过程装备中数据采集系统的低功耗设计 黄志勇,邹久朋 (大连理工大学过程装备与控制工程系,辽宁大连116012) [摘 要] 从理论分析和实际应用两个方面阐述和讨论了低功耗大容量便携式数据采集仪的研制方案。主要从芯片的选型、外围电路的设计、软件设计等方面入手来分析如何使电池供电的数据采集系统长时间工作于无人看管的场所。 [关键词] 单片机;低功耗;外围电路;数据采集 [中图分类号]TM911 [文献标识码]A [文章编号]1000 0682(2003)01 0034 03 The Low dissipation design of a data acqusition system in process equipment HUANG Zhi yong,ZOU Jiu Peng (Proc ess Equi pment &Cont rol Engineering De pt o f DaLian U niversity o f Tec hnology ,Liaoning Dalian 116012,China ) Abstract:This paper expatiates on the method of designing a portable and large capacity microcontroller system with low power dissipation and discusses its development through both theoretic analysis and actual ap plications.Proceeding from the circuits,design,components and selection to software configuration,the paper analyses how the design conception can realize the function that keeps the battery operated data acquisition sys tem working for a long time at its working field without tenders. Key words:Microcontroller;Lo w power dissipation;Peripheral circuit;Data acquisition 1 前 言 由单片机组成的数据采集系统已经广泛的应用在过程装备的各个领域。通常在野外偏远地区、高温高压场所要进行压力、温度和应力等的数据采集时,由于没有持续的电力供给,而且工作温度有限制,不太适合使用笔记本电脑等设备进行数据采集,只能使用电池供电的数据采集系统。而一般情况下数据采集需持续几天到几个月,这样整个系统的功耗成为影响系统设计的关键问题。 2 低功耗的硬件设计 在实际应用中数据采集系统主要由传感器、A/ D 转换器、单片机、存储器、与微机接口电路等组成。除传感器外,设计人员基本上是选用低功耗C MOS 或HCMOS 型工艺制造的IC 。而CMOS 电路的功耗由静态功耗(Ps )和动态功耗(Pd )组成。静态功耗是在电路的所有输入信号保持状态不变时的直流功 耗。它包括PN 结反向漏电流引起的功耗和MOS 晶体管的亚阈电流引起的功耗。由于它一般在微安( A)量级[1],可以忽略。动态功耗是C MOS 电路在正常操作时所消耗的能量。它一般在毫安级(mA)。所以在低功耗设计时,应尽量减少动态功耗。 动态功耗Pd 是对电路节点负载电容进行充放电所消耗的功率。表示为: Pd =RC L V L V dd f (2 1) 式中:C L 负载电容; V L 逻辑摆幅;V dd 电源电压;f 工作频率; R 能量状态转换活动几率。 R 又简称 开关活动率 ,它是指节点一个周期内做耗能状态转换所用的时间与时钟周期之比,它的大小与电路结构、逻辑功能、输入数据的组合状态及节点的初始状态有关。一般情况下C MOS 电路的逻辑摆幅V L 与电源电压V dd 近似,故(2 1)式可简化为: P d =RC L V 2dd f (2 2) 由上式可知,降低动态功耗的主要途径是:降低耗能状态转换活动几率、减少负载电容、降低工作电 34 工业仪表与自动化装置 2003年第1期

数字集成电路低功耗分析

数字集成电路低功耗分析 摘要: 电子产品功耗的大小不仅限制了便携设备电池使用时间,也在一定程度上影响着设备性能。研究如何降低功耗己经成为所有IC设计者必须考虑的重要问题,对功耗的优化也是目前每个IC设计企业的必要环节。本文主要对数字集成电路功耗的优化方法进行了分析,分别从工艺级、电路级、版图级、门级、寄存器级、算法级和系统级分析了低功耗的优化方法。 关键词:低功耗;集成电路;优化 引言: 随着移动设备快速大量的增加和芯片处理速度的提高,芯片的功耗己成为集成电路设计者必须考虑的重要问题,于此同时对芯片的整体性能评估己经由原来的面积和速度变成了面积、时序、可测性和功耗的综合考虑,而且功耗所占的比重越来越大。 低功耗技术的研究背景: 集成电路是一个二十世纪发展起来的高技术产业,也是二十一世纪世界进入信息化社会的前提和基础。在1958年德克萨斯仪器公司生产出第一块集成电路,集成电路产业就一直保持着快速的发展速度,处在数字化和信息化时代的今天,数字集成电路的应用和改进显得尤为重要,从电子管到晶体管再到中小规模集成电路和超大规模集成电路,到现在市场上主流的专用集成电路(ASIC),以及现处于快速发展的系统级芯片,数字集成电路始终朝着速度更快,集成度更高,

