文档库 最新最全的文档下载
当前位置:文档库 › 各种触发器总结

各种触发器总结

各种触发器总结
各种触发器总结

特性表

特性方程

JK触发器

特性表

特性方程

特性表

特性方程

SR触发器特性表

特性方程

触发器逻辑功能测试及应用

实验六触发器逻辑功能测试及应用 一、实验目的: 1、掌握基本RS、JK、D、T与T′触发器的逻辑功能; 2、学会验证集成触发器的逻辑功能及使用方法; 3、熟悉触发器之间相互转换的方法。 二、实验原理: 触发器:根据触发器的逻辑功能的不同,又可分为: 三、实验仪器与器件: 实验仪器设备:D2H+型数字电路实验箱。 集成块:74LS112 74LS74 74LS04 74LS08 74LS02 74LS86 四、实验内容与步骤: 1、基本RS触发器逻辑功能的测试: CP J K S-D R-D 下降沿0 0 1 1 0 0 下降沿0 1 1 1 0 0 下降沿 1 0 1 1 0 1 下降沿 1 1 1 1 1 0 3、D触发器逻辑功能测试: D CP S-D R-D Q X X 0 1 0 X X 1 0 1 (2)D触发器逻辑功能测试: CP J K D S D R Q ×××0 1 0 ××× 1 0 1

D CP S-D R-D 0 上升沿 1 1 1 0 1 上升沿 1 1 0 1 4、不同类型时钟触发器间的转换: JK转换为D触发器: J D K D Q D DQ Q Q D D Q Q K Q J Q n n n n n n n n = = + = + = = + = + + ; ) ( 1 1 D转换为JK 触发器: n n n n n n Q J Q K D D Q Q K Q J Q = = = + = + + 1 1 JK转换为T触发器: K J T Q T Q T Q n n n = = + = +1 T转换为JK触发器: JK转换为RS触发器:RS转换为JK触发器: 五、实验体会与要求: 1、根据实验结果,写出各个触发器的真值表。 2、试比较各个触发器有何不同? 3、写出不同类型时钟触发器间的转换过程。 1

触发器功能的模拟实现实验报告-

武汉轻工大学数学与计算机学院 数字逻辑实验报告 学校:武汉轻工大学 院系:数学与计算机学院 班级:计算机类1304班 姓名:田恒 学号: 1305110089 指导老师:刘昌华 2014年12月10日

目录 1、实验名称 2、实验目的 3、实验原理 4、实验环境 5、实验内容 一、DFF仿真分析 二、“维持阻塞”型DFF仿真分析 三、思考练习 四、故障排除 五、实验总结

【实验名称】触发器功能的模拟实现 【实验目的】学习时序电路的设计,了解基本触发器的功能,利用QuartusII软件的原理图输入,设计一个钟控R-S触发器形成的D触发器和边沿触发型D触发器,并验证其功能。 【实验原理】(1)钟控R-S触发器,在时钟信号作用期间,当输入R、S同时为1时,触发器会出现状态不稳定现象。为了解决这个问题,对钟控R-S触发器的控制电路进行修改,用G4门的输出信号替换G3门的S输入信号,将剩下的输入R记作D,就形成只有一个输入端的D触发器。 (2)在上述D触发器的基础上增加“维持”、“阻塞”结构,从而形成“维持阻塞”型D触发器。

【实验环境】PC机(Windows xp,QuartusII) 【实验内容】QuartusII开发数字电路的设计流程完成DFF和“维持阻塞”型D触发器的原理设计输入,编译仿真和波形仿真。 一、DFF仿真分析: step1、启动QuartusII Step2、建立工作库目录文件夹以便设计工程项目的存储 Step3、输入设计:根据上部原理图完成原理图文件,截图如下: Step4、单击存盘命令新建工程 Step5、编译综合 Step6、仿真测试 Step7、仿真结果

触发器总结(特制材料)

触发器是时序逻辑电路中具有记忆功能的单元电路。其种类繁多,从逻辑功能来分,有:RS 触发器、JK 触发器、D 触发器、T 触发器、T ′触发器等;不同功能的触发器其输入、输出间的逻辑关系不同,这可以由触发器的功能表、特性方程状态转换图、驱动表来表示。从结构来分,有:基本触发器、TTL 主从触发器、CMOS 主从边沿触发器、维持阻塞边沿触发器等。不同结构的触发器其触发特点不同,这可以由触发器的逻辑符号表示。在波形分析时,要特别注意触发器的触发特点,才可以画出正确的工作波形。 名称 基本RS RS JK 符号 R S Q Q 1S 1R C1CP Q Q Q 1K Q 1J CP C1 功能表 R S Q n+1 0001101 1不定Q n 10 0110n+1 1 0Q 1 0S R 不定 Q n 10 Q 10n+1 1 1000Q 1 n 0 1J K n Q 特性方程 n 1n RQ S Q +=+ R +S =1 n 1n Q R S Q +=+ RS =0 n n 1n Q K Q J Q +=+ 状态转换图 无 1 S =×=0R =× =0S R S =1=0 R S R =0=1 1J K =× =0J K =1=× =1=×=0=×K J K J 0 驱动表 无 1S 0n Q 1 0R 0×1 000 1 01×Q 10n+1 1 0Q 01 00n+1 1 Q K J n 10×1×××10 触发特点 电位触发,低电平有效 CP 脉冲后沿触发 CP 脉冲后沿触发

