文档库 最新最全的文档下载
当前位置:文档库 › (天津)高考数学分项解析专题06数列理

(天津)高考数学分项解析专题06数列理

(天津)高考数学分项解析专题06数列理
(天津)高考数学分项解析专题06数列理

第六章 数列

一.基础题组

1.【2005天津,理13】在数列{}n a 中,11a =,22a =且()

()*

211n

n n a a n N +-=+-∈则

100S =__________。

【答案】2600

【解析】当n 为奇数时,20n n a a +-=;当n 为偶数时,22n n a a +-= 因此,数列{}n a 的奇数各项都是1,偶数项成公差为2的等差数列

()(

)

()

21001001150502100505026002

2

a a S a a ++=+

=+

=

本题答案填写:2600

2.【2006天津,理7】已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、

1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*

N n ∈),则数列}{n c 的前10项和等于( )

A .55

B .70

C .85

D .100 【答案】C

3.【2006天津,理16】设函数()1

1+=

x x f ,点0A 表示坐标原点,点()()()*

,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++u u r u u u u r u u u u r u u u u u u r L ,n θ是n

a u u r 与i r 的夹角,(其中()0,1=i ρ

),设n n S θθθtan tan tan 21+++=Λ,则n n S ∞

→lim = .

【答案】1

【解析】设函数

()11

+=

x x f ,点0A 表示坐标原点,点()()()*

,N n n f n A n ∈,若向量

01121n n n a A A A A A A -=+++u u r u u u u r u u u u r u u u u u u r L =0n A A u u u u u r ,n θ是n a u u r 与i r 的夹角,1

11tan (1)n n n n n θ+==

+(其

()0,1

=

i

ρ

),设n

n

θ

θtan

tan

tan

2

1

+

+

+

1111

1

1223

(1)1

n n n

+++=-

??++

L

,则n

n

S

lim

=1.

4.【2007天津,理8】设等差数列{}n a的公差d不为0,19

a d

=.若

k

a是

1

a与

2k

a的等比中项,则k=( )

A.2

B.4

C.6

D.8

【答案】B

【解析】

k

a是

1

a与

2k

a的等比中项可得

12

k k

a a a

=?(*),由{}n a为等差数列可得121

(1),(21)

k k

a a k d a a k d

=+-=+-及

1

9

a d

=代入(*)式可得4

k=.故选B

5.【2007天津,理13】设等差数列{}n a的公差d是2,前n项的和为,n S则

22

lim n

n

n

a n

S

→∞

-

=__________.

【答案】3

【解析】

根据题意知

11

(1)222

n

a a n n a

=+-?=+-2

1

,(1)

n

S n n a

=+-代入极限式得

22

11

2

1

34(2)(2)

lim3

(1)

n

n a n a

n n a

→∞

+-+-

=

+-

6.【2008天津,理15】已知数列{}n a中,()*

3

1

,1

1

1

1

N

n

a

a

a

n

n

n

=

-

=

+

+

,则

=

n

n

a

lim .

【答案】

7

6

7.【2009天津,理6】设a >0,b >0.若3是3a

与3b

的等比中项,则

b

a 1

1+的最小值为

) A.8 B.4 C.1 D.4

1

【答案】B

【解析】3是3a 与3b 的等比中项?3a·3b=3?3a+b =3?a+b =1,∵a>0,b >

0,∴4

1212≤?=+≤ab b a ab .∴4

4

11

111=≥=+=+ab ab b a b a . 8.【2010天津,理6】已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,

则数列1n a ??

????

的前5项和为( )

A.

158或5 B.3116或5 C.3116 D. 158

【答案】C

法二:∵S6=S3+a4+a5+a6=S3+S3·q3, ∴9S3=S3+S3·q3得q3=8,解得q =2. ∴{

1n a }是首项为1,公比为1

2

的等比数列. ∴其前5项和为

51

1[1()]

31211612

-=- 9.【2011天津,理4】已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,

n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为

A .-110

B .-90

C .90

D .110 【答案】D.

【解析】∵2,9327-=?=d a a a ,∴)16)(4()12(112

1--=-a a a ,解之得201=a ,

∴110)2(2

9

10201010=-?+

?=s . 10.【2014天津,理11】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若

124,,S S S 成等比数列,则1a 的值为__________.