规模更大的方向不断发展。从目前状况来看,数字集成电路基本上仍然遵循摩尔定律来发展—集成度几乎每18个月增长一倍。但是随着芯片规模的不断扩大,功耗问题变得越来越突出,并且成为制约数字集成电路发展的重要因素。长期以来,面积最小化和处理的高速度是数字集成电路设计中最主要的问题。现在,因为新的IC技术工艺的使用和集成度越来越高,降低芯片功耗逐渐成为了非常重要的一个因素。在亚微米和深亚微米的技术中,由于能量消耗而产生的余热使电路中的某些功能受到了不同程度的影响。功耗的增加意味着电迁移率的增加。当芯片温度上达到一定的程度时,电路就无法正常工作,因此复杂系统的性能就会被严重的影响到,并且整个系统的可靠性将会降低,尤其对于要求具有长生命周期和高可靠性的电子产品来说,降低功耗是必然的选择。从产品市场需求来看,近年来依靠电池供电的数码产品的大量使用如便携电脑、移动通讯工具等,这些产品的功耗严重影响着用户的使用体验,为了使产品具有更长的使用时间,迫切需要降低产品功耗。目前,功耗的优化方法有很多种,也越来越具有针对性,但大体思路都是通过降低工作电压和工作频率、减少计算量等方法来实数字集成电路的功耗优化。数字集成电路低功耗优化的下一个研究方向是结合多个层次的功耗分析及优化方法。 数字集成电路低功耗优化方法: 低功耗设计技术大致可以分为两类:动态技术和静态技术。静态技术是指从系统构造、工作原理方面入手,降低系统功耗,如选用低功耗器件,采用异步电路体系设计等。而动态技术则是通过改变系统

数字集成电路物理设计阶段的低功耗技术

数字集成电路物理设计阶段的低功耗技术 张小花(200XXXXXXXX) 2011年六月 摘要:通过一个图像处理SoC的设计实例,着重讨论在物理设计阶段降低CMOS功耗的方法。该方法首先调整 PAD摆放位置、调整宏单元摆放位置、优化电源规划,得到一个低电压压降版图,间接降低CMOS功耗;接着,通过规划开关活动率文件与设置功耗优化指令,直接降低CMOS功耗。最终实验结果表明此方法使CMOS功耗降低了 10.92%。基于该设计流程的图像处理SoC已经通过ATE设备的测试,并且其功耗满足预期目标。 关键词: 集成电路; 物理设计; 电压降; 低功耗 Digital integrated circuit physical design phase of the low power technology luo jiang nan(2008102041) June, 2011 Abstract: through a image processing of SoC design examples, the paper discuss the physical design stage reduce power consumption method. CMOS This method firstly PAD put the position, adjusting adjustment macro unit put the position, optimizing power planning, get a low voltage pressure drop, reduce the power consumption of the CMOS indirect territory; Then, through the planning activities rate documents and set switch power optimization, reduce the power consumption of the CMOS setup instructions directly. Finally the experimental results show that the method that CMOS power consumption was reduced by 10.92%. Based on the design process of the image processing has been through the ATE the SoC test equipment, and its power consumption to meet expectations. Keywords: IC; physical design; voltage drop; low power consumption 1 引言 随着集成电路规模的扩大以及便携式和嵌入式应用需求的增长,低功耗数字集成电路设计技术日益受到重视,已成为集成电路设计的研究热点.通常低功耗设计技术包括三个方面:设计中的低功耗技术、封装的低功耗技术和运行管理的低功耗技术.其中设计中的低功耗技术包括前端设计阶段的 体系结构级低功耗技术、RTL级低功耗技术、门级低功耗技术和物理设计阶段的低功耗 技术.

