文档库 最新最全的文档下载
当前位置:文档库 › 化学反应条件的优化——工业合成氨

化学反应条件的优化——工业合成氨

化学反应条件的优化——工业合成氨
化学反应条件的优化——工业合成氨

化学反应条件的优化——工业合成氨

(讲义)

一、知识点睛

1.工业合成氨反应的限度

(1)反应原理

_________________________________

已知298 K时,△H = -92.2 kJ·mol-1

△S = -198.2 J·mol-1·K-1

(2)反应方向的判断

△H-T△S_____0,该反应在常温下_____自发进行。

(3)反应的限度分析

①______温度、______压强,有利于化学平衡向生成氨的方向移动;

②在一定温度、压强下,反应物N2、H2的体积比为1:3,反应达到化

学平衡时,混合物中NH3的含量最高。

2.工业合成氨反应的速率

(1)合成氨反应的速率与参加反应的物质的浓度的关系

v = k c(N2) c1.5(H2) c-1(NH3)

(2)反应的速率分析

①增大_________的浓度,有利于提高反应速率;

②将_________及时分离,有利于提高反应速率;

③______温度,有利于提高反应速率;

④使用合适的_______,有利于提高反应速率。

3.工业合成氨的适宜条件

(1)合成氨条件选择的理论分析

(2)合成氨的实际条件

①压强:低压1×107 Pa

中压2×107 ~3×107 Pa

高压8.5×107 ~1×108 Pa

②温度:700 K左右

③催化剂:铁

④浓度:N2与H2的物质的量之比为1:2.8

4.工业合成氨的主要生产流程

(1)造气

原料气中的N2来自于空气。

原料气中的H2来自于含氢的天然气、煤和炼油产品。以天然气为原料

时,反应可简单表示为:

CH4+H2O CO+3H2、CO+H2O CO+H2

(2)净化

消除造气过程中夹带的杂质,防止催化剂中毒。

(3)合成氨

这部分包括NH3的分离,N2和H2的循环使用,利用

反应产生的热预热合成气等。

5.工业生产中化学反应条件的优化

需考虑的因素有:化学反应速率快、原料利用率高、催化剂活性高、现实设备允许。

二、精讲精练

1.合成氨反应的特点是()

①可逆②不可逆③正反应放热④正反应吸热

⑤正反应气体体积增大⑥正反应气体体积减小

A.①③⑤B.②④⑥

C.①③⑥D.④⑤⑥

2.在合成氨时,可以提高H2转化率的措施是()

A.延长反应时间B.充入过量H2

C.充入过量N2D.升高温度

3.对于合成氨工业,只从提高原料转化率看,从下列条件中选择最适宜的组

合是()

①高温②低温③低压④高压

⑤催化剂⑥加氨⑦除氨

A.②④⑤B.②④⑦C.①④⑤D.②③⑥

4.从化学反应速率和化学平衡两个角度考虑,合成氨应采用的条件是()

A.低温、高压、催化剂B.低温、低压、催化剂

C.适宜温度、高压、催化剂D.高温、高压、催化剂

5.工业上合成氨时一般采用700 K左右的温度,原因是()

①提高合成氨的速率②提高氢气的转化率

③提高氨的产率④催化剂在700 K时活性最大

A.只有①B.①②C.②③④D.①④

6.工业合成氨反应中,使用催化剂和施以高压,下列叙述正确的是()

A.都能提高反应速率,都对平衡状态无影响

B.都对平衡状态有影响,都不影响达到平衡状态所用时间

C.都能缩短达到平衡状态所用的时间,只有加压对化学平衡状态有影响D.催化剂能缩短达到平衡状态所用时间,压强无此作用

7.关于合成氨工业的下列说法正确的是()

A.合成氨工业的反应温度控制在400~500℃左右,因为该

条件下氨的产率最高

B.合成氨工业采用10~30 MPa,是因为该条件下催化剂的活性最好

C.由于NH3易液化,N2、H2可循环使用,则总的来说氨的产率很高

D.从合成塔出来的气体,其中氨气一般占15%,所以生产氨的工业效率都很低

8.传统合成氨工业需要高温、高压和催化剂的反应条件。近来美国化学家使

用新型铁系催化剂,在常温下合成了氨气。下列说法正确的是()

A.新型合成氨方法是吸热反应

B.新型合成氨方法可简化生产设备

C.新型催化剂提高了N2和H2的转化率

D.两种方法中该反应的化学平衡常数相等

9.根据合成氨的特点分析,当前最有前途的研究发展方向是()

A.研制耐高压的合成塔

B.采用超大规模的工业生产

C.研制耐低温复合催化剂

D.探索不用N2、H2合成氨的新途径

10.合成氨厂所需H2可由焦炭与水反应制得:

(1)C(s)+H22(g) △H>0

(2)CO(g)+H22(g)+H2(g) △H<0

工业生产中,欲提高CO转化率,可采用的方法是()

①降低温度②增大压强③使用催化剂

④增大CO浓度⑤增大水蒸气浓度

A.①⑤B.②③C.②④⑤D.③⑤

11.工业合成氨技术是对人类的巨大贡献之一。下面是合成氨的简要流程示意

图:

(1)合成氨反应原料气N2的制备方法是_______________,

其中N2、H2的体积比高于1:3的原因是___________

_____________________________________________。

(2)原料气中往往含有H2S、CO、CO2等杂质,必须除去这些杂质的目的是_____________________________。

(3)上述流程示意图中的催化剂是____________。

(4)热交换器的作用是_______(填字母)。

a.提高N2的转化率

b.充分利用能源,降低成本

c.提高产物的产率

(5)沿X路线进入压缩机的物质是_________________,循环的目的是_________________________________。

12.有平衡体系CO(g)+2H23OH(g) △H<0,为增加甲醇(CH3OH)的

年产量,应采取的正确措施是()

A.高温、高压

B.适宜的温度、高压、催化剂

C.低温、高压、催化剂

D.高温、高压、催化剂

13.在硫酸工业中,通过下列反应使SO2转化为SO3:2SO2(g)+O23(g)

△H<0。已知制备SO3过程中使用的催化剂是V2O5。下表为不同温度和压强下SO

1×105 Pa 1×106 Pa 5×106 Pa 1×107 Pa

450℃97.5% 99.2% 99.6% 99.7%

550℃85.6% 94.9% 97.7% 98.3%

(1)实际生产中,选定400~500℃作为操作温度,是由于

______________________________。

(2)实际生产中采用的压强为常压,原因是_____________

______________________________________________

_____________________________________________。

(3)根据化学原理综合分析,为了使SO2尽可能转化为SO3,可控制的条件是_______________________。

(4)在生产中常用过量的空气是为了__________________

_____________________________________________。

14.金属钾和金属钠的金属性相近,且钾比钠略强。当利用金属钾和钠盐共融

制金属钠时,发现钾和钠的共融体难以分离。如调整温度到一定程度,则可利用金属钠和氯化钾反应制取金属钾。

(1)钠能制取钾的原因是_________________________。

(2)该反应制取钾的温度是_______。

A.97.8℃~770℃B.770℃~774℃

C.774℃~882.9℃D.1413℃~1500℃

(3)在制取钾的过程中,为了提高原料的转化率可以采取的措施是_____________________________________。

【参考答案】

一、知识点睛

1.(1)N2(g)+3H23(g)