【答案】12

-. 【解析】

试题分析:依题意得2

214S S S =,∴()()2

1112146a a a -=-,解得112

a =-

. 考点:1.等差数列、等比数列的通项公式;2.等比数列的前n 项和公式.

二.能力题组

1.【2005天津,理18】已知:()

1221*,0,0n n n n n n u a a b a b ab b n N a b ---=+++++∈>>L 。 (Ⅰ)当a = b 时,求数列{n a }的前n 项和n S ; (Ⅱ)求1

lim

n

n n u u →∞-。

【答案】(Ⅰ)若1a ≠, ()()()

21221221n n n n a n a a a S a +++-+-+=-,若1a =,则()32n

n n S += (Ⅱ)当1q <时,,1lim n n n u a u →∞

-=,当1q >时, 1

lim n n n u

b u →∞-=

【解析】解:(I )当a b =时,()1n

n u n a =+,它的前n 项和 ()232341n

n S a a a n a =+++++L ①

①两边同时乘以a ,得

()2341

2341n n aS a a a n a +=+++++L ②

① - ②,得:

()()231

121n n n a S a a a a n a +-=++++-+L

若1a ≠,则:()()()

11111n n n a a a S n a a a

+--=

-++-

得:()

()

()()()()

1

2122

2

11122111n n n n n a a a n a n a n a a a S a

a a +++--++-+-+=

+

=--- 若1a =,则()()32312

n n n S n n +=+++++=

L

2.【2006天津,理21】已知数列{}{}n n y x ,满足2,12121====y y x x ,并且

1

111,-+-+≥=n n n n n n n n y y

y y x x x x λλ(λ为非零参数,Λ,4,3,2=n ). (1)若531,,x x x 成等比数列,求参数λ的值; (2)当0>λ时,证明

()

*11N n y x y x n

n

n n ∈≤++; 当1>λ时,证明

()

*11332222111

N n y x y x y x y x y x y x n n n n ∈-<--++--+--++λλ

Λ.

【答案】 (1) 1.λ=±(2)(I )详见解析,(II )详见解析

【解析】(I )解:由已知121==x x ,且

..,

653

44534233431223λλλλλλ=?==?==?=x x x

x x x x x x x x x x x x 若1x 、3x 、5x 成等比数列,则2

263

15,.0, 1.x x x λλλλ==≠=±即而解得

(III )证明:当1>λ时,由(II )可知).(1*

N n x y n n ∈≥>

又由(II )),(*

11N n y x y x n n n n ∈<++则 ,111n

n n n n n x x y x x y -≥-+++ 从而

).(*11

11N n x x x y x y n n

n n n n n ∈=≥---+++λ 因此

.1

1

1)1

(1)1

(1111133222211-<

-

-=

+++≤--++--+---++λλλ

λ

λ

λn

n n n n n y x y x y x y x y x y x ΛΛ

3.【2012天津,理18】已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.

(1)求数列{a n }与{b n }的通项公式;

(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *

,证明T n +12=-2a n +10b n (n ∈N *

). 【答案】(1) a n =3n -1,b n =2n , (2) 详见解析

【解析】解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得

a 4=2+3d ,

b 4=2q 3,S 4=8+6d .

由条件,得方程组33

23227,86210,

d q d q ?++=?+-=?解得3,

2.d q =??=? 所以a n =3n -1,b n =2n

,n ∈N *

(2)证明:(方法一) 由(1)得

T n =2a n +22a n -1+23a n -2+…+2n a 1,①

2T n =22

a n +23

a n -1+…+2n a 2+2n +1

a 1.②

由②-①,得

T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2

=112(12)12

n ---+2n +2-6n +2=10×2n -6n -10.

而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n

-6n -10,故T n +12=-2a n +10b n ,n ∈N *

(方法二:数学归纳法)

①当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立;

4.【2013天津,理19】已知首项为

3

2

的等比数列{a n }不是..递减数列,其前n 项和为S n (n ∈N *

),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.

(1)求数列{a n }的通项公式; (2)设T n =1n n

S S -

(n ∈N *

),求数列{T n }的最大项的值与最小项的值. 【答案】(Ⅰ)1

3(1)

2n n n

a -=-?