MRS201低功耗霍尔元件

TMR 超低功耗全极磁开关 概述 是一款集成了隧道磁阻(TMR )传感器和CMOS 技术,为高灵敏度、高速、低功耗、高精度应用而开发的全极磁开关。采用高精度推挽式半桥TMR 磁传感器和CMOS 集成电路,包括TMR 电压发生器、比较器、施密特触发器和CMOS 输出电路,能将变化的磁场信号转化为数字电压信号输出。通过内部电压稳压器来提供温度补偿电源,并允许宽的工作电压范围。以低电压工作、1微安级的供电电流、高响应频率、宽的工作温度范围、优越的抗外磁干扰特性成为众多低功耗、高性能应用的理想选择。采用两种封装形式:SOT23-3和TO-92S 。 功能框图 产品特性 ? 隧道磁电阻 (TMR) 技术 ? 1.5微安超低功耗 ? 高频率响应可达1kHz ? 全极磁开关 ? 高灵敏度,低开关点 ? 宽工作电压范围 ? 卓越的温度稳定性 ? 优越的抗外磁场性能 典型应用 ? 流量计,包括水表、气表和热量表 ? 接近开关 ? 速度检测 ? 线性及旋转位置检测 磁开关MRS201MRS201MRS201MRS201MRS201MRS201

管脚定义 TO-92S SOT23-3 极限参数 性能参数(V CC = 3.0V, T A = 25°C) 注:在以上测试中,电源和地之间需连接一个0.1μF的电容。

磁特性(V CC = 3.0V, T A = 25°C) 电压和温度特性 输出和磁场关系 注:上电时,在工作磁场为零时,输出信号为高电平。 磁场感应方向磁场强度

MRS201应用指南 封装尺寸 SOT23-3封装图: 平行于TMR 传感器敏感方向的磁场超过工作点门限︱B OPS ︱(︱B OPN ︱)时,输出低电平。当平行于TMR 传感器敏感方向的磁场低于释放点︱B RPS ︱(︱B RPN ︱)时,输出高电平。磁场工作点和释放点的差值就是传感器的回差B H 。 为了降低外部噪音,推荐在传感器电源和地之间增加一个滤波电容(靠近传感器)。如应用电路图所示,典型值为0.1μF 。 MRS201

身份认证、接入控制解决方案

身份认证、接入控制解决方案 金盾身份认证、接入控制解决方案以身份识别,杜绝非法入侵和接入保护为 主要设计理念,金盾准入控制保护系统是金盾软件公司独创的,国际领先的 产品功能,是产品的核心功能之一,具有实施简单,主动发现、自动防御、效果显著等特点,极大提升了内网的防御能力和用户的体验效果。 方案简介 □如何防止非授权终端的接入内部局域网窃取涉密资料? □如何防止“黑户”电脑和“问题“笔记本擅自进入内部网络成为传播病毒的源头? □ 如何防止假冒身份的非法计算机带入内网肆意访问内部办公系统?

方案功能 安全状态评估 □终端补丁检测:评估客户端的补丁安装是否合格,包括:操作系统(Windows 98/me/2000/XP/2003/Vista/win7/2008 )。 □客户端版本检测:检测安全客户端的版本,防止使用不具备安全检测能力的客户端接入网络,同时支持客户端自动升级。 □终端运行状态实时检测:可以对上线用户终端的系统信息进行实时检测,发现异常客户端或被卸载时自动阻断网络,强制安装。 □终端防病毒联动:主要包含两个方面,终端用户接入网络时,检查其计算机上防病毒软件的安装运行情况以及病毒库和扫描引擎版本是否符合安全要求等,不符合安全要求可以根据策略阻止用户接入网络或将其访问限制在隔离区。 □端点用户接入网络后,定期检查防病毒软件的运行状态,如果发现不符合安全要求可以根据策略强制让用户下线或将其访问限制在隔离区。 安全接入审核 □强身份认证:非授权用户接入网络需要身份认证,在用户身份认证时,可绑定用户接入IP、MAC、接入设备IP、端口等信息,进行强身份认证,防止帐号盗用、限定帐号所使用的终端,确保接入用户的身份安全。 □网络隔离区:对于安全状态评估不合格的用户,可以限制其访问权限,被隔离到金盾网络隔离区,待危险终端到达安全级别后方可入网。 □软件安装和运行检测:检测终端软件的安装和运行状态。可以限制接入网络的用户必须安装、运行或禁止安装、运行其中某些软件。对于不符合安全策略的用户可以记录日志、提醒或隔离。 □终端授信认证:对于外来计算机由于业务需要接入内网或者访问Internet时,针对对方IP、MAC等端口做授信暂时放行。 □内网安全域:可以限制用户只能在允许的时间和网络IP段内(接入设备和端口)使用网络。