名称 D T T ′ 符号 Q Q C11D CP Q C1Q 1J CP 1K T CP Q C1Q 11J 1K 功能表 D n+1 Q 0011 1 T 0n+1 Q Q n n Q 0n+1 1 Q Q n 1 特性方程 Q n +1=D n n 1n Q T Q T Q +=+ n 1n Q Q =+ 状态转换图 D D D =0 =0 D =1 =1 1 =1 T T 01=0 =1 =0 T T 无 驱动表 0n Q 1D Q 101 n+1 1 00011 1 T Q 01n 1 0Q 0 110001 n+1 无 触发特点 CP 脉冲前沿触发 (边沿) CP 脉冲后沿触发 (边沿) CP 脉冲后沿触发 (边沿) 画触发器的工作波形时的要点: (1)触发器的翻转时刻——CP 脉冲的触发沿。 (2)触发器的翻转方向——CP 触发沿前一瞬间的输入变量。

深刻解析锁存器 触发器区别 以及verilog代码编写中如何避免产生锁存器

彻底理解锁存器,让你不再为锁存器头疼! 锁存器(latch):是电平触发的存储单元,数据存储的动作(状态转换)取决于输入时钟(或者使能)信号的电平值,尽当锁存器处于使能状态时,输出才会随着数据输入发生变化。 分为普通锁存器和门控锁存器,普通锁存器无控制信号,输出状态始终直接由输入决定。在实际的数字系统中,为了协调各部分的工作,往往需要有一个特定的控制信号去控制锁存器状态转换的时间,在控制信号无效时,输出保持不变,不随输入变换;当控制信号有效时,输出由输入决定,跟随输入变化。 基本锁存器 门控锁存器

①正是因为门控锁存器在控制信号有效的期间内,都可以接收输入信号,所以,激励信号的任何变化,都将直接引起锁存器输出状态的改变。这时输入信号若发生多次变化,输出状态也可能发生多次变化,这一现象称为锁存器的空翻。 ②其次,当门控锁存器的控制信号有效时,锁存器就变成了一个组合电路,时序逻辑电路的模型就等效为两个各组合电路互为反馈的反馈系统,因此,系统有可能会因为瞬态特性不稳定而产生振荡现象。 触发器(flip-flop)是边沿敏感的存储单元,数据存储的动作(状态转换)由某一信号的上升或者下降沿进行同步的(限制存储单元状态转换在一个很短的时间内)。(钟控D触发器其实就是D锁存器,边沿D触发器才是真正的D触发器) 触发器分为两种,一种是主从触发器和边沿触发器。主从触发器在时钟有效期内(主触发器)接收数据,在时钟边沿输出状态转换。边沿触发器在时钟边沿期间,触发器才接收数据并使输出状态转换。 主从触发器 目前,主从触发器基本上已经很少见了,实际使用的大都是边沿触发器。 寄存器(register):用来暂时存放参与运算的数据和运算结果。在实际的数字系统中,通常把能够用来存储一组二进制代码的同步时序逻辑电路称为寄存器。 区别与联系:由于触发器内有记忆功能,因此利用触发器可以方便地构成寄存器。由于一个触发器能够存储一位二进制码,所以把n个触发器的时钟端口连接起来就能构成一个存储n位二进制码的寄存器。 从寄存数据的角度来讲,寄存器和锁存器的功能是相同的;它们的区别在于寄存器是同步时钟控制,而锁存器是电位信号控制。

数电实验触发器及其应用

数电实验触发器及其应用 数字电子技术实验报告 实验三: 触发器及其应用 一、实验目的: 1、熟悉基本RS触发器,D触发器的功能测试。 2、了解触发器的两种触发方式(脉冲电平触发和脉冲边沿触发)及触发特点 3、熟悉触发器的实际应用。 二、实验设备: 1 、数字电路实验箱; 2、数字双综示波器; 3、指示灯; 4、74LS00、74LS74。 三、实验原理: 1、触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序 电路的最基本逻辑单元,也是数字逻辑电路中一种重要的单元电路。在数字系统和计算机中有着广泛的应用。触发器具有两个稳定状态,即“0”和“ 1 ”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。触发器有集成触发器和门电路(主要是“与非门” )组成的触发器。 按其功能可分为有RS触发器、JK触发器、D触发器、T功能等触发器。触发方式有电平触发和边沿触发两种。 2、基本RS触发器是最基本的触发器,可由两个与非门交叉耦合构成。 基本RS触发器具有置“ 0”、置“ 1”和“保持”三种功能。基本RS触发器