(2)<0 能

(3)①降低增大

2.(2)①N2或H2②NH3

③升高④催化剂

二、精讲精练

1. C

2. C

3. B

4. C

5. D

6. C

7. C

8. B

9. C

10.A

11.(1)分离液态空气法

适当提高N2的比例,加快合成氨反应的进行

(2)防止催化剂中毒

(3)铁

(4)b

(5)N2、H2提高原料气的利用率

12.B

13.(1)在此温度下,催化剂活性最高

(2)在常压下,SO2的转化率(97.5%)已经很高,若再加压,平衡正向移动效果不明显,且对设备要求高,成本高

(3)450℃、常压、催化剂

(4)增大O2的浓度,提高成本较高的SO2的转化率

14.(1)产物钾为气体

(2)C

(3)及时分离出产物钾

合成氨条件的选择

学科:化学 教学内容:合成氨条件的选择 【基础知识精讲】 1.合成氨反应的理论应用 合成氨反应原理: N2+3H22NH3(正反应为放热反应) 反应特点是:①可逆反应;②气体总体积缩小的反应;③正反应为放热反应. 根据上述反应特点,从理论上分析: (1)使氨生成得快的措施(从反应速率考虑):①增大反应物的浓度;②升高温度;③加大压强;④使用催化剂. (2)使氨生成得多的措施(从平衡移动考虑):①增大反应物的浓度同时减小生成物的浓度;②降低温度;③增大压强. 2.合成氨条件的选择 在实际生产中,既要考虑氨的产量,又要考虑生产效率和经济效益,综合以上两方面的措施,得出合成氨的适宜条件的选择: 浓度:一般采用N2和H2的体积比1∶3,同时增大浓度,不加大某种反应物的浓度,这是因为合成氨生产的原料气要循环使用.按1∶3循环的气体体积比,仍会保持1∶3. 温度:合成氨是放热反应,降低温度虽有利于平衡向正反应方向移动,但温度过低,反应速率过慢,所以温度不宜太低,在500℃左右为宜,而且此温度也是催化剂的活性温度范围. 压强:合成氨是体积缩小的可逆反应,所以压强增大,有利于氨的合成,但压强过高时,对设备的要求也就很高,制造设备的成本就高,而且所需的动力也越大,应选择适当的压强,一般采用2×107Pa~5×107Pa. 催化剂:用铁触媒作催化剂,能加快反应速率,缩短达到平衡时间. 可将合成氨的适宜条件归纳为: ①增大氨气、氢气的浓度,及时将生成的氨分离出来;②温度为500℃左右;③压强为2×107Pa~5×107Pa;④铁触媒作催化剂. 3.合成氨的工业简述 合成氨工业的简要流程图: (1)原料气的制取. N2:将空气液化、蒸发分离出N2,或将空气中的O2与碳作用生成CO2,除去CO2后得N2. H2:用水和焦炭(或煤、石油、天然气等)在高温下制取,如

化学反应条件的优化(教案)

第4节化学反应条件的优化———工业合成氨 【三维目标】 知识与技能: 1. 使学生理解如何应用化学反应速率和化学平衡原理,选择合成氨的适宜条件。 2. 使学生了解应用化学原理选择化工生产条件的思路和方法。 过程与方法: 1. 教学时应以化学反应速率和化学平衡原理为主线,以合成氨知识为中心,结合工业 生产的实际情况,将知识串联、拓展、延伸,培养学生的归纳思维能力。 2. 在运用理论的过程中,可以进一步加深学生对所学理论的理解和提高知识的实际应 用能力。 情感态度与价值观: 1. 通过了解合成氨的全过程,可以激发学生爱科学、探索科学的热情。 2. 通过合成氨前景的展望,激发学生学习兴趣。. 【教学过程】 [引入] 首先问大家一个问题:大家想不想当老板? (为什么想当老板?) [板书] 第4节化学反应条件的优化——工业合成氨 [学生活动] 了解学习目标,内容框架 [提问] 1. 在化学必修—2中我们已经学习了工业合成氨的反应原理,是什么呢? 2. 合成氨反应的特点? 3. 选择生产条件的目的是什么? 4. 选择生产条件的依据是什么? 答案: 1 原理:N 2 + 3H2 2NH3(正反应为放热反应) 2 反应特点:①可逆反应 ②正反应是放热反应 ③正反应气体体积缩小 3尽可能加快反应速率和提高产物产率 4外界条件对化学反应速率和化学平衡的影响 [学生活动] 请根据正反应的焓变和熵变分析298K下合成氨反应能否自发进行? (只需要估算即可) [知识回顾] 运用所学有关知识填写下表: 化学反应速率化学平衡 温度 压强 催化剂 浓度 [教师引导并总结] 请同学们根据合成氨反应的特点,利用影响化学平衡移动的因素,分析什么条件有利于

工业合成氨

第二章化学反应的方向、限度与速率 第四节化学反应条件的优化----工业合成氨 制作:贾爱军审核:陈霞 【学习目标】 1.理解如何应用化学反应速率和化学平衡原理,选择合成氨的适宜条件。 2.了解应用化学原理选择化工生产条件的思路和方法。 3.使学生通过对合成氨适宜条件的分析,认识化学反应速率和化学平衡的调控在工业生产 中的重要作用。 【教学重点、难点】应用化学反应速率和化学平衡原理选择合成氨的适宜条件 【知识链接】化学反应速率和化学平衡知识。 【知识梳理】 1.阅读教材65页“交流研讨” 写出合成氨反应的化学方程式,该反应的特点是 ,试计算在常温下该反应能否自发进行。 2.阅读教材66页,从化学平衡角度分析,为了提高反应的限度可以采取的措施: 浓度;温度;压强。 3.阅读66---67页,从化学反应速率角度分析,为加快反应速率可以采取的措施: 浓度;温度;压强;催化剂。 4.阅读67---68页完成以下问题: ①选择生产条件的依据是 3、生产过程简介(自读了解)