基于Zigbee的低功耗数据采集系统设计

密级一般 分类号TP393硕士学位论文 作者:杨朋伟 指导教师:侯宏录教授 申请学位学科: 2009年4月20日 XI’ANTECHNOLOGICAL UNIVERSITY 基于Zigbee的低功耗数据采集系统设计 测试计量技术及仪器 题目:

基于Zigbee的低功耗数据采集系统设计 学科:测试计量技术及仪器 研究生签字: 指导教师签字: 摘要 Zigbee无线传感器网络技术是一种全新的短距离无线通信技术,广泛应用于智能控制、无线监控及环境监测等领域。目前,对于Zigbee无线传感器网络技术的应用还存在诸多问题,本文重点对无线传感器网络时间同步算法、低功耗系统设计开展深入研究。 1.对Zigbee无线传感器网络时间同步算法进行了全面分析研究,从降低同步开销和关键路径长度的角度出发,提出了两种应用于不同环境下的时间同步算法。1)当网络规模较小时,采用二层拓扑结构的Zigbee时间同步算法,该算法通过构造二层拓扑结构和时延估计的方法实现了ms级的时间同步精度.降低了时间同步开销;2)当网络规模较大时,采用多跳传感器网络时间同步算法,该算法通过构造较优拓扑结构和累计时延估计的办法降低了时间同步开销及关键路径长度。 2.通过对Zigbee协议栈的研究及分析,从低功耗设计的角度出发,完成了Zigbee低功耗无线数据采集及传输系统设计。主要内容包括如下几个方面: 1)完成了Zigbee无线网络节点的电路设计及相关应用电路设计,在此基础上,应用IAR7.20H开发平台完成了Zigbee无线网络节点的功能软件设计。 2)使用TI公司的CC2430芯片完成了Zigbee节点点对点无线通信的设计及Zigbee 简单网络节点通信设计。 3)完成了多路传感器数据采集接口的设计及Zigbee无线网络监控管理软件设计。 4)研究了无线网络节点功能软件的低功耗设计方法。 5)搭建了Zigbee低功耗无线数据采集及传输系统,对其进行了调试和实验,结果表明该系统在70m范围内工作稳定,误码率较低,时间同步精度较高,能够满足工业环境下的参数远程监控。 关键词:数据采集及传输;低功耗;无线传感器网络;时间同步算法;Zigbee

数据采集系统简介研究意义和应用

一前言 1.1 数据采集系统简介 数据采集,是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机(或微处理器)的测量软硬件产品来实现灵活的、用户自定义的测量系统。该数据采集系统是一种基于TLC549模数转换芯片和单片机的设备,可以把ADC采集的电压信号转换为数字信号,经过微处理器的简单处理而交予数码管实现电压显示功能,并且通过与PC的连接可以实现计算机更加直观化显示。 1.2 数据采集系统的研究意义和应用 在计算机广泛应用的今天,数据采集的在多个领域有着十分重要的应用。它是计算机与外部物理世界连接的桥梁。利用串行或红外通信方式,实现对移动数据采集器的应用软件升级,通过制订上位机(PC)与移动数据采集器的通信协议,实现两者之间阻塞式通信交互过程。在工业、工程、生产车间等部门,尤其是在对信息实时性能要求较高或者恶劣的数据采集环境中更突出其应用的必要性。例如:在工业生产和科学技术研究的各行业中,常常利用PC或工控机对各种数据进行采集。这其中有很多地方需要对各种数据进行采集,如液位、温度、压力、频率等。现在常用的采集方式是通过数据采集板卡,常用的有A/D 卡以及422、485等总线板卡。卫星数据采集系统是利用航天遥测、遥控、遥监等技术,对航天器远地点进行各种监测,并根据需求进行自动采集,经过卫星传输到数据中心处理后,送给用户使用的应用系统。 1.3 系统的主要研究内容和目的 本课题研究内容主要包括:TLC549的工作时序控制,常用的单片机编辑C语言,VB 串口通信COMM控件、VB画图控件的运用等。 本课题研究目的主要是设计一个把TLC549(ADC)采集的模拟电压转换成八位二进制数字数据,并把该数据传给单片机,在单片机的控制下在实验板的数码管上实时显示电压值并且与计算机上运行的软件示波器连接,实现电压数据的发送和接收功能。