也可以用二个“或非门”组成,此时为高电平触发有效。 3、D触发器在CP的前沿发生翻转,触发器的次态取决于CP脉冲上升沿n+1来到之前D端的状态,即Q = D。因此,它具有置“ 0”和“T两种功能。由于在CP=1期间电路具有阻塞作用,在CP=1期间,D端数据结构变RS化,不会影响触发器的输出状态。和分别是置“ 0”端和置“ 1” DD 端,不需要强迫置“ 0”和置“ 1”时,都应是高电平。74LS74(CC4013, 74LS74(CC4042均为上升沿触发器。以下为74LS74的引脚图和逻辑图。 馬LD 1CP 1云IQ LQ GM) 四、实验原理图和实验结果: 设计实验: 1、一个水塔液位显示控制示意图,虚线表示水位。传感器A、B被水浸沿时

触发器及其应用实验报告 - 图文-

实验报告 一、实验目的和任务 1. 掌握基本RS、JK、T和D触发器的逻辑功能。 2. 掌握集成触发器的功能和使用方法。 3. 熟悉触发器之间相互转换的方法。 二、实验原理介绍 触发器是能够存储1位二进制码的逻辑电路,它有两个互补输出端,其输出状态不仅与输入有关,而且还与原先的输出状态有关。触发器有两个稳定状态,用以表示逻辑状态"1"和"0飞在二定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存储器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 图14-1为由两个与非门交叉祸合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。 基本RS触发器具有置"0"、置"1"和保持三种功能。通常称s为置"1"端,因为 s=0时触发器被置"1"; R为置"0"端,因为R=0时触发器被置"0"。当S=R=1时状态保持,当S=R=0时为不定状态,应当避免这种状态。

基本RS触发器也可以用两个"或非门"组成,此时为高电平有效。 S Q S Q Q 卫R Q (a(b 图14-1 二与非门组成的基本RS触发器 (a逻辑图(b逻辑符号 基本RS触发器的逻辑符号见图14-1(b,二输入端的边框外侧都画有小圆圈,这是因为置1与置。都是低电平有效。 2、JK触发器 在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。引脚逻辑图如图14-2所示;JK触发器的状态方程为: Q,,+1=J Q"+K Q 3 5

J Q CLK K B Q 图14-2JK触发器的引脚逻辑图 其中,J和IK是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成"与"的关系。Q和Q为两个互补输入端。通常把Q=O、Q=1的状态定为触发器"0"状态;而把Q=l,Q=0 定为"}"状态。 JK触发器常被用作缓冲存储器,移位寄存器和计数器。 CC4027是CMOS双JK触发器,其功能与74LS112相同,但采用上升沿触发,R、S端为高电平

实验六 触发器实验报告

实验五 触发器实验报告 [实验目的] 1. 理解Oracle 触发器的种类和用途 2. 掌握行级触发器的编写 [预备知识] 1. PL/SQL 程序设计 [实验原理] 1. 建立触发器 CREA TE [OR REPLACE] TRIGGER <触发器名> BEFORE|AFTER INSERT|DELETE|UPDA TE OF <列名> ON <表名> [FOR EACH ROW] WHEN (<条件>) ON 子句中的名称识别与数据库触发器关联的数据库表 触发器事件指定了影响表的 SQL DML 语句 ( INSERT 、 DELETE 或 UPDA TE) AFTER 指定了触发器在处理完成后触发 BEFORE 指定了触发器在处理完成前触发 默认情况下,触发器每个表触发一次 FOR EACH ROW 选项指定触发器每行触发一次(即触发器为行级触发器) 要使触发器触发,WHEN 子句中布尔型表达式的值必须判定为 TRUE 可以将 REPLACE 添加到 CREA TE 语句以自动删除和重建触发器 2. 行级触发器中引用表数据 在行级触发器中,使用伪记录来表示旧数据:old 和新数据:new 引用示例::new.customer_name, :old.customer_name 3. 行级触发器中的谓词 在一个多条件触发的触发器中,使用谓词可以区分当前触发的操作的类型:触发事件 :old :new Insert 无定义,所有字段都是NULL 该语句完成后插入的值 Update 更新前该行的旧值 更新后该行的值 Delete 删除前该行的值 无定义,所有字段

触发器实验报告

触发器实验报告 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验报告 课程名称:数字电子技术基础实验 指导老师: 周箭 成绩:__________________ 实验名称:集成触发器应用 实验类型: 同组学生姓名:__邓江毅_____ 一、实验目的和要求(必填) 二、实验内容和原 理(必填) 三、主要仪器设备(必填) 四、操作方法和实 验步骤 五、实验数据记录和处理 六、实验结果与分 析(必填) 七、讨论、心得 实验内容和原理 1、D →J-K 的转换实验 设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1+n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:n n Q Q J =D K +。 实验结果: J K Qn-1 Qn 功能 0 0 0 0 保持 1 1 0 1 0 0 置0 1 0 1 1 0 1 翻转 1 0 1 0 1 置1 1 1 实验截图: 专业:电卓1501 姓名:卢倚平 学号: 日期:地点:东三404

(上:Qn ,下:CP ,J 为高电平时) 2、D 触发器转换为T ’触发器实验 设计过程:D 触发器和T ’触发器的次态方程如下: D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n 若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。 实验截图: (上:Qn ,下:!Qn )CP 为1024Hz 的脉冲。 3、J-K →D 的转换实验。 ①设计过程: J-K 触发器:n n 1+n Q Q J =Q K , D 触发器:Qn+1=D 若将J-K 触发器转换为D 触发器,则二者的次态方程须相等,因此有:J=D ,K=!D 。 实验截图:

D锁存器与D触发器亚稳态的分析,结合定时参数-写的极好

这篇文章感觉写的相当好 1、简介 这篇文章是我对电子设计中,亚稳态问题的一种分析和总结。文章通过对数字电路中器件的工作机制的介绍,引出亚稳态问题的发生机制。并通过对亚稳态问题发生机制的探讨,用以得到一种能够清楚地,有的放矢地解决亚稳态问题的能力。而这种能力,将会成为你作为一个工程师的价值所在。希望通过这个探讨,可以使你设计出属于自己的预防亚稳态的方法。对于常用的预防亚稳态的方法,由于网上已经有大量介绍,并且涉及到具体问题的分析,这里将不做重点介绍。 2、CMOS中的信息保存 Fig. 1. MOS管的电容模型 当一个MOS工艺晶体管被制造之后,在不同极之间,因为介电物质的存在,会形成电容。当晶体管工作时,这些电容会被充/放电。当充放电回路上的R,C有不同取值的时候,回路的时间常数(由RC表示)会不同。 在数字电路中,最简单的结构是反向器(inverter)。在CMOS工艺中,它由一个NMOS加一个PMOS组成。 Fig. 2. 反向器 对于这个反向器,可以简化成由工作电阻Ron,结点电容CL组成的充放电电路。

Fig. 3. 反向器充放电模型 当Inverter输入为0时,PMOS导通,对CL充电,时间由Rp*CL决定 当Inverter输入为1时,NMOS导通,对CL放电,时间由Rn*CL决定 其中CL由P/NMOS的漏极结点上所有相关的电容组成,这是一种近似的计算方法(将分布的电容进行集总)。 CL=Cdb+Cgd(Miller效应)+Cwire+Cg_fanout 从这里我们得到 1,任何信号都需要时间才能从输入端口传递到输出端口。 2,对CL的充放电影响系统的动态(翻转)功耗,如果想降低功耗,可以对不使用的信号添加使能。 3,由于Rp != Rn,所以Rp*CL != Rn*CL,所以rising time != falling time 对于分析亚稳态的问题,只需要记住第一条,任何信号从输入端口传递到输出端口都需要一定的时间。对于任何其他门电路,分析过程都一样。 3、SETUP/HOLD 时间的意义 S/H时间是时序器件的属性。下面我们来说一下,这两个时间是如何产生的。任何器件“原则”上都是电平有效的,边沿触发的器件是一种“把戏”。 首先我们看一下D锁存器。 Fig. 4. D锁存器 真值表: E D Q 0 x PreQ 1 0 0 1 1 1

触发器实验报告

实验报告 课程名称:数字电子技术基础实验 指导老师: 周箭 成绩:__________________ 实验名称:集成触发器应用 实验类型: 同组学生姓名:__邓江毅_____ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验内容和原理 1、D →J-K 的转换实验 设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1+n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:n n Q Q J =D K +。 实验结果: J K Qn-1 Qn 功能 保持 1 1 0 1 置0 1 0 1 1 1 翻转 专业:电卓1501 姓名:卢倚平 学号: 日期:地点:东三

1 0 1 0 0 1 置1 1 1 实验截图: (上:Qn,下:CP,J为高电平时) 2、D 触发器转换为T’触发器实验 设计过程:D 触发器和T’触发器的次态方程如下: D 触发器:Q n+1= D , T’触发器:Q n+1=!Q n 若将D 触发器转换为T’触发器,则二者的次态方程须相等,因此有:D=!Qn。实验截图: (上:Qn,下:!Qn)CP为1024Hz 的脉冲。

3、J-K →D 的转换实验。 ①设计过程: J-K 触发器:n n 1+n Q Q J =Q K +, D 触发器:Qn+1=D 若将J-K 触发器转换为D 触发器,则二者的次态方程须相等,因此有:J=D ,K=!D 。 实验截图: (上:Qn ,下:CP ) (上:Qn ,下:D ) 4、J-K →T ′的转换实验。 设计过程: J-K 触发器:n n 1+n Q Q J =Q K +, T ’触发器:Qn+1=!Qn 若将J-K 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:J=K=1 实验截图:

数字电路 触发器的功能测试实验报告

肇 庆 学 院 电子信息与机电工程 学院 数字电路 课 实验报告 12电气(1) 班 姓名 李俊杰 学号 201224122119 实验日期2014年5 月19 日 实验合作者:王圆圆 老师评定 实验题目:触发器的功能测试 一、实验目的 (一)掌握基本RS 触发器的功能测试。 (二)掌握集成触发器的电路组成形式及其功能。 (三)熟悉时钟触发器不同逻辑功能之间的相互转换。 (四)认识触发器构成的脉冲分频电路。 二、实验仪器: DZX-1型电子学综合实验装置 UT52万用表 GDS-806S 双踪示波器 74LS00 74LS74 74LS76 三、实验内容&数据分析 触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一种具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。第一步,将触发器74LS74、74LS76引出端排列图和状态表画在实验报告上。(注:此项内容必须在进实验室前完成。) (一)测试基本RS 触发器的逻辑功能 用两个与非门组成基本RS 触发器如图4-1,输入端R ,S 接逻辑电平开关输出插口,输出端Q 、Q 接逻辑电平显示插口,按表4-1要求测试。 表4-1 基本RS 触发器特性表(输入低电平有效) 图4-1 由74ls00连接成的基本RS 触发器 测试集成双JK 触发器74LS76的逻辑功能 1、测试D R 、 D S 端的复位、置位功能