【巩固练习】 1、在合成氨工业中,为增加氨的日产量,下列变化过程中不能使平衡向右移动的是() A、不断将氨分离出来 B、使用催化剂 C、采用5000C左右的温度 D、采用2×107~5×107Pa的压强 2、在合成氨时,可以提高H2转化率的措施是() A、延长反应时间 B、充入过量H2 C、充入过量N2 D、升高温度 3、关于氨的合成工业的下列说法正确的是() A、从合成塔出来的气体,其中氨一般占13﹪~14﹪,所以生产氨的工业的效率都很低 B、由于NH3易液化,N2、H2可循环使用,则总的说来氨的产率很高 C、合成氨工业的反应温度控制在500 ℃左右,目的是使平衡向正反应方向进行 D、合成氨工业采用20MPa~50MPa ,是因该条件下催化剂的活性最好 4、下列反应达到平衡时,哪种条件下生成物的含量最高:X 2(g)+2Y2 (g)X2Y4 (g)(正反应为放热反应)( ) A、高温高压 B、低温低压 C、高温低压 D、高压低温 5、已知3H 2(g)+N2(g)2NH3(g)(正反应为放热反应),下面用v表示化学反应速率。(1)增大N2的浓度,v(正)将,N2的转化率将。 (2)升高温度,v(正)将,平衡将向移动。 (3)在压强不变的情况下,通入氦气,平衡将向移动,N2的浓度将。 (4)工业上合成氨,常选择500℃,20MPa~50MPa的外界条件,并加入催化剂,还将产物,分离出氨,并循环使用未反应的N2和H2。 【巩固练习】 1、某温度下,可逆反应A(g)+3B(g)2C(g)达到平衡状态的标志是() A、C生成的速率与C分解的速率相等 B、A、B、C的浓度相等

利用阿累尼乌斯公式优化化学反应收率回归方程

利用阿累尼乌斯公式优化化学反应收率回归方程 阿累尼乌斯公式是表示化学反应速率与反应温度及反应物浓度的普适性公式。该文章采用原有文献中三醋酸甘油酯合成的多个反应条件及收率参数,以阿累尼乌斯公式为基础建立含有几个参数的数学模型,然后用Matlab软件求解回归方程。最后将所得回归方程与原回归方程相比较,结果表明所得方程对收率的拟合优于原回归方程。 标签:阿累尼乌斯公式;数学建模;线性回归方程;Matlab 在化工生产中,为达到提高生产率、节约能源、节约成本等目的,需要建立反应条件与产率的数学模型表达式,以此来通过改变反应条件控制生产状况,用以优化反应。 在建立的数学模型形式中,又以回归方程的形式较为普遍,而回归方程则分为线性与非线性两种,本文通过阿累尼乌斯公式建立收率与反应条件参数的指数模型,再将其处理为线性模型,最后通过Matlab软件计算方程的系数,得到回归方程。 在一定温度、催化剂条件下,反应速率与浓度的关系可表示为: 其中k为反应速率常数,阿累尼乌斯通过大量实验數据总结出阿累尼乌斯公式,得到反应速率常数与温度的关系: 本篇文章数据来源于《河南化工》2002年11期中的一篇文献:《基于实验设计和统计建模的化工工艺优化》。 原文献采用正交试验法初步探索三醋酸甘油酯合成工艺中的最佳反应条件区间,并将目标产物收率与反应条件進行线性拟合,用线性回归方程指导中试试验的最佳反应条件。 原文献中没有考虑到温度与反应速率呈指数关系,因此在与实验值拟合的过程中误差较大,本文改进回归方程,对原回归方程进行优化。 1 模型系数的计算 利用Matlab软件自带的回归方程计算函数regress求模型系数,编写如下Matlab语句: 从数据组中可以看到:除第一组数据外,其他数据的残差均在合理范围内,考虑到原数据中第一组数据的收率仅为 1.5%,属于极特殊条件,实际生产中几乎不会遇到,因此该拟合函数在模拟常规生产中有可靠性,函数表达式为:

化学反应条件的优化-合成氨教学设计

第4节化学反应条件的优化——工业合成氨 山东福山第一中学 王珊娜 【教学目标】: 知识与技能: 1.了解如何应用化学反应速率和化学平衡原理分析合成氨的适宜条件; 2.了解应用化学反应原理分析化工生产条件的思路和方法,体验实际生产条件的选择与理论分析的差异; 3通过对合成氨适宜条件的分析,认识化学反应速率和化学平衡的控制在工业生产中的重要作用。 过程与方法: 在化学反应的方向、限度、速率等理论为指导的基础上带领学生选择适宜的反应条件,引导学生考虑合成氨生产中动力、设备、材料生产效率等因素,寻找工业合成氨生产的最佳条件。 情感态度与价值观: 认识化学反应原理在工业生产中的重要作用,提升学生对化学反应的价值的认识,从而赞赏化学科学对个人生活和社会发展的贡献。 教学重难点:应用化学反应速率和化学平衡原理选择合成氨的适宜条件。 课型:新课 课时安排:1课时 【教材分析】在本章的前三节课分别分析了化学反应的方向,化学反应速率和化学反应的限度,而对于实际工业生产来说,不能只是单一的考虑一方面。合成氨工业对化学工业、国防工业和我国实现农业现代化具有重要意义。所以在本节教材中充分体现化学反应速率和化学平衡移动原理等理论对工业生产实践的指导作用,也可进一步加深对所学理论的理解。通过本节课的学习,使学生理解如何应用化学反应速率和化学平衡原理,选择合成氨的适宜条件;使学生了解应用化学原理选择化工生产条件的思路和方法。 【学情分析】在前三节的学习中,学生们已经掌握了温度、浓度等外界条件对化学平衡和化学反应速率的影响,具有了相应的理论知识基础。这部分的知识比较抽象,学生学起来感觉不容易理解,在学习过程中需要老师去引导,循序渐进。在复习前面的基础知识的基础上,讨论合成氨反应的特点,进而探讨工业生产所需的合适条件都需要考虑的因素,以及符合解决化学热力学角度实现高转化率所需的条件与从动力学角度实现高速率所需的条件的矛盾,以及实际生产中还要考虑成本、经济效益的等多方面的问题。