超低功耗电路的设计原则及设计分析

超低功耗电路的设计原则及设计分析 以手机为代表的电池供电电路的兴起,为便携式仪表开创了一个新的纪元。超低功耗电路系统(包括超低功耗的电源、单片机、放大器、液晶显示屏等)已经对电路设计人员形成了极大的诱惑。毫无疑问,超低功耗电路设计已经对低功耗电路提出了挑战,并将扩展成为电子电路中的一个重要应用领域。 虽然超低功耗设计仍然是在CMOS集成电路(IC)基础上发展起来的,但是因为用户众多,数千种专用或通用超低功耗IC不断涌现,使设计人员不再在传统的CMOS型IC上下功夫,转而选择新型超低功耗IC,致使近年来产生了多种超低功耗仪表。电池供电的水表、暖气表和煤气表近几年能够发展起来就是一个证明。目前,电池供电的单片机则是超低功耗IC的代表。 本文将对超低功耗电路设计原则进行分析,并就怎样设计成超低功耗的产品作一些论述,从而证明了这种电路在电路结构和性价比等方面对传统电路极具竞争力。 1 CMOS集成电路的功耗分析 无论是低功耗还是超低功耗IC,主要还是建立在CMOS电路基础上的。虽然超低功耗IC 对单元电路进行了新形式的设计,但作为功耗分析,仍然离不开CMOS电路基本原理。以74系列为代表的TTL集成电路,每门的平均功耗约为10mW;低功耗的TTL集成电路,每门平均功耗只有1mW。74系列高速CMOS电路,每门平均功耗约为10μW;而超低功耗CMOS 通用小规模IC,整片的静态平均功耗却可低于10μW。传统的单片机,休眠电流常在50μA~2mA范围内;而超低功耗的单片机休眠电流可达到1μA以下。 CMOS电路的动态功耗不仅取决于负载,而且就电路内部而言,功耗与电源电压、集成度、输出电平以及工作频率都有密切联系。因此设计超低功耗电路时不得不对全部元件的内外性质做仔细分析。 CHMOS或CMOS电路的功耗特性一般可以表示为: P=PD+PA

LD27L2-超低功耗运算放大器

LD27L2 双通道精密运算放大电路 1、概述 LD27L2是一款有极低失调电压、高输入阻抗、轨对轨的运算放大器电路。主要应用于各种需要使用精密运算放大器的领域,其特点如下: z极低的输入失调电压,典型条件下小于1mV; z超低功耗,静态工作电流小于3uA z宽电压工作范围,1.8V~6.0V z高输入阻抗,典型为1013Ω; z超低的失调点偏移 z单位增益带宽14KHz z封装形式:SOP8 2、功能框图与引脚说明 2. 1、功能框图

2. 2、引脚排列图 2. 3、引脚说明与结构原理图 序号管脚名功能描述 1 OUT1 运放1的输出端 2 IN1‐ 运放1的反向输入端 3 IN1+ 运放1的正向输入端 4 GND 电源地 5 IN2+ 运放2的正向输入端 6 IN2‐ 运放2的反向输入端 7 OUT2 运放2的输出端 8 VDD 电源输入端

3、电特性 3. 1、极限参数 参 数 名 称 符 号 额 定 值 单 位 最大电源电压 IVsmax 6 V 输入电压范围 V I GND-0.3~VDD V 差分输入电压 VDD-GND V 工作环境温度 T amb -40~+85 ℃ 贮存温度 T stg -55~+125 ℃ 3. 2、电特性(VDD=2.2~5V ,T A =25℃) 参 数 名 称 符 号 测 试 条 件规 范 值 单 位最小 典型最大 工作电压 V DD 1.8 - 6.0 V 静态工作电流 I DD - 0.8 3 uA 输入失调电压 V OS - 1 2 mV 输入失调温度系数 -40℃~+85℃ - 1.3 - uV/℃电源抑制 V PSRR - 85 90 dB 输入偏置电流 I B - 1 - pA 输入失调电流 I OS - 1 - pA 共模输入阻抗 Z CM - 1013- Ω 差模输入阻抗 Z DIFF - 1013- Ω 共模输入电压 V CMR GND-0.3- VDD+0.3 V 共模抑制比 CMRR VDD=5V 60 90 - dB 单位增益带宽 B I VI=10mV 14 KHz 输出短路电流 I SC VDD=2.2V - 3 - mA VDD=5V - 20 - mA