74LS76逻辑符号如图4-2,对照其插脚(查阅附录B )取其中一JK 触发器,D R 、 D S 、J 、K 端分别接逻辑电平开关输出插口,CP 接单次脉冲源(正脉冲),Q 、Q 接至逻辑电平显示输入插口。要求在D R =0, D S =1以及 D S =0,D R =1时任意改变J 、K 及CP 的状态用“ⅹ”符 号表示,观测Q 、Q 状态。 图4-2 74LS76管脚排列 2、测试触发器的逻辑功能 按表4-2的要求改变J 、K 、CP 端状态,记录Q 的状态变化,观察触发器状态的更新发生在CP 脉冲(单脉冲)的上降沿还是下降沿?(注意D R 、D S 端的电平接法) 表4-3 集成双JK 触发器74LS76特性表2 图4-2 JK 触发器逻辑符号 3、JK 触发器的J 、K 端连在一起,构成T ’触发器。 在CP 端输入1MHZ 连续脉冲,用双踪示波器观察CP 、Q 端的波形,注意相位与时间的关系。

锁存器与触发器亚稳态的分析,

1、简介 这篇文章是我对电子设计中,亚稳态问题的一种分析和总结。文章通过对数字电路中器件的工作机制的介绍,引出亚稳态问题的发生机制。并通过对亚稳态问题发生机制的探讨,用以得到一种能够清楚地,有的放矢地解决亚稳态问题的能力。而这种能力,将会成为你作为一个工程师的价值所在。希望通过这个探讨,可以使你设计出属于自己的预防亚稳态的方法。对于常用的预防亚稳态的方法,由于网上已经有大量介绍,并且涉及到具体问题的分析,这里将不做重点介绍。 2、CMOS中的信息保存 Fig. 1. MOS管的电容模型 当一个MOS工艺晶体管被制造之后,在不同极之间,因为介电物质的存在,会形成电容。当晶体管工作时,这些电容会被充/放电。当充放电回路上的R,C有不同取值的时候,回路的时间常数(由RC表示)会不同。 在数字电路中,最简单的结构是反向器(inverter)。在CMOS工艺中,它由一个NMOS加一个PMOS组成。 Fig. 2. 反向器 对于这个反向器,可以简化成由工作电阻Ron,结点电容CL组成的充放电电路。

Fig. 3. 反向器充放电模型 当Inverter输入为0时,PMOS导通,对CL充电,时间由Rp*CL决定 当Inverter输入为1时,NMOS导通,对CL放电,时间由Rn*CL决定 其中CL由P/NMOS的漏极结点上所有相关的电容组成,这是一种近似的计算方法(将分布的电容进行集总)。 CL=Cdb+Cgd(Miller效应)+Cwire+Cg_fanout 从这里我们得到 1,任何信号都需要时间才能从输入端口传递到输出端口。 2,对CL的充放电影响系统的动态(翻转)功耗,如果想降低功耗,可以对不使用的信号添加使能。 3,由于Rp != Rn,所以Rp*CL != Rn*CL,所以rising time != falling time 对于分析亚稳态的问题,只需要记住第一条,任何信号从输入端口传递到输出端口都需要一定的时间。对于任何其他门电路,分析过程都一样。 3、SETUP/HOLD 时间的意义 S/H时间是时序器件的属性。下面我们来说一下,这两个时间是如何产生的。任何器件“原则”上都是电平有效的,边沿触发的器件是一种“把戏”。 首先我们看一下D锁存器。 Fig. 4. D锁存器 真值表: E D Q 0 x PreQ 1 0 0 1 1 1

实验六 触发器实验报告

实验六触发器实验报告 触发器实验报告 [实验目的]1、理解Oracle触发器的种类和用途2、掌握行级触发器的编写 [预备知识]1、 PL/SQL程序设计 [实验原理]1、建立触发器 CREATE [OR REPLACE] TRIGGER <触发器名> BEFORE|AFTER INSERT|DELETE|UPDATE OF <列名> ON <表名> [FOR EACH ROW] WHEN (<条件>) ON 子句中的名称识别与数据库触发器关联的数据库表触发器事件指定了影响表的 SQL DML 语句 ( INSERT、 DELETE 或 UPDATE) AFTER 指定了触发器在处理完成后触发 BEFORE 指定了触发器在处理完成前触发默认情况下,触发器每个表触发一次 FOR EACH ROW 选项指定触发器每行触发一次(即触发器为行级触发器)要使触发器触发,WHEN 子句中布尔型表达式的值必须判定为 TRUE 可以将 REPLACE 添加到 CREATE 语句以自动删除和重建触发器2、行级触发器中引用表数据在行级触发器中,使用伪记录来表示旧数据:old和新数据:new 触发事件 :old :new Insert 无定义,所有字段都是NULL该语句完成后插入的值 Update 更新前该行的旧值更新后该行的值 Delete 删除前该行的值无定