;(Ⅱ)最大项的值为56,最小项的值为7

12

-. 【解析】解:(1)设等比数列{an}的公比为q ,

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高考理科数学专题复习题型数列

第8讲数列 [考情分析]数列为每年高考必考内容之一,考查热点主要有三个方面:(1)对等差、等比数列基本量和性质的考查,常以客观题的形式出现,考查利用通项公式、前n项和公式建立方程(组)求解,利用性质解决有关计算问题,属于中、低档题;(2)对数列通项公式的考查;(3)对数列求和及其简单应用的考查,主、客观题均会出现,常以等差、等比数列为载体,考查数列的通项、求和,难度中等. 热点题型分析 热点1等差、等比数列的基本运算及性质 1.等差(比)数列基本运算的解题策略 (1)设基本量a1和公差d(公比q); (2)列、解方程(组):把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,以减少运算量. 2.等差(比)数列性质问题的求解策略 (1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解; (2)牢固掌握等差(比)数列的性质,可分为三类:①通项公式的变形;②等差(比)中项的变形;③前n项和公式的变形.比如:等差数列中,“若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*)”;等比数列中,“若m+n=p+q,则a m·a n=a p·a q(m,n,p,q∈N*)”.

1.已知在公比不为1的等比数列{a n }中,a 2a 4=9,且2a 3为3a 2和a 4的等差中项,设数列{a n }的前n 项积为T n ,则T 8=( ) A.12×37-16 B .310 C.318 D .320 答案 D 解析 由题意得a 2a 4=a 23=9.设等比数列{a n }的公比为q ,由2a 3为3a 2和a 4 的等差中项可得4a 3=3a 2+a 4,即4a 3=3a 3 q +a 3q ,整理得q 2-4q +3=0,由公比 不为1,解得q =3.所以T 8=a 1·a 2·…·a 8=a 81q 28=(a 81q 16 )·q 12=(a 1q 2)8·q 12=a 83· q 12=94×312=320.故选D. 2.(2019·江苏高考)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5 +a 8=0,S 9=27,则S 8的值是________. 答案 16 解析 解法一:由S 9=27?9(a 1+a 9) 2=27?a 1+a 9=6?2a 5=6?2a 1+8d =6 且a 5=3.又a 2a 5+a 8=0?2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1) 2d =16. 解法二:同解法一得a 5=3. 又a 2a 5+a 8=0?3a 2+a 8=0?2a 2+2a 5=0?a 2=-3. ∴d =a 5-a 2 3=2,a 1=a 2-d =-5. 故S 8=8a 1+8×(8-1) 2 d =16.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

10数列 (学生版)

高考文科数学(客观题)考点分类训练<<数列>> 1.等差数列}{n a 中,482=+a a ,则它的前9项和=9S ( ) A .9 B .18 C .36 D .72 2.已知等差数列{n a }中,74 a π = ,则tan(678a a a ++)等于( ) A . B . C .-1 D .1 3.已知正项组成的等差数列{}n a 的前20项的和100,那么615a a ?最大值是( ) A .25 B .50 C .100 D .不存在 4.已知数列{}n a 是等比数列,且251 2,4 a a == ,则12231n n a a a a a a +++???+=( ) A .16(14)n -- B .16(12)n -- C .32(14)3n -- D .32 (12)3 n -- 5.在等比数列{}n a 中,531=+a a ,1042=+a a ,则=7a ( ) A .64 B .32 C .16 D .128 6.已知数列}{n a 的前n 项和n S 满足:*),(N n m S S S m n m n ∈=++且 ==101,6a a 那么( ) A .10 B .60 C .6 D .54 7.以双曲线15 422=-y x 的离心率为首项,以函数()24-=x x f 的零点为公比的等比 数列的前n 项的和=n S ( ) A .()2 3 123--?n B .n 2 3 3- C .3 2321-+n D . 3 234n - 8.已知数列{}n a 的前n 项和为n S ,且21()n n S a n *=-∈N ,则5a =( ) A. 16- B. 16 C. 31 D. 32

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

高考理科数学《数列》题型归纳与训练

高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

数学押题30天之专题三数列(学生版)