数据采集系统

湖南工业大学科技学院 毕业设计(论文)开题报告 (2012届) 教学部:机电信息工程教学部 专业:电子信息工程 学生姓名:肖红杰 班级: 0801 学号 0812140106 指导教师姓名:杨韬仪职称讲师 2011年12 月10 日

题目:基于单片机的数据采集系统的控制器设计 1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述。 近年来,数据采集及其应用技术受到人们越来越广泛的关注,数据采集系统在各行各业也迅速的得到应用。如在冶金、化工、医学、和电器性能测试等许多场合需要同时对多通道的模拟信号进行采集、预处理、暂存和向上位机传送、再由上位机进行数据分析和处理,信号波形显示、自动报表生成等处理,这些都需要数据采集系统来完成。但很多数据采集系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对操作环境要求高等问题。人们需要一种应用范围广、性价比高的数据采集系统,基于单片机的数据采集系统具有实现处理功能强大、处理速度快、显示直观,性价比高、应用广泛等特点,可广泛应用于工业控制、仪器、仪表、机电一体化,智能家居等诸多领域。总之,无论在那个应用领域中,数据采集与处理越及时,工作效率就超高,取得的经济效益就越大。 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的信号,并送入计算机,然后将计算得到的数据进行显示或打印,以便实现对某些物理量的监测,其中一些数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的市场需求量大,特别是随着技术的发展,可用数据器为核心构成一个小系统,而目前国内生产的主要是数据采集卡,存在无显示功能、无记忆存储功能等问题,其应用有很大的局限性,所以开发高性能的,具有存储功能的数据采集产品具有很大的市场前景。 随着电子技术的迅速发展,,一些高性能的电子芯片不断推出,为我们进行电子系统设计提供的更多的选择和更多的方便,单片机具有体积小、低功耗、使用方便、处理精度高、性价比高等优点,这些都使得越来越广泛的选用单片机作为数据采集系统的核心处理器。一些高性能的A/D转换芯片的出现也为数据采集系统的设计提供了更多的方便,无论是采集精度还是采样速度都比以前有了较大的提高。其中一些知名的大公司如MAXIM公司、TI公司、ADI公司都有推出性能比效突出的 A/D转换芯片,这些芯片普通具有低功耗、小尺寸的特点,有些芯片还具有多通道的同步转换功能。这些芯片的出现,不仅因为芯片价格便宜,能够降低系统设计的成本,而且可以取代以前繁琐的设计方法,提高系统的集成度。 数据采集器是目前工业控制中应用较多的一类产品,数据采集器的研制已经相当成熟,而且数据采集器的各类不断增多,性能越来越好,功能也越来越强大。 在国外,数据采集器已发展的相当成熟,无论是在工业领域,还是在生活中的应用,比如美国FLUKE公司的262XA系列数据采集器是一种小型、便携、操作简单、使用灵活的数据采集器,它既可单独使用又可和计算机连接使用,它具有多种测量