人教版新课标版化学必修二优化作业:2.3.2 化学反应的限度 化学反应条件的控制 Word版含解析

第2课时化学反应的限度化学反应条件的控制 1.下列对可逆反应的认识正确的是() A.SO2+Br2+2H2O H2SO4+2HBr与2HBr+H2SO4(浓)Br2+SO2↑+2H2O互为可逆反应 B.既能向正反应方向进行,又能向逆反应方向进行的反应叫做可逆反应 C.在同一条件下,同时向正、逆两个方向进行的反应叫做可逆反应 D.电解水生成氢气和氧气与氢气和氧气点燃生成水的反应是可逆反应 解析:理解好可逆反应定义中的“同一条件下”“同时”“正、逆两个方向”等关键字眼。 答案:C 2.下列说法正确的是() A.密闭容器中充入1 mol N2和3 mol H2可生成2 mol NH3 B.一定条件下,可逆反应达到平衡状态,该反应就达到了这一条件下的最大限度 C.对于任何反应增大压强,化学反应速率均增大 D.化学平衡是一种动态平衡,条件改变,原平衡状态不会被破坏 解析:N2与H2生成NH3的反应为可逆反应,1 mol N2与3 mol H2不能完全反应生成2 mol NH3,A项错;压强是影响化学反应速率的一个因素,但并不适合于所有的反应,必须有气体参与的反应才适合,C不正确;化学平衡是一种动态平衡,该平衡是建立在一定条件下的平衡,如果条件改变,平衡将发生移动,D项不正确。 答案:B 3.工业炼铁是在高炉中进行的,高炉炼铁的主要反应是:①2C+O22CO;②Fe2O3+3CO2Fe+3CO2。该炼铁工艺中,焦炭的实际用量远远高于 按照化学方程式计算所需要的量。其主要原因是() A.CO过量 B.CO与铁矿石接触不充分 C.炼铁高炉的高度不够 D.反应①②都有一定限度 解析:研究表明,反应①②都是可逆反应,都有一定的限度,因此反应①中的碳和反应②中的CO 不能完全转化,致使焦炭的实际用量远远高于按照化学方程式计算所需要的量。 答案:D 4.(2013·广东珠海高一检测)一定温度下,反应N2(g)+3H2(g)2NH3(g)达到化学平衡状态的标志是() A.N2、H2和NH3的质量分数不再改变 B.c(N2)∶c(H2)∶c(NH3)=1∶3∶2 C.N2与H2的物质的量之和是NH3的物质的量的2倍 D.单位时间里每生成1 mol N2,同时消耗2 mol NH3 解析:化学平衡状态标志的实质是v正=v逆≠0,体现在各组分的浓度(或质量分数)不再改变,而与各组分的浓度比例无关。D中,单位时间里每生成1 mol N2,同时生成2 mol NH3,就达到平衡状态。 答案:A 5.在一密闭容器中进行反应:2SO2(g)+O2(g)2SO3(g),已知反应过程中某一时刻SO2、O2、

高中化学 2.4 化学反应条件的优化—工业合成氨习题 鲁科版选修4(1)

第4节化学反应条件的优化—工业合成氨 1.有关合成氨工业的说法中,正确的是( ) A.从合成塔出来的混合气体,其中NH3只占15%,所以生产氨的工厂的效率都很低 B.由于氨易液化,N2、H2在实际生产中是循环使用,所以总体来说氨的产率很高 C.合成氨工业的反应温度控制在500 ℃,目的是使化学平衡向正反应方向移动 D.合成氨厂采用的压强是2×107~5×107 Pa,因为该压强下铁触媒的活性最大 解析:合成氨的反应在适宜的生产条件下达到平衡时,原料的转化率并不高,但生成的NH3分离出后,再将未反应的N2、H2循环利用,这样处理后,可使生产氨的产率都较高,故A 项错误,B项正确;合成氨工业选择500 ℃左右的温度,是综合了多方面的因素确定的,因 合成氨的反应是放热反应,低温才有利于平衡向正反应方向移动,故C项错误;无论从反应 速率还是化学平衡考虑,高压更有利于合成氨,但压强太大,对设备、动力的要求更高,基 于此选择了2×107~5×107 Pa的高压,催化剂活性最大时的温度是500 ℃,故D项错误。 答案:B 2.工业合成氨的反应是在500 ℃左右进行的,这主要是因为( ) A.500 ℃时此反应速率最快 B.500 ℃时NH3的平衡浓度最大 C.500 ℃时N2的转化率最高 D.500 ℃时该反应的催化剂活性最大 解析:工业合成氨反应采用500 ℃的温度,有三个方面的原因:①有较高的反应速率; ②反应物有较大的转化率;③催化剂的活性最大。 答案:D 3.合成氨时,既要使合成氨的产率增大,又要使反应速率增快,不可采取的方法是( ) A.补充N2B.升高温度 C.增大压强 D.分离出NH3 解析:补充N2、增大压强既能加快反应速率,又能促进平衡向生成氨的大向移动;分离 出NH3,能使平衡向生成氨的方向移动,反应速率是提高的;升高温度能加快反应速率,但 不利于氨的生成。 答案:B 4.(双选题)合成氨工业对国民经济和社会发展具有重要的意义。对于密闭容器中的反应:N2(g)+3H2(g)2NH3(g),在673 K、30 MPa下n(NH3)和n(H2)随时间变化的关系如图 所示。下列叙述正确的是( ) ?

工业合成氨资料讲解

1. 合成氨工业 (1)简要流程 (2)原料气的制取 N2:将空气液化、蒸发分离出N2或将空气中的O2与碳作用生成CO2,除去CO2后得N2。 H2:用水和燃料(煤、焦炭、石油、天然气)在高温下制取。用煤和水制H2的主要反应为: (3)制得的H2、N2需净化、除杂质,再用压缩机制高压。 (4)氨的合成:在适宜条件下,在合成塔中进行。 (5)氨的分离:经冷凝使氨液化,将氨分离出来,提高原料的利用率,并将没有完全反应的N2和H2循坏送入合成塔,使之充分利用。 2.合成氨条件的选择 (1)合成氨反应的特点:合成氨反应是一个放热的、气体总体积缩小的可逆反应: (2)合成氨生产的要求: 合成氨工业要求: ○1反应要有较大的反应速率; ○2要最大限度的提高平衡混合物中氨气的含量。 (3)合成氨条件选择的依据: 运用化学反应速率和化学平衡原理的有关知识,同时考虑合成氨生产中的动力、材料、设备等因素来选择合成氨的适宜生产条件。 反应条件对化学反应速 率的影响对平衡混合物中 NH3的含量的影响 合成氨条件的选择 增大压强有利于增大化 学反应速率有利于提高平衡混 合物中NH3的产量 压强增大,有利于氨的合成,但需要的动力大,对材料、设备等的要 求高,因此,工业上一般采用 20MPa—50MPa的压强 升高温度有利于增大化 学反应速率不利于提高平衡混 合物中NH3的产量 温度升高,化学反应速率增大,但不利于提高平衡混合物中NH3的含 量,因此合成氨时温度要适宜,工业上一般采用500℃左右的温度(因 该温度时,催化剂的活性最强) 使用催化剂有利于增大化 学反应速率 没有影响催化剂的使用不能使平衡发生移动,但能缩短反应达到平衡的时间, 工业上一般选用铁触媒作催化剂,使反应在尽可能低的温度下进行。 ○1温度:500℃左右 ○2压强:20MPa—50MPa ○3催化剂:铁触媒