义,所有字段都是NULL引用示例::new、 customer_name, :old、customer_name3、行级触发器中的谓词在一个多条件触发的触发器中,使用谓词可以区分当前触发的操作的类型:inserting,updating,deleting。 示例: IF Inserting THEN 语句 ; END IF; IF Updating THEN 语句 ; END IF; IF Deleting THEN 语句 ; END IF;4、触发器的限制 SELECT 语句必须是 SELECT INTO 语句或内部游标声明。 行级触发器不可以对触发表进行查询,包括其调用的子过程中。 不允许 DDL 声明和事务控制语句。 如果由触发器调用存储子过程,则存储子程序不能包括事务控制语句。 :old 和 :new 值的类型不能是 LONG 和 LONG RAW。 [实验内容]1、给Customer表增加一列Savings,类型为int,来存放每个顾客的存款总额。A LTER TABLE customer ADD (saving varchar2(30));select * from customer;2、更新Customer表,使得Savings字段的值正确。 3、在Account表上增加一个行级触发器,当对account的balance进行update和insert一个记录时同步修改Customer的Savings字段,保证数据的一致性。

基本触发器功能验证实验

基本触发器功能验证实验预习参考 (注意:所有表格均可用状态方程提前填好) 1、 R S 触发器 图1-5-1基本RS 触发器的原理图,公式(1-5-1)是RS 触发器的状态方程。 n n n n RQ Q Q S Q ==++1 1 (1-5-1 ) 图1-3-3基本RS 触发器 表1-5-1 R S Q (V ) Q (V ) 触发器状态 0 1 1 0 1 1 0 0 1 1

图1-3-4基本RS 触发器实验连线图 2、D 触发器 图1-5-2基本RS 触发器的原理图,公式(1-5-2)是D 触发器的状态方程。 D Q n =+1 (1-4-2) (CP 上升沿有效) 图1-3-5 D 触发器IC 引脚图 表1-5-2 测试D 触发器置位、复位功能 CP D D R D S 1+n Q (V ) 1+n Q (V ) Q 状态 ф ф 1 ф ф 1 0

表1-5-3 D触发器同步功能测试 Qn 0 0 1 1 D 0 1 0 1 CP 0 ?0 ?0 ?0 ?Qn+1 图1-3-6 D触发器实验测试图

图1-3-7 D触发器实验测试图 3、JK触发器 图1-5-3JK触发器的原理图,公式(1-4-3)是JK触发器的状态方程。 +1(1-5-3) n Q n n = Q+ Q K J (CP下降沿有效) 图1-3-8 JK触发器的原理图

表1-5-4测试JK触发器逻辑功能 CP ? ? ? ?J 0 0 0 0 1 1 1 1 K 0 0 1 1 0 0 1 1 Qn 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Qn+1 图1-3-9 JK触发器原理测试图

触发器实验报告

触发器实验报告 Prepared on 22 November 2020

实验报告 课程名称:数字电子技术基础实验 指导老师: 周箭 成绩:__________________ 实验名称:集成触发器应用 实验类型: 同组学生姓名:__邓江毅_____ 一、实验目的和要求(必填) 二、实验内容和原 理(必填) 三、主要仪器设备(必填) 四、操作方法和实 验步骤 五、实验数据记录和处理 六、实验结果与分 析(必填) 七、讨论、心得 实验内容和原理 1、D →J-K 的转换实验 设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1+n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:n n Q Q J =D K +。 实验结果: J K Qn-1 Qn 功能 0 0 0 0 保持 1 1 0 1 0 0 置0 1 0 1 1 0 1 翻转 1 0 1 0 1 置1 1 1 实验截图: 专业:电卓1501 姓名:卢倚平 学号: 日期:地点:东三404

(上:Qn ,下:CP ,J 为高电平时) 2、D 触发器转换为T ’触发器实验 设计过程:D 触发器和T ’触发器的次态方程如下: D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n 若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。 实验截图: (上:Qn ,下:!Qn )CP 为1024Hz 的脉冲。 3、J-K →D 的转换实验。 ①设计过程: J-K 触发器:n n 1+n Q Q J =Q K , D 触发器:Qn+1=D 若将J-K 触发器转换为D 触发器,则二者的次态方程须相等,因此有:J=D ,K=!D 。 实验截图:

寄存器-触发器-锁存器区别与联系

寄存器-触发器-锁存器区别与联系

1.1 寄存器 在实际的数字系统中,通常把能够用来存储一组二进制代码的同步时序逻辑电路称为寄存器.由于触发器内有记忆功能,因此利用触发器可以方便地构成寄存器。由于一个触发器能够存储一位二进制码,所以把n个触发器的时钟端口连接起来就能构成一个存储n位二进制码的寄存器。 1.2 锁存器 由若干个钟控D触发器构成的一次能存储多位二进制代码的时序逻辑电路。数据有效迟后于时钟信号有效。这意味着时钟信号先到,数据信号后到。在某些运算器电路中有时采用锁存器作为数据暂存器。 1.3 缓冲器 缓冲器相当于一个寄存器,暂时保存数据.缓冲是用来在两种不同速度的设备之间传输信息时平滑传输过程的常用手段。除了在关键的地方采用少量硬件缓冲器之外,大都采用软件缓冲。软件缓冲区是指在I/O操作期间用来临时存放输入/输出数据的一块存储区域。在操作系统中,引入缓冲的主要原因如: 缓和CPU与l/0设备间速度不匹配的矛盾。一般情况下,程序的运行过程是时而进行计算,时而进行输入或输出。以输出为例,如果没有缓冲,则程序在输出时,必然由于打印机的速度跟不上而使CPU停下来等待;然而在计算阶段,打印机又无事可做。如果设置一个缓冲区,程序可以将待输出的数据先输出到缓冲区中,然后继续执行;而打印机则可以从缓冲区取出数据慢慢打印。 1.4 寄存器和锁存器的区别 (1)寄存器是同步时钟控制,而锁存器是电位信号控制。 (2)寄存器的输出端平时不随输入端的变化而变化,只有在时钟有效时才将输入端的数据送输出端(打入寄存器),而锁存器的输出端平时总随输入端变化而变化,只有当锁存器信号到达时,才将输出端的状态锁存起来,使其不再随输入端的变化而变化 可见,寄存器和锁存器具有不同的应用场合,取决于控制方式以及控制信号和数据之间的时间关系:若数据有效一定滞后于控制信号有效,则只能使用锁;数据提前于控制信号而到达并且要求同步操作,则可用寄存器来存放数据。 一、锁存器 1. 锁存器的工作原理 锁存器不同于触发器,它不在锁存数据时,输出端的信号随输入信号变化,就像信号通过一个缓冲器一样;一旦锁存信号起锁存作用,则数据被锁住,输入信号不起作用。锁存器也称为透明锁存器,指的是不锁存时输出对于输入是透明的。

触发器实验报告

. . . . .. . 实验报告 课程名称:数字电子技术基础实验 指导老师: 周箭 成绩:__________________ 实验名称:集成触发器应用 实验类型: 同组学生姓名:__邓江毅_____ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验内容和原理 1、D →J-K 的转换实验 设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1 +n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:n n Q Q J =D K +。 实验结果: J K Qn-1 Qn 功能 0 0 0 0 保持 1 1 0 1 0 0 置0 1 0 1 1 0 1 翻转 1 0 1 0 1 置1 1 1 (上:Qn ,下:CP ,J 为高电平时) 2、D 触发器转换为T ’触发器实验 设计过程:D 触发器和T ’触发器的次态方程如下: D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n 若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。 实验截图: 专业:电卓1501 姓名:卢倚平 学号:3150101215 日期:2017.6.01 地点:东三404

实验名称:集成触发器应用实验 姓名: 卢倚平 学号: 2 (上:Qn ,下:!Qn )CP 为1024Hz 的脉冲。 3、J-K →D 的转换实验。 ①设计过程: J-K 触发器:n n 1 +n Q Q J =Q K +, D 触发器:Qn+1=D 若将J-K 触发器转换为D 触发器,则二者的次态方程须相等,因此有:J=D ,K=!D 。 实验截图: (上:Qn ,下:CP ) (上:Qn ,下:D ) 4、J-K →T ′的转换实验。 设计过程: J-K 触发器:n n 1 +n Q Q J =Q K +, T ’触发器:Qn+1=!Qn 若将J-K 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:J=K=1 实验截图:

触发器实验报告范文

触发器实验报告 一实验内容 1 搭建一个基本的RS触发器,并对其进行功能测试。写出RS的特性表。 2 对边沿D触发器74LS74的逻辑功能测试进行动态测试,填写D触发器的特性表 3 用D触发器实现四分频功能。 二实验条件 芯片74LS74, 74LS00。数字万用表,数字示波器,计算机电路基础实验箱。三实验原理 1 搭建一个基本的RS触发器,并对其进行功能测试,写出其特性表。 根据实验前的准备用两个与非门连接一个RS触发器。实验电路图如图所示: 在实验过程中,先选择一个输出为Q端,测试输入的清零和置1的特性,确定清零与置1端,然后开始测试,把握住上一输入的次态即为这一状态的现态。 结论RS触发器在一定状态下能起到保持状态的作用。 22 对边沿D触发器74LS74的逻辑功能测试进行动态测试,填写D触发器的特性表。电路图如下所示

其中选择的是动态测试法。输入为100KHz的脉冲,CLK输入是500KHz脉冲。在测试时候1PRN和1CLRN要置与高电平转态。 <1>其中测试D和Q的信号:

<4>测试D触发器清零和置1功能。 其中可以看出当置一信号有效时,输出为一直线,U=4.00V。

当清零信号有效时,输出也是一直线,U=0.00V。 3 用D触发器实现四分频功能。 电路图如图所示:其中clk输入为500KHz脉冲。 四分频功能有两个D触发器构成,原理为D触发器只有上升沿的时候采样,所