2009年高考最后30天抢分必备 专题三 数列 【押题理由】数列在教材中的内容不多,但高考所占分值比重不小,.数列中蕴含中丰富的数学思想方法,故备受命题专家的青睐.数列是一类特殊的函数,是知识的一个交汇点.可以和函数、方程、三角、不等式、解析几何、数学归纳法等相结合出综合解答题. 高考题以两种基本数列为载体,有小题和大题.选择、填空题多考查数列的基础知识和基本性质属于低、中档题;解答题多是综合题,低档题也有,中、高档题居多.这些题目重点考查数列的基本概念、基本公式和基本性质,恰当选择、灵活运用是关键,加强数列的运算是重中之重.因此,押题重点是小题强化双基,大题强化综合,兼顾知识点与方法的覆盖面. 【押题1】在等差数列{}n a 中,若10031004100610074a a a a +++=,则该数列的前2009项的和是( ) A .2007 B .2008 C .2009 D .2010 【押题2】数列{}n a 中,10a >,且满足1 1 3(2)32n n n a a n a --=≥+,则数列{}lg n a 是: ( ) A 递增等差数列 B 递减等差数列 C 递减数列 D 以上都不是 【押题3】数列{}n a 中,13a =,27a =,当n N * ∈时,2n a +等于1n n a a +的个位数,则数 列{}n a 的第2010项是 ( ) A. 1 B. 3 C. 9 D. 7 【押题4】公差不为零的等差数列}{n a 中,022112 73=+-a a a ,数列}{n b 是等比数列, 且 ==8677,b b a b 则( ) A .2 B .4 C .8 D .16 【押题5】已知{n a }是等差数列,57a =,555S =,则过点2(3,)P a ,4(4,)Q a 的直线的斜率为 ( ) A .4 B . 4 1 C .— 4 D .14 - 【押题6】设等比数列{a n }的前n 项和为S n ,若S 10:S 5=1:2,则S 15:S 5=( ) A . 34 B . 23 C . 12 D . 13 【押题7】设函数21123()n n f x a a x a x a x -=++++,1 (0)2 f = ,数列{}n a 满足2*(1)()n f n a n N =∈,则数列{}n a 的通项n a 等于 . 【押题8】已知数点()1,n n a a +在直线10x y -+=上, 11a =,n S 是数列{}n a 的前n 项和,数列()132n n S n S +??? ? ? ?+??? ?的最大值为

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2014年高考数学真题分类汇编理科-数列(理科)

1.(2014 北京理 5)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的( ). A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.(2014 大纲理 10)等比数列{}n a 中,4525a a ==,,则数列{}lg n a 的前8项和等于( ). A .6 B .5 C .4 D .3 3.(2014 福建理 3)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ). A.8 B.10 C.12 D.14 4.(2014 辽宁理 8)设等差数列{}n a 的公差为d ,若数列{}12 n a a 为递减数列,则( ). A .0d < B .0d > C .10a d < D .10a d > 5.(2014 重庆理 2)对任意等比数列{}n a ,下列说法一定正确的是( ). A. 139,,a a a 成等比数列 B. 236,,a a a 成等比数列 C. 248,,a a a 成等比数列 D. 369,,a a a 成等比数列 二、 填空题 1.(2014 安徽理 12)数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = . 2.(2014 北京理 12)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大. 3.(2014 广东理 13)若等比数列{}n a 的各项均为正数,且5 10119122e a a a a +=, 则1220ln ln ln a a a +++= . 4.(2014 江苏理 7)在各项均为正数的等比数列{}n a 中,21a =,8642a a a =+,则6a 的值是 . 5.(2014 天津理 11)设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若 124,,S S S 成等比数列,则1a 的值为__________.

高三数学总复习综合专题数列求和(学生版)

数列求和 概述:先分析数列通项的结构特征,再利用数列通项揭示的规律来求数列的前n 项和,即求和抓通项。 1、直接(或转化)由等差数列、等比数列的求和公式求和 思路:利用下列常用求和公式求和是数列求和的最基本最重要的方法。 ①等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=; ②等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n ; ③)1(211+==∑=n n k S n k n ; ④)12)(1(6112++==∑=n n n k S n k n ; ⑤21 3)]1(21[+==∑=n n k S n k n 。 2、逆序相加法 思路:把数列正着写和倒着写再相加。(即等差数列求和公式的推导过程的推广) 例1:设函数2 22)(+=x x x f 的图象上有两点),(),,(211121y x P y x P ,若)(2121OP OP OP +=,且点P 的横坐标为2 1。 (1)求证:P 点的纵坐标为定值,并求出这个定值; (2)若; 求,),()3()2()1(*n n S N n n n f n f n f n f S ∈+?+++= 3、错位相减法