数字集成电路低功耗物理实现技术与UPF

数字集成电路低功耗物理实现技术与UPF 孙轶群sun.yiqun@https://www.wendangku.net/doc/a315056202.html, 国民技术股份有限公司 Nationz Technologies Inc 摘要 本文从CMOS电路功耗原理入手,针对不同工艺尺寸下数字集成电路的低功耗物理实现方法进行描述,并着重描述了Synopsys UPF(Unified Power Format)对低功耗设计的描述方法。UPF是Synopsys公司提出的一种对芯片中电源域设计进行约束的文件格式。通过与UPF 格式匹配的Liberty文件,UPF约束文件可以被整套Galaxy物理实现平台的任何一个环节直接使用,并将设计者的电源设计约束传递给设计工具,由工具完成设计的实现工作,从而实现整套数字集成电路低功耗物理实现的流程。 1.0 概述 本文从数字集成电路低功耗设计原理下手,对设计中低功耗的实现技术进行描述,包括完成低功耗设计需要的库资料以及常用EDA工具对低功耗技术实现的方法。 2.0 CMOS电路的低功耗设计原理 CMOS电路功耗主要分3种,静态功耗主要与工艺以及电路结构相关,短路电流功耗主要与驱动电压、p-MOS和n-MOS同时打开时产生的最大电流、翻转频率以及上升、下降时间有关,开关电流功耗主要与负载电容、驱动电压、翻转频率有关。做低功耗设计,就必须从这些影响功耗的因素下手。 3.0 低功耗设计手段及Library需求 低功耗的设计手段较为复杂,但对于不同的设计,或者不同的工艺,实现的方法却各不相同。 3.1 0.18um及以上工艺 0.18um及以上工艺,在低功耗设计手段上较为有限,主要原因在于,静态功耗很小,基本不用关心。 动态功耗方面,主要的功耗来自于Switching Power,即与负载电容、电压以及工作中的信号翻转频率相关。 减小负载电容,就必须在设计上下功夫,减少电路规模。减少信号翻转频率,除了降低时钟频率外,只有在设计上考虑,能不翻转的信号就不翻转。至于电压,由于0.18um及以上工艺的阈值电压有一定的限制,因此,供电电压降低,势必影响工作频率。 一般说来,在0.18um工艺下设计电路,主要有以下几种对低功耗设计的考虑。 3.1.1 静态功耗可以忽略 根据现有项目经验可知,利用0.18um工艺Standard Cell设计出来的某芯片,数字逻辑加上Ram和Rom约40万门的电路,在完全静止的状态下,功耗约200uA左右(实测数据为400uA 左右,包括了50uA Flash,30uA的PHY,113uA的VR,其他模拟部分漏电不大,因此这里估算为200uA)。这样的功耗,我们是可以接受的。如果非要减少静态功耗,则可以参照90nm工艺的设计思路,专门设计高阈值电压的MOSFET,或者专门设计切断电源所需的元件,但由此带来设计的复杂性,对0.18um工艺的影响还是很大的。如果设计规模没有那么大,且可以满足应用,往往还是可以忽略这个结果的。 3.1.2 时钟门控减小不必要的动态功耗 在寄存器的电路设计中,时钟输入端都会有一个反向器负载,就算输入端不发生变化,时钟的变化也会造成该反向器的变化,由此产生动态功耗。因此在如果该寄存器输入在某种条件下等于输出(即输出保持)时,可以将时钟门控住,以减少无效的时钟翻转。 时钟门控的实现原理如下图所示:

常用低功耗设计

随着半导体工艺的飞速发展和芯片工作频率的提高,芯片的功耗迅速增加,而功耗增加又将导致芯片发热量的增大和可靠性的下降。因此,功耗已经成为深亚微米集成电路设计中的一个非常重要的考虑因素。为了使产品更具有竞争力,工业界对芯片设计的要求已从单纯的追求高性能、小面积,转换为对性能、面积、功耗的综合要求。微处理器作为数字系统的核心部件,其低功耗设计对降低整个系统的功耗具有非常重要的意义。 本文首先介绍了微处理器的功耗来源,重点介绍了常用的低功耗设计技术,并对今后低功耗微处理器设计的研究方向进行了展望。 1 微处理器的功耗来源 研究微处理器的低功耗设计技术,首先必须了解其功耗来源。高层次仿真得出的结论如图1所示。 从图1中可以看出,时钟单元(Clock)功耗最高,因为时钟单元有时钟发生器、时钟驱动、时钟树和钟控单元的时钟负载;数据通路(Datapath)是仅次于时钟单元的部分,其功耗主要来自运算单元、总线和寄存器堆。除了上述两部分,还有存储单元(Mem ory),控制部分和输入/输出 (Control,I/O)。存储单元的功耗与容量相关。 如图2所示,C MOS电路功耗主要由3部分组成:电路电容充放电引起的动态功耗,结反偏时漏电流引起的功耗和短路电流引起的功耗。其中,动态功耗是最主要的,占了总功耗的90%以上,表达式如下: 式中:f为时钟频率,C1为节点电容,α为节点的翻转概率,Vdd为工作电压。