工业制硫酸合成氨的适宜条件

资源信息表

§化工生产能否做到又快又多(共一课时) [设计思想] 本节教材体现了化学反应速率和勒夏特列原理等理论对工业生产实践的指导作用,同时在运用理论的过程中,也可进一步加深学生对所学理论的理解。 本节课的教学分为两部分:第一部分主要简单了解接触法制硫酸的工业原理及其生产过程。第二部分可作为重点,通过讨论,引导学生充分运用化学反应速率和勒夏特列原理等知识,并考虑合成氨生产中动力、设备、材料等实际情况,合理地选择合成氨适宜的生产条件。此外,在教学中,使学生建立化工生产条件的选择应以提高综合经济效益和减少环境污染为目的的思想。 一.教学目标 1、知识与技能 工业生产上(合成氨、制硫酸)反应条件的选择依据(B) 2、过程与方法 (1)通过制硫酸、合成氨工业生产的学习,认识化学原理在化工生产中的重要应用。 (2)通过制硫酸、合成氨生产中动力、设备等条件的讨论,认识工业生产上反应条件的选择依据。 3、情感态度与价值观 感悟化学原理对生产实践的指导作用,并懂得一定的辩证思维和逻辑思维。 二.教学重点和难点 1、重点 硫酸工业生产过程;选择合成氨适宜的生产条件 2、难点 选择合成氨适宜的生产条件 三.教学用品 多媒体、实物投影仪

四.教学流程 1、流程图 2、流程说明 引入课题: 展现课题,明确化工生产所要关注的问题。 学生活动1:阅读课本62页相关内容。引出硫酸工业生产原理。应用所学知识分析提高二氧化 硫转化率的可能途径。 师生互动 1:共同分析表1。 表1 学生活动4表2 归纳小结2:表3——合成氨中理论和实际生产条件的对比。 表3 理论和实际生产条件的对比

《化工工艺学》教案第3章 反应过程和过程优化

第三章反应过程和过程优化 第一节反应过程 化学工业生产过程包括物理过程和化学反应过程,其中化学反应过程往往是生产过程关键。反应过程进行的条件对原料的预处理提出了一定的要求,反应进行的结果决定了反应产物的分离与提纯任务和未反应物的回收利用。一个产品的反应过程的改变将引起整个生产流程的改变。因此,反应过程是化工生产全局中起关键作用的部分。 化学反应过程的分类 1.按化学反应的特性分类 按照反应机理的不同,可以将化学反应分为简单反应和复杂反应两大类。 同一组反应物只生成一种特定生成物的反应叫简单反应,它不存在反应选择性问题。 复杂反应是指由一组特定反应物同时或接续进行几个反应的反应过程。复杂反应的形式很多,主要有平行反应、连串反应、平行一连串反应和共轭反应等。 根据反应的可逆与否,化学反应可分为可逆反应和不可逆反应两类。不可逆反应能进行到底,反应物几乎全部转变为产物。可逆反应则受化学平衡的限制,反应只能进行到一定程度,反应产物需要分离和提纯,未反应物应该回收和循环使用。 从化学动力学的角度,可按反应分子数和反应级数区分化学反应。有单分子反应、双分子反应和个别的三分子反应;有零级反应、一级反应、二级反应和分数级反应等。 根据反应过程的热效应,化学反应可分为吸热反应和放热反应两大类。由于两类反应热特性不同,所以,反应过程要求的温度条件完全不同,使用的反应器类型也不同。 按反应物系的相态,可将化学反应分为均相反应和非均相反应。前者指反应组分(包括反应物、产物和催化剂)在反应过程中始终处于同一相态的反应;后者是指反应组分在反左过程中处于两相或三相状态的反应。 2.按反应过程进行的条件分类. 按照过程的温度条件可将反应过程划分为等温过程、绝热过程和非绝热变温过程。由于反应过程总是伴随着一定的热量变化,并且反应器和外界常有热交换和热损失,所以严格等温过程和绝热过程都是不存在的。如果装置在保温良好的情况下操作,那么过程接近绝热。在某些场合,又分为低温、常温和高温过程。 就压力状况可将反应过程分为常压、负压和加压过程。加压过程根据压力的高低又分高压、中压和低压过程。 根据操作方式的不同,化学反应过程可分为间歇过程、连续过程和半连续过程。这是分类方法中最常用和最重要的一种。 第二节反应器的基本研究 在工业上,实现化学反应的装置称为反应器。化学反应器是化工生产的核心设备,通专应满足下列要求: (1)反应器要有足够的反应体积,以保证反应物在反应器中有充分的反应时间,达到短定的转化率和产品质量指标: (2)反应器的结构要保证反应物之间,反应物与催化剂之间的良好接触。 (3)反应器要保证及时有效地输入或引出热量,以使反应过程在最适宜的操作温度T 进行。 (4)反应器要有足够的机械强度和耐腐蚀能力,以保证反应过程安全可靠,经济耐用. (5)反应器要尽量做到易操作、易控制、易制造、易安装、易维护检修。

合成氨工业发展史

合成氨工业发展史 一、人口增加与粮食需求 农业出现在12000年以前,是人类企图用增加食物供给来增强自己生存的开始。那时的人口约1500万。在2000 年前,由于农业的发展使人口增加到2.5亿。到1650年,人口又增长一倍,达到5亿。然后,到1850年世界人口就翻了一番,高达10亿,这段历程仅仅花了200 年时间。80 年后的1930年,人口超过了20亿。这种增长速度还未减缓,到1985年地球上供养的人数已达50亿。如果每年以1985年人口的2%水平继续增长下去的话,到2020年的世界人口将是100亿左右。因此限制人口的增长势在必行。目前,人口自然增长率在世界范围内正开始下降,据美国华盛顿人口局(1997年):2000年全球人口将由目前的58 亿增至61 亿,2025 年将达68 亿。人口局称,人口增长最快的是全球最贫困的国家。1996 年全球58 亿人中发展中国家的人口占了47 亿,占全球人口总增长率的98%。中国人口增长的形势也不容乐观。根据国家统计局的统计,中国人口已于1995年2 月15 日达到12亿。据预测,到2000 年中国人口将突破13.5亿。 显然,人类将面临日益严重的问题是给自己提供充足的食物和营养,以及从根本上限制人口增长。估计,到20 世纪末,严重营养不良的人数将达6.5 亿。解决问题的出路,必然需要科学的帮助,化学看来是最重要的学科之一。它之所以重要,首先是因为它能增加食物供给,其次它能给那些有意限制人口增长的人提供可靠的帮助。 在历史上,化学曾在扩大世界粮食供应过程中起过关键作用。这就是合成氨的发明和现代农药的使用,以及它们的工业化。 二、合成氨工业发展史 20 世纪初化学家们所面临的突出问题之一,是如何为大规模利用大气中氮找到一种实用的途径。氮化合物是肥料和炸药所必不可少的。但在当时,这种化合物的质量最优和最大来源是智利硝石。但智利地处南美而且远离世界工业中心;可是全世界无论何处,大气的五分之四都是氮。如果有人能学会大规模地、廉价地把单质的氮转化为化合物的形式,那么,氮是取之不尽、用之不竭的。 利用氮气与氢气直接合成氨的工业生产曾是一个较难的课题。合成氨从实验室研究到实现工业生产,大约经历了150年。直至1909年,德国物理化学家F ·哈伯(Fritz Haber,1868—1934)用锇催化剂将氮气与氢气在17.5MPa~20MPa和500℃~600℃下直接合成,反应器出口得到6%的氨,并于卡尔斯鲁厄大学建立一个每小时80g合成氨的试验装置。但是,在高压、高温及催化剂存在的条件下,氮氢混合气每次通过反应器仅有一小部分转化为氨。为此,哈伯又提出将未参与反应的气体返回反应器的循环方法。这一工艺被德国巴登苯胺纯碱公司所接受和采用。由于金属锇稀少、价格昂贵,问题又转向寻找合适的催化剂。该公司在德国化学家A ·米塔斯提议下,于1912 年用2500 种不同的催化剂进行了6500 次试验,并终于研制成功含有钾、铝氧化物作助催化剂的价廉易得的铁催化剂。而在工业化过程中碰到的一些难题,如高温下氢气对钢材的腐蚀、碳钢制的氨合成反应器寿命仅有80h 以及合成氨用氮氢混合气的制造方法,都被该以司的工程师 C ·博施(Carl Bosch,1874—1940)所解决。此时,德国皇帝威廉二世准备发动战争,急需大量炸药,而由氨制得的硝酸是生产炸药的理想原料,于是巴登苯胺纯碱公司于1912年在德国奥堡建成世界上第一座日产30t合成氨的装置,1913年9月9 日开始运转,氨产量很快达到了设计能力。人们称这种合成氨法为哈伯-博施法,它标志着工业上实现高压催化反应的第一个里程碑。由于哈伯和博施的突出贡献,他们分别获得1918、1931年度诺贝尔化学奖金。其他国家根据德国发表的论文也进行了研究,并在哈伯-博施法的基础上作了一些改进,先后开发了合成压力从低压到高压的很多其他方法(表18-1)。