思路:设数列{}n a 是等差数列,{}n b 是等比数列,则求{}n n b a 的前n 项和n S 可用错位相减法。 例2:在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>。 (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S 。 4、裂项相消法 思路:这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。一般地,数列{}n a 为等差数列,且公差不为 0,首项也不为0,∑∑∑=++==+-?=-=n i i i i i n i n i i i a a d a a d a a 111111)11(1)11(11。 常见的通项分解(裂项)如下: ①)11(1)(1k n n k k n n a n +-?=+=,(当1≠k 时,通项裂项后求和是隔项相消的,注意观察剩余项) 1 11)1(1+-=+=n n n n a n ;(通项裂项后求和是逐项相消的,剩余的是所裂项的首项和末项) ②)1 21121(211)12)(12()2(2+--+=+-=n n n n n a n ; ③]) 2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n 等。 例3:求数列 ???++???++,11 ,,321 ,211 n n 的前n 项和。 补充练习:已知二次函数()y f x =的图象经过坐标原点,其导函数为26)('-=x x f ,数列{}n a 的前n 项

2019年高考理科数学分类汇编:数列(解析版)

题08 数列 1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .2 28n S n n =- D .2 122 n S n n = - 【答案】A 【解析】由题知,415 144302 45d S a a a d ? =+??=???=+=?,解得132a d =-??=?,∴25n a n =-,2 4n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断. 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8 C .4 D .2 【答案】C 【解析】设正数的等比数列{a n }的公比为q ,则23111142 111 15 34a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2 +b ,n *∈N ,则 A . 当101 ,102 b a = > B . 当101 ,104 b a = > C . 当102,10b a =-> D . 当104,10b a =-> 【答案】A 【解析】①当b =0时,取a =0,则0,n a n * =∈N .

专题12 数列-三年(学生版)

专题12数列 1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8 C .4 D .2 2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A .当101,102b a => B .当101,104 b a =>C .当102,10b a =->D .当104,10 b a =->3.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324 ,a a a a <D .1324 ,a a a a >>4.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 5.【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音, 从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为 A f B . C . D .6.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314 a S ==,,则S 4=___________.

高考理科数学试题汇编(含答案)数列大题

(重庆)22.(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()2 1113,0n n n n a a a a a n N λμ+++=++=∈ (1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0 001,2,1,k N k k λμ+= ∈≥=-证明:01 0011 223121 k a k k ++<<+++ 【答案】(1)132n n a -=?;(2)证明见解析. 试题分析:(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈

若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得 10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠. 从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?. (2)由0 1 1k λμ= =-,,数列{}n a 的递推关系式变为 21101 0,n n n n a a a a k +++ -=变形为2101n n n a a a k +??+= ?? ?()N n +∈. 由上式及13a =,归纳可得 12130n n a a a a +=>>>>>>L L 因为22220010000 11111 1 11n n n n n n n a a k k a a k k k a a a k k +-+= = =-+? ++ +,所以对01,2n k =L 求和得() () 00011211k k k a a a a a a ++=+-++-L 01000010200000011111 111111112231313131 k a k k k k a k a k a k k k k k ??=-?+?+++ ? ?+++????>+?+++=+ ? ++++??L L 另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得 00110000102011111 111k k a a k k k k a k a k a +??=-?+?+++ ? ?+++?? L 0000011111 2221212121 k k k k k ??<+ ?+++=+ ?++++??L 综上:01001 12231 21 k a k k ++ <<+ ++ 考点:等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.

2020高考数学理科数列训练题

08高考数学理科数列训练题 1.某数列{}n a 的前四项为 ①1(1)2n n a ??=+-?? ② n a = ③0 n a =?? )(n n 为奇数为偶数)( 其中可作为{}n a 的通项公式的是() A .① B .①② C .②③ D .①②③ 2.设函数()f x 满足()()212 f n n f n ++= ()n N *∈,且()12f =,则()20f =() A .95 B .97 C .105 D .192 3.已知数列中{}n a ,11a =,()111n n n n a a a --=+- ()2,n n N *≥∈,则35a a 的值是() A .1516 B .158 C .34 D .38 4.已知数列{}n a 的首项11a =,且121n n a a -=+ (2)n ≥,则5a 为() A .7 B .15 C .30 D .31 5.已知数列{}n a 是等差数列,且31150a a +=,又413a =,则2a 等于( ) A .1 B .4 C .5 D .6 6.若lg a 、lg b 、lg c 成等差数列,则( ) A .2a c b += B .()1lg lg 2 b a b =+ C .a 、 b 、 c 成等差数列 D .a 、 b 、 c 成等比数列 7.38,524-,748,980- … 一个通项公式是____ 8.已知{}n a 是递增数列,且对任意n N *∈都有2n a n n λ=+恒成立,则实数λ的取值范 围是____ 9.设等差数列{}n a 的公差为2-,且1479750a a a a +++???+=,则36999a a a a +++???+=______. 10.等比数列中{}n a ,公比1q ≠±,200100S =,则 4020 1S q =+______.