2 常用的低功耗设计技术 低功耗设计足一个复杂的综合性课题。就流程而言,包括功耗建模、评估以及优化等;就设计抽象层次而言,包括自系统级至版图级的所有抽象层次。同时,功耗优化与系统速度和面积等指标的优化密切相关,需要折中考虑。下面讨论常用的低功耗设计技术。 2.1 动态电压调节 由式(1)可知,动态功耗与工作电压的平方成正比,功耗将随着工作电压的降低以二次方的速度降低,因此降低工作电压是降低功耗的有力措施。但是,仅仅降低工作电压会导致传播延迟加大,执行时间变长。然而,系统负载是随时间变化的,因此并不需要微处理器所有时刻都保持高性能。动态电压调节DVS (Dynarnic Voltage Scaling)技术降低功耗的主要思路是根据芯片工作状态改变功耗管理模式,从而在保证性能的基础上降低功耗。在不同模式下,工作电压可以进行调整。为了精确地控制DVS,需要采用电压调度模块来实时改变工作电压,电压调度模块通过分析当前和过去状态下系统工作情况的不同来预测电路的工作负荷。 2.2 门控时钟和可变频率时钟 如图1所示,在微处理器中,很大一部分功耗来自时钟。时钟是惟一在所有时间都充放电的信号,而且很多情况下引起不必要的门的翻转,因此降低时钟的开关活动性将对降低整个系统的功耗产牛很大的影响。门控时钟包括门控逻辑模块时钟和门控寄存器时钟。门控逻辑模块时钟对时钟网络进行划分,如果在当前的时钟周期内,系统没有用到某些逻辑模块,则暂时切断这些模块的时钟信号,从而明显地降低开关功耗。图3为采用“与”门实现的时钟控制电路。门控寄存器时钟的原理是当寄存器保持数据时,关闭寄存器时钟,以降低功耗。然而,门控时钟易引起毛刺,必须对信号的时序加以严格限制,并对其进行仔细的时序验证。 另一种常用的时钟技术就是可变频率时钟。根据系统性能要求,配置适当的时钟频率,避免不必要的功耗。门控时钟实际上是可变频率时钟的一种极限情况(即只有零和最高频率两种值),因此,可变频率时钟比门控时钟技术更加有效,但需要系统内嵌时钟产生模块PLL,增加了设计复杂度。去年Intel公司推出的采用先进动态功耗控制技术的Montecito处理器,就利用了变频时钟系统。该芯片内嵌一个高精度数字电流表,利用封装上的微小电压降计算总电流;通过内嵌的一个32位微处理器来调整主频,达到64级动态功耗调整的目的,大大降低了功耗。

统一身份认证与单点登录系统建设方案

福建省公安公众服务平台 统一身份认证及单点登录系统建设方案 福建公安公众服务平台建设是我省公安机关“三大战役”社会管理创新的重点项目之一;目前平台目前已经涵盖了公安厅公安门户网 站及网站群、涵盖了5+N服务大厅、政民互动等子系统;按照规划,平台还必须进一步拓展便民服务大厅增加服务项目,电子监察、微博监管等系统功能,实现集信息公开、网上办事、互动交流、监督评议 功能为一体的全省公安机关新型公众服务平台。平台涵盖的子系统众多,如每个子系统都用自己的身份认证模块,将给用户带来极大的不便;为了使平台更加方便易用,解决各子系统彼此孤立的问题,平台 必须增加统一身份认证、统一权限管理及单点登录功能。 一、建设目标 通过系统的建设解决平台用户在访问各子系统时账户、密码不统一的问题,为用户提供平台的统一入口及功能菜单;使平台更加简便易用,实现“一处登录、全网漫游”。同时,加强平台的用户资料、授权控制、安全审计方面的管理,确保用户实名注册使用,避免给群 众带来安全风险;实现平台各子系统之间资源共享、业务协同、互联 互通、上下联动;达到全省公安机关在线服务集成化、专业化的目标。 二、规划建议 统一身份认证及单点登录系统是福建公安公众服务平台的核心 基础系统;它将统一平台的以下服务功能:统一用户管理、统一身份 认证、统一授权、统一注册、统一登录、统一安全审计等功能。系统 将通过标准接口(WebService接口或客户端jar包或dll动态链接库)向各子系统提供上述各类服务;各业务子系统只要参照说明文档,做适当集成改造,即可与系统对接,实现统一身份认证及单点登录, 实现用户资源的共享,简化用户的操作。

相关文档