化学反应顺序详解

化学反应顺序 在某体系中加入(或通入)某物质后,若发生的化学反应(或离子反应)有多个,则往往有的先反应,有的后反应,即有其自然规律。下面就体系中发生非氧化还原反应和氧化还原反应两方面反应的先后顺序进行探究。 一、非氧化还原反应的先后顺序 (一)在含A、B、C的物质中加入物质D,且D与A、B、C均反应,而B、C的生成物均与A反应,C的生成物与B反应,则反应的顺序为:A先反应,然后B反应,最后C反应。 例1、在含大量H+、Al3+、NH4+的溶液中逐滴加入NaOH溶液,判断H+、Al3+、NH4+与NaOH溶液反应的先后顺序。[解析]H+与OH-反应生成H2O,Al3+与OH-先生成Al(OH)3进而生成AlO2-,NH4+与OH-反应生成NH3·H2O。而Al(OH)3、AlO2-或NH3·H2O与H+要反应,NH3·H2O与Al3+要反应。 综上所述,此体系中发生化学反应的顺序为H+先反应(第一阶段),接着Al3+反应生成Al(OH)3(第二阶段),再接着是NH4+反应(第三阶段),最后是Al(OH)3与OH-反应生成AlO2-和水(第四阶段)。 即:第一阶段:H++OH-=H2O 第二阶段:Al3++3OH-=Al(OH)3↓ 第三阶段:NH4++OH-=NH3·H2O 第四阶段:Al(OH)3+OH-=AlO2-+2H2O 例2、在Na2CO3、NaHCO3的混合溶液中逐渐加入盐酸,判断CO32-、HCO3-与盐酸反应的先后顺序。[解析]CO32-与H+反应先生成HCO3-进而生成H2O和CO2,HCO3-与H+反应生成H2O和CO2。而H2O、CO2要与CO32-反应生成HCO3-。综上所述,此体系发生的化学反应先后顺序为CO32-先与H+生成HCO3-第一阶段),然后HCO3-与H+反应生成H2O和CO2(第二阶段)。 即:第一阶段:CO32-+H+=HCO3-第二阶段:HCO3-+H+=H2O+CO2↑例3、在KOH、Ca(OH)2的混合溶液中逐渐通入CO2气体,判断此过程发生化学反应的先后顺序。[解析]CO2与OH-反应分两步进行。 即CO2+2OH-=CO32-+H2O CO2+H2O+CO32-=2HCO3-

鲁科版高中化学选修四第4节化学反应条件的优化—工业合成氨

化学·选修/化学反应原理(鲁科版) 第4节化学反应条件的优化—工业合成氨 1.有关合成氨工业的说法中,正确的是( ) A.从合成塔出来的混合气体,其中NH3只占15%,所以生产氨的工厂的效率都很低 B.由于氨易液化,N2、H2在实际生产中是循环使用,所以总体来说氨的产率很高 C.合成氨工业的反应温度控制在500 ℃,目的是使化学平衡向正反应方向移动 D.合成氨厂采用的压强是2×107~5×107 Pa,因为该压强下铁触媒的活性最大 解析:合成氨的反应在适宜的生产条件下达到平衡时,原料的转化率并不高,但生成的NH3分离出后,再将未反应的N2、H2循环利用,这样处理后,可使生产氨的产率都较高,故A项错误,B项正确;合成氨工业选择500 ℃左右的温度,是综合了多方面的因素确定的,因合成氨的反应是放热反应,低温才有利于平衡向正反应方向移动,故C项错误;无论从反应速率还是化学平衡考虑,高压更有利于合成氨,但压强太大,对设备、动力的要求更高,基于此选择了2×107~5×107 Pa的高压,催化剂活性最大时的温度是500 ℃,故D项错误。 答案:B 2.工业合成氨的反应是在500 ℃左右进行的,这主要是因为( ) A.500 ℃时此反应速率最快 B.500 ℃时NH3的平衡浓度最大

C.500 ℃时N2的转化率最高 D.500 ℃时该反应的催化剂活性最大 解析:工业合成氨反应采用500 ℃的温度,有三个方面的原因:①有较高的反应速率;②反应物有较大的转化率; ③催化剂的活性最大。 答案:D 3.合成氨时,既要使合成氨的产率增大,又要使反应速率增快,不可采取的方法是( ) A.补充N2B.升高温度 C.增大压强 D.分离出NH3 解析:补充N2、增大压强既能加快反应速率,又能促进平衡向生成氨的大向移动;分离出NH3,能使平衡向生成氨的方向移动,反应速率是提高的;升高温度能加快反应速率,但不利于氨的生成。 答案:B 4.(双选题)合成氨工业对国民经济和社会发展具有重要的意义。对于密闭容器中的反应:N2(g)+ ? 3H2(g)2NH3(g),在673 K、30 MPa下n(NH3)和n(H2)随时间变化的关系如图所示。下列叙述正确的是( )

合成氨条件的选择(一)