以每次脉冲经过一个D触发器周期变成原来的两倍,所以经过连个D触发器后能达到四分频的效果。 四实验总结 实验提前预习画好电路图,连接电路图的时候是比较快的,只是在测试RS触发器时候不是很理解原理所以无从下手,在老师和同学的解说下还是做好了。学更加深刻体验了D触发器的输出延迟,置一与清零的功能。 五实验评价 实验很成功。更加在之前学习数字逻辑的基础上,对RS触发器和D触发器的功能和作用有了更加深刻的理解。

基本RS触发器逻辑功能测试

实训九基本R-S触发器功能测试 一、实训目的 1.通过实训熟悉基本RS触发器的逻辑功能与特点; 2.通过实训掌握基本RS触发器的测试方法; 3.通过实训熟悉异步输入信号RD、SD、RD、SD的作用; 4.通过实训掌握基本RS触发器的典型应用; 二、实训原理 基本RS触发器就是由两个与非门交叉耦合组成,它就是最基本的触发器,也就是构成其它复杂触发器电路的一个组成部分。当R D=S D=1时,两个与非门的工作都尤如非门,Q接至与非门G2的输入,使G2输出为Q;Q接至与非门G1的输入,使G1的输出为Q。从而使触发器维持输出状态不变。 三、实训仪器与设备 S303-4型(或其它型号)数字电路实训箱一只; SR8(或其它型号)双踪示波器一只; 直流稳压电源一台; 74LS00 二输入四与非门1片。 四、实训内容与步骤 1.两个TTL与非门首尾相接构成的基本R-S触发器的电路如图7-2-1所示逻辑电路。为 图9-1 基本R-S触发器功能测试 2.按表9-1所示的顺序在Sd、Rd两端信号,观察并记录R-S触发器Q端的状态,并将结果填入表9-1中 表9-1 3.Sd 4.Sd端接高电平,Rd端加脉冲。

5.令Sd=Rd,在Sd端加脉冲。 6.记录并观察2、3、4三种情况下,Q,Q n+1端的状态。从中总结基本R-S触发器的Q端的状态改变与输入端的关系。 五、实训思考题 试根据基本R-S触发器给定的输入信号波形画出与之对应的输出端的波形; 试写出基本R-S触发器的约束方程,并说明哪个就是复位端、哪个就是置位端? 六、训注意事项 接线时要注意电路图中各引脚的编号,连接时不要接错; 手动施加0、1输入电平时要注意开关动作的稳定性与可靠性,要避免开关的抖动; 用双踪示波器观察输出波形时,要注意选择一个较为合适的输入信号的频率。 实训十、计数器的功能测试 一、实训目的 1.掌握计数器的工作原理; 2.通过实训熟悉计数器的功能特点与典型应用; 3.通过实训掌握如何利用现有集成计数器来构成N进制计数器的方法。 二、实训原理 计数器就是一种含有若干个触发器、并按预定顺序改变各触发器的状态来累计输入脉冲个数的数字电路,被广泛应用于定时、分频及各种数字电路中。用JK触发器设计一个四位异步二进制加法器。CP接低频连续脉冲,输出接指示灯。观察指示灯的变化规律,写出状态图。 三、实训仪器与设备 1.S303-4型(或其它型号)数字电路实训箱一只; 2.SR8(或其它型号)双踪示波器一只; 3.直流稳压电源一台; 4.74LS00 二输入四与非门1片; 5.74LS160 十进制计数器1片; 6.74LS74 双D触发器2片; 7.74LS49 4线-七段译码器1片。 四、实训内容与步骤 六进制计数器,图10-1就是用74LS160实现六进制计数器的参考电路。当 Q3Q2Q1Q0=0111时,经过与非门所产生的零脉冲迅速使计数器清零,之后在输入CP脉冲的作用下,依次输出0000→0001→0010→0011→0100→0101→0000。输入低频连续脉冲,观察数码管的显示结果。

触发器总结

一、form级别 1、WHEN-NEW-FORM-INSTANCE 当新form的时候 a、go_block('BLOCK_QUERY'); b、app_window.set_window_position('QUERY','CENTER','POHEADERSALL'); c、search;(主form传过来的PO_ID参数,打开这个form时,有缺省的where语 句,然后执行查询,最后go_block到这个form中的数据块上)。 具体: 写程序单元,在这个触发器中调用这个程序单元:SEARCH; PROCEDURE search IS ls_where varchar2(2000) :='1=1'; BEGIN ls_where :=ls_where || ' and po_id='|| :parameter.PO_ID; set_block_property('HYP_PO_HEADERS_ALL_V',default_where,ls_where); go_block('HYP_PO_HEADERS_ALL_V'); execute_Query; END; 2、QUERY-FIND 查询时,点击小手电筒时 go_block('BLOCK_QUERY'); 3、CLOSE-WINDOW 关闭窗口时 exit_form; null; 二、数据块级别 1、CLOSE-WINDOW a、go_block('HYP_PO_HEADERS_ALL_V'); 一个form中有两个数据块,一个查询,一个显示查询结果,当关掉这个数据块时,go到显示结果的数据块。 2、PRE-INSERT a、:HYP_PO_HEADERS_ALL_V.PO_NUMBER :=cux_po_pkg.get_po_number(trunc (sysdate)); 预插入:调用cux_po_pkg包中的get_po_number函数,传入当前系统时间,trunc 取消时分秒,赋值给某个项。

相关文档