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

【三年高考】(2016-2018)数学(理科)真题分类解析:专题14-与数列相关的综合问题(含答案)

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且.若, 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当 时,,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则 但 ,即

,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数 列.已知,,,. (I)求和的通项公式;

(II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力. 4.【2018年江苏卷】设,对1,2,···,n的一个排列,如果当s

天津市高三数学总复习 综合专题 数列 理 (学生版)

数列(理) 考查内容:本小题主要考查等差数列与等比数列的通项公式及其前n 项和公式、 不等式证明等基础知识,考查分类讨论的思想方法,考查运算能力、 推理论证能力及综合分析、解决问题的能力。 1、在数列{}n a 中,11a =,122n n n a a +=+。 (1)设1 2 n n n a b -= 。证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S 。 2、设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=- (1)证明:当2b =时,{} 12n n a n --?是等比数列; (2)求{}n a 的通项公式 3、已知数列{}n a 的首项12 3 a = ,121n n n a a a +=+,1,2,3,n =…。 (1)证明:数列? ?? ?? ?-11n a 是等比数列; (2)数列? ?? ?? ?n a n 的前n 项和n S 。 4、已知数列{}n a 满足:1±≠n a ,2 11=a ,()() 2211213n n a a -=-+,记数列21n n a b -=,221n n n c a a +=-, n N *∈。 (1)证明数列 {}n b 是等比数列; (2)求数列{}n c 的通项公式; (3)是否存在数列{}n c 的不同项k j i c c c ,,,k j i <<,使之成为等差数列?若存在请求出这样的不同项 k j i c c c ,,,k j i <<;若不存在,请说明理由。 5、已知数列{}n a 、{}n b 中,对任何正整数n 都有:

11213212122n n n n n n a b a b a b a b a b n +---+++++=--L 。 (1)若数列{}n a 是首项和公差都是1的等差数列,求证:数列{}n b 是等比数列; (2)若数列{}n b 是等比数列,数列{}n a 是否是等差数列,若是请求出通项公式,若不是请说明理由; (3)若数列{}n a 是等差数列,数列{}n b 是等比数列,求证:1132 n i i i a b =<∑ 。 6、设数列{}n a 满足11a =,22a =,121 (2)3 n n n a a a --= +,(3,4,)n =L 。数列{}n b 满足11,(2,3,)n b b n ==L 是非零整数,且对任意的正整数m 和自然数k ,都有 111m m m k b b b ++-≤+++≤L 。 (1)求数列{}n a 和{}n b 的通项公式; (2)记(1,2,)n n n c na b n ==L ,求数列{}n c 的前n 项和n S 。 7、有n 个首项都是1的等差数列,设第m 个数列的第k 项为mk a , (,1,2,3,,, 3)m k n n =L ≥,公差为m d ,并且123,,,,n n n nn a a a a L 成等差数列。 (1)证明1122m d p d p d =+,n m ≤≤3,12,p p 是m 的多项式,并求12p p +的值; (2)当121, 3d d ==时,将数列{}m d 分组如下:123456789(), (,,), (,,,,),d d d d d d d d d L (每组数的个数构成等差数列),设前m 组中所有数之和为4()(0)m m c c >,求数列{2}m c m d 的前n 项和n S 。 (3)设N 是不超过20的正整数,当n N >时,对于(2)中的n S ,求使得不等式1 (6)50 n n S d ->成立的所有N 的值。 8、数列}{n a 的通项公式为?? ? ? ?-=3sin 3cos 22 2 ππn n n a n ,其前n 项和为n S 。 (1)求n S ; (2)设n n n n S b 4 3?= ,求数列}{n b 的前n 项和n T 。 9、数列}{n a 满足}221221,2,(1cos )sin ,1,2,3,.22 n n n n n a a a a a n ππ+===++=L 满足。

相关文档
相关文档 最新文档