第四节合成氨条件的选择(一) 教学目标: 使学生理解合成氨的化学原理,并能应用化学反应速率和化学平衡理论指导合成氨条件的选择,从而培养学生分析问题、解决问题的能力。 通过本节课的教学,让学生明确工业生产中生产条件的选择。 教学设想: 课本通过对合成氨反应特点的分析,引导学生通过P49的两个讨论问题,让学生结合反应速率和平衡移动原理对合成氨条件的选择。接下来指出工业生产中由于条件的限制,分析工业生产中合成氨的具体条件。应该说,课本中已经体现一定的探究教学思想。为此,教学过程中把教学模式定位在引导学生探究模式上(即采取“创设情景——提出问题——探讨研究——归纳总结”程序),以培养学生分析问题、解决问题的能力。 教学过程: 第一步、复习回顾 通过以下三个问题的回顾,激活学生原有认知结构中的知识。问题: 1、写出工业上合成氨的反应; 2、回顾氮气的化学性质; 3、简单回顾外界条件对化学反应速率、化学平衡的影响。 第二步、引导探究 首先,引导学生分析合成氨反应的特点(可逆、体积减小、正反应放热、反应较难进行——因为氮气很稳定)。 其次、提出问题:“假设聘你为某合成氨工厂的技术顾问,你将为提高生产效益提供那些参考意见?”(学生也许会从不同角度展开讨论,教师应有意识的把学生限定在加速合成氨反应速率和提高产率两个方面)。 第三、让学生变讨论边填写下列表格。 第五、提出问题、引导探究 问题1、从反应速率的角度,反应要求在高温下进行有利于加快反应速率;从化学平衡的角度,反应要求在低温度下进行有利于平衡右移。如何解决这一矛盾? 问题2、资料表明,合成氨工业生产中,采用的条件一般是“20~50MPa、500℃、铁触媒”。如何理解这一反应条件的选择?

化学反应条件的优化——工业合成氨(习题)

化学反应条件的优化——工业合成氨 (习题) 8.在密闭容器中进行合成氨的反应,达到平衡后,将体系中各物质的浓度增大 到原来的2倍,则产生的结果是() ①平衡不移动②平衡向正反应方向移动③v 正、v 逆 都增大 ④平衡向逆反应方向移动⑤NH3的百分含量增加 A.①③B.①②③C.③④D.②③⑤ 9.对于可逆反应N2(g)+3H2(g)2NH3(g) △H<0,下列研究目的与图示相符的 是() A.B. C.D. 10.关于工业合成氨的叙述中错误的是() A.在动力、设备、材料允许下,反应尽可能在高压下进行 B.温度越高越有利于工业合成氨 C.在工业合成氨中N2、H2的循环利用可提高其利用率,降低成本 D.及时从反应体系中分离出氨气,有利于平衡向正反应方 向移动 11.在合成氨工业中,为增加NH3的日产量,下列变化过程不能使平衡向右移动 的是() ①不断将NH3分离出来 ②使用催化剂 ③采用700K左右的高温而不是常温 ④采用2×107~5×107Pa的压强 A.①②B.②③C.①④D.③④ 12.哈伯发明了低成本合成大量氨的方法,流程图中为提高原料转化率而采取的 措施是()

A.①②③B.①③⑤C.②④⑤D.②③④ 13.工业制硝酸需经过下面两个可逆反应:①2NO+O22 △H<0;②3NO2+H23+NO △H<0。若要生产较大浓度的硝酸,可采取的措施是() A.高温低压B.高温高压 C.低温低压D.低温高压 14.合成氨工业中,原料气(N2、H2及少量CO、NH3的混合气) 在进入合成塔前常用醋酸二氨合铜溶液来吸收原料气中的CO,其反应是:Cu(NH3)2Ac+CO+NH3)3]Ac?CO△H<0。回答下列问题: (1)必须除去原料气中的CO的原因是_________________。 (2)醋酸二氨合铜溶液吸收CO的适宜条件是___________。 (3)吸收CO后的醋酸二氨合铜经过适当的处理又可再生, 恢复吸收CO的能力以供循环使用。醋酸二氨合铜再生 的适宜条件应是____________________。 15.表中实验数据是合成氨反应N2(g)+3H23(g)在不同温度和压强下,平 衡混合物中氨的含量的变化情况[起始时 n(N2):n(H2 0.1MPa 10MPa 30MPa 60MPa 100MPa 200℃15.3% 81.2% 89.9% 95.7% 98.8% 300℃ 2.6% 52.9% 71.0% 84.3% 92.6% (1)比较200℃、300℃时的数据,可判断升高温度,平衡 将_________移动(填“正向”或“逆向),正反应为_________反应(填 “吸热”或“放热)。 (2)200℃、100MPa时,平衡混合物中氨的含量已达98.8%,如果继续增大压强,______(填“能”或“不能”)使平衡混合物中氨的含量等于 1,理由是______________ _____________________________________________。 (3)欲使平衡混合物中氨的含量为71.0%,则选择的反应条件应为__________________。 (4)欲使平衡混合物中氨的含量增大,则可采取的措施有 ___________________________(写两条即可)。 【参考答案】 1. D 2. C 3. B

高考化学知识点讲解考点30合成氨条件的选择

考点30合成氨条件的选择 1.复习重点 1.如何应用化学反应速率和化学平衡原理,选择合成氨的适宜条件。 2.了解应用化学原理选择化工生产条件的思路和方法。 2.难点聚焦 1.合成氨条件的选择 工业上用N 2和H 2合成氨: N 2+3H 2 2NH 3+Q 从反应速率和化学平衡两方面看,选择什么样的操作条件才有利于提高生产效率和降低成本呢? 从速率看,温度高、压强大(即N 2、H 2浓度大)都会提高反应速率; 从化学平衡看,温度低、压强大都有利于提高N 2和H 2的转化率。 可见,压强增大,从反应速率和化学平衡看都是有利于合成氨的。但从生产实际考虑,压强越大,需要的动力越大,对材料的强度和设备的制造要求越高,将使成本增大。故一般合成氨厂采用的压强是20~50MPa 帕斯卡。 而温度升高,有利于反应速率但不利于N 2和H 2的转化率。 如何在较低的温度下保持较大转化率的情况下,尽可能加快反应速率呢?选用合适的催化剂能达到这个目的。那么,较低的温度是低到什么限度呢?不能低于所用催化剂的活性温度。目前使用的催化剂是以铁为主体的多成分催化剂——又称铁触媒。其活性温度为450℃~550℃,即温度应在450~550℃为宜。将来如制出活性温度更低、活性也很在的新型催化剂时,合成氨使用的温度当然比现在要低,转化率就能更高了。 选择适宜的条件:根据N 2+3H 2 2NH 3+Q 这一反应的特点,运用化学反应速 率和化学平衡的理论来选择适宜条件。该反应为可逆、体积减小、正反应为放热等特点。 (1)适宜的压强:为何强调适宜?压强越大、有利于NH 3的合成,但太大,所需动力大,材料强度高,设备制造要求高,成本提高,选择2×107~5×107Pa 压强。 思考:工业上生产H 2SO 4:2SO 2(g)+O 2(g) 2SO 3(g)为何不采用加压方法?(因为在常压下SO 2的转化率已达91%,不需要再加压) (2)适宜的温度:温度越低越有利于NH 3的合成,为何还要选择5000C 高温?因为温度越低,反应速率越小,达平衡时间长,单位时间产量低,另外5000C 时,催化剂活性最大。 (3)使用催化剂 (4)及时分离出NH 3,并不断补充N 2和H 2(N 2要过量,提高成本较高的H 2转化率) 小结:合成氨的适宜条件: 压强:20~50MPa 帕斯卡 温度:500℃左右 催化剂:铁触媒 2.合成氨工业简述 1.原料气的制备、净化 ① 制N 2: 物理方法: 空气 液态空气 N 2 化学方法: 空气 CO 2+N 2 N 2 ②制H 2: 水蒸气 CO+H 2 CO 2+H 2 H 2 反应方程式为: C+H 2O (g )==== CO+H 2;CO+H 2O (g )==== CO 2+H 2 压缩 蒸发 炭 赤热炭 H 2O 催化剂 (去CO 2) 燃烧 (去CO 2) 催化剂 △ △

工业合成氨发展史

氨是一种制造化肥和工业用途众多的基本化工原料。随着农业发展和军工生产的需要,20世纪初先后开发并实现了氨的工业生产。从氰化法演变到合成氨法以后,近30年来,原料不断改变,余热逐渐利用,单系列装置迅速扩大,推动了化学工业有关部门的发展以及化学工程进一步形成,也带动了燃料化工中新的能源和资源的开发。 早期氰化法1898年,德国 A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: Ca(CN)2+3H2O─→2NH3+CaCO3 1905年,德国氮肥公司建成世界上第一座生产氰氨化钙的工厂,这种制氨方法称为氰化法。 第一次世界大战期 间,德国、美国主要 采用该法生产氨,满 足了军工生产的需 要。氰化法固定每吨 氮的总能耗为153GJ, 由于成本过高,到30 年代被淘汰。 合成氨法利 用氮气与氢气直接合 成氨的工业生产曾是 一个较难的课题。合 成氨从实验室研究到实现工业生产,大约经历了150年。直至1909年,德国物理化学家F.哈伯用锇催化剂将氮气与氢气在17.5~20MPa和500~600℃下直接合成,反应器出口得到6%的氨,并于卡尔斯鲁厄大学建立一个每小时80g合成氨的试验装置。 但是,在高压、高温及催化剂存在的条件下,氮氢混合气每次通过反应器仅有一小部分转化为氨。为此,哈伯又提出将未参与反应的气体返回反应器的循环方法。这一工艺被德国巴登苯胺纯碱公司所接受和采用。由于金属锇稀少、价格昂贵,问题又转向寻找合适的催化剂。该公司在德国化学家A.米塔斯提议下,于1912年用2500种不同的催化剂进行了6500次试验,并终于研制成功含有钾、铝氧化物作助催化剂的价廉易得的铁催化剂。而在工业化过程中碰到的一些难题,如高温下氢气对钢材的腐蚀、碳钢制的氨合成反应器寿命仅有80h以及合成氨用氮氢混合气的制造方法,都被该公司的工程师 C.博施所解决。此时,德国国王威廉二世准备发动战争,急需大量炸药,而由氨制得的硝酸是生产炸药的理想原料,于是巴登苯胺纯碱公司于1912年在德国奥堡建成世界上第一座日产30t合成氨的装置,1913年9月9日开始运转,氨产量很快达到了设计能力。人们称这种合成氨法为哈伯-博施法,它标志着工业上实现高压催化反应的第一个里程碑。由于哈伯和博施的突出贡献,他们分别获得1918、1931年度诺贝尔化学奖。其他国家根据德国发表的论文也进行了研究,并在哈伯-博施法的基础上作了一些改进,先后开发了合成压力从低压到高压的很多其他方法。

化学反应条件的优化——工业合成氨(讲义及答案)

化学反应条件的优化——工业合成氨 (讲义) 一、知识点睛 1.工业合成氨反应的限度 (1)反应原理 _________________________________ 已知298 K时,△H = -92.2 kJ·mol-1 △S = -198.2 J·mol-1·K-1(2)反应方向的判断 △H-T△S_____0,该反应在常温下_____自发进行。 (3)反应的限度分析 ①______温度、______压强,有利于化学平衡向生成 氨的方向移动; ②在一定温度、压强下,反应物N2、H2的体积比为1:3, 反应达到化学平衡时,混合物中NH3的含量最高。 2.工业合成氨反应的速率 (1)合成氨反应的速率与参加反应的物质的浓度的关系v = k c(N2) c1.5(H2) c-1(NH3) (2)反应的速率分析 ①增大_________的浓度,有利于提高反应速率; ②将_________及时分离,有利于提高反应速率; ③______温度,有利于提高反应速率; ④使用合适的_______,有利于提高反应速率。 3.工业合成氨的适宜条件 (1)合成氨条件选择的理论分析 外界条件有利于提高 反应速率 有利于平衡 正向移动 综合分析 浓度增大反应物浓度 减小生成物浓度 增大反应物浓度 减小生成物浓度 不断补充反应物, 及时分离生成物 催化 剂 加合适催化剂不需要加合适催化剂 温度高温低温兼顾反应速率和化学平衡,考虑催化剂的活性 压强高压高压在设备允许情况下,尽量采用高压

(2)合成氨的实际条件 ①压强:低压1×107 Pa 中压2×107 ~3×107 Pa 高压8.5×107 ~1×108 Pa ②温度:700 K左右 ③催化剂:铁 ④浓度:N2与H2的物质的量之比为1:2.8 4.工业合成氨的主要生产流程 (1)造气 原料气中的N2来自于空气。 原料气中的H2来自于含氢的天然气、煤和炼油产品。 以天然气为原料时,反应可简单表示为: CH4+H2O CO+3H2、CO+H2O CO+H2(2)净化 消除造气过程中夹带的杂质,防止催化剂中毒。 (3)合成氨 这部分包括NH3的分离,N2和H2的循环使用,利用 反应产生的热预热合成气等。 5.工业生产中化学反应条件的优化 需考虑的因素有:化学反应速率快、原料利用率高、催化剂活性高、现实设备允许。 二、精讲精练 1.合成氨反应的特点是() ①可逆②不可逆③正反应放热④正反应吸热 ⑤正反应气体体积增大⑥正反应气体体积减小 A.①③⑤B.②④⑥ C.①③⑥D.④⑤⑥ 2.在合成氨时,可以提高H2转化率的措施是() A.延长反应时间B.充入过量H2 C.充入过量N2D.升高温度

相关文档
相关文档 最新文档