文档库 最新最全的文档下载
当前位置:文档库 › 最新岩土工程监测部分测试题及答案

最新岩土工程监测部分测试题及答案

最新岩土工程监测部分测试题及答案
最新岩土工程监测部分测试题及答案

建筑工程地基基础质量检测人员上岗培训

(岩土工程监测部分测试题及答案)

一、填空题

1、岩土工程监测工作是保证监测质量、优化设计、指导施工提供可靠依据。

2、岩土工程监测工作须做到安全适用、技术先进、经济合理。

3、建筑基坑工程监测应综合考虑基坑工程设计方案、工程地质和水文地质条件、周边环境条件、施工方案等因素。

4、监测工作须制定合理的监测方案、精心组织和实施监测。

5、基坑开挖影响范围是既有建(构)筑物、道路、地下设施、地下管线及地下水等的统称。

6、在建筑基坑施工及使用期限内,为保基坑安全须对建筑基坑及周边环境实施的检查、监控工作。

7、监测报警值为确保基坑工程安全,对监测对象变化所设定的监控值。用以判断监测对象变化是否超出允许的范围、施工是否出现异常。

8、开挖深度超过5m、均应实施基坑工程监测。

9、基坑工程监测的技术要求,主要包括监测项目、测点位置、监测频率和监测报警值等。

10、基坑工程监测应委托具备相应资质的第三方对基坑工程实施现场监测。监测单位应编制监测方案应经建设、设计、监理等单位认可。

11、监测单位应了解委托方和相关单位对监测工作的要求,并进行现场踏勘,搜集、分析和利用已有资料,制定合理的监测方案。

12、监测方案应包括工程概况、监测依据、监测目的、监测项目、测点布置、监测方法等。

13、监测单位应严格实施监测方案,及时分析处理监测数据,并将监测结果和评价及时向委托方及相关单位作信息反馈。

14、

15、当监测数据达到监测报警值时必须立即采取相应的处治措施及时通报委托方及相关单位。

16、基坑工程的现场监测应采用仪器监测与巡视检查相结合的方法。

17、

18、基坑工程整个施工期内,每天应有专人进行巡视检查。

19、巡视检查的检查方法以目测为主,可辅以锤、钎、量尺、放大镜等设备进行。

20、巡视检查应对自然条件、支护结构、施工工况、周边环境、监测设施等的检查情况进行

详细记录。

21、基坑边坡顶部的水平位移和竖向位移监测点应沿基坑周边布置。监测点间距不宜大于20m,每边监测点数目不应少于3个。

22、深层水平位移监测孔宜布置在基坑边坡、围护墙周边的中心处及代表性的部位,数量和间距视具体情况而定,但每边至少应设1个监测孔。

23、锚杆的拉力监测点应选择在受力较大且有代表性的位置,基坑每边跨中部位和地质条件复杂的区域宜布置监测点。每层锚杆的拉力监测点数量应为该层锚杆总数的1~3%,并不应少于3根。

24、建(构)筑物的水平位移监测点应布置在建筑物的墙角、柱基及裂缝的两端,每侧墙体的监测点不应少于3处。

25、围护墙、桩及围檩等内力宜在围护墙、桩钢筋制作时,在主筋上焊接钢筋应力计的预埋方法进行量测。

二、判断题

1、建筑基坑工程监测适用于建(构)筑物的基坑及周边环境监测。对于冻土、膨胀土、湿陷性黄土、老粘土等其他特殊岩土和侵蚀性环境的基坑及周边环境监测,尚应结合当地工程经验应用。(√)

2、建筑基坑工程监测除应符合本规范外,尚应符合国家现行有关标准的规定。(√)

3、建筑基坑工程监测在建筑基坑施工期限内,对建筑基坑及周边环境实施的检查、监控工作。(×)

4、支撑由钢、钢筋混凝土等材料组成,用以承受围护墙所传递的荷载而设置的基坑内支承构件。(√)

5、锚杆一端与挡土墙联结,另一端锚固在土层或岩层中是支撑挡土墙、水、土压力的支挡杆件。(×)

6、冠梁设置在围护墙中部的连梁。(×)

7、监测点直接或间接设置在被监测对象上能反映其变化特征的观测点。(√)

8、监测频率单位时间内的监测次数。(√)

9、监测报警值为确保基坑工程安全,对监测对象变化所设定的监控值。用以判断监测对象

变化是否超出允许的范围、施工是否出现异常。(√)

10、开挖深度超过8m、或开挖深度未超过6m,但现场地质情况和周围环境较复杂的基坑工程均应实施基坑工程监测。(×)

11、提出基坑工程监测的技术要求,主要包括监测项目、测点位置、监测频率和监测报警值

等。(√)

12、基坑工程施工前,应由建设方委托具备相应资质的单位对基坑工程实施现场监测。(×)

13、监测单位编写监测方案前,应了解委托方和相关单位对监测工作的要求,并进行现场踏勘,搜集、分析和利用已有资料,在基坑工程施工前制定合理的监测方案。(√)

14、监测方案应包括工程概况、监测依据、监测目的、监测项目、测点布置、监测方法及精度、监测人员及主要仪器设备、监测频率、监测报警值、异常情况下的监测措施、监测数据的记录制度和处理方法、工序管理及信息反馈制度等。(√)

15、监测单位应严格实施监测方案,及时分析、处理监测数据,并将监测结果和评价及时向委托方及相关单位作信息反馈。当监测数据达到监测报警值时必须立即通报委托方及相关单位。(√)

16、当基坑工程设计或施工有重大变更时,监测单位可考虑调整监测方案。(×)

17、基坑工程监测可影响监测对象的结构安全、但不妨碍其正常使用。(×)

18、基坑工程的现场监测应采用仪器监测与巡视检查相结合的方法。(√)

19、基坑工程的监测项目应抓住关键部位,做到重点观测、项目配套,形成有效的、完整的监测系统。(√)

20、当基坑周围有地铁、隧道或其它对位移(沉降)有特殊要求的建(构)筑物及设施时,具体监测项目应与有关部门或单位协商确定。(√)

21、巡视检查的检查方法以目测为主,可辅以锤、钎、量尺、放大镜等工器具以及摄像、摄影等设备进行。(√)

22、基坑工程监测点的布置应最大程度地反映监测对象的实际状态及其变化趋势,并应满足监控要求。(√)

23、在监测对象内力和变形变化大的代表性部位及周边重点监护部位,监测点应适当加密。(√)

24、基坑边坡顶部的水平位移和竖向位移监测点应沿基坑周边布置,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于30m,每边监测点数目不应少于2个。监测点宜设置在基坑边坡坡顶上。(×)

25、当用测斜仪观测深层水平位移时,设置在围护墙内的测斜管深度不宜大于围护墙的入土深度;(×)

三、选择题

1、编写监测方案前,委托方应向监测单位提供下列资料:

(1)岩土工程勘察成果文件;(2)基坑工程设计说明书及图纸;

(3)基坑工程影响范围内的道路、地下管线;(4)地下设施及周边建筑物的有关资料。

2、监测方案应包括:

(1)工程概况、监测依据、监测目的、监测项目、测点布置、监测方法。

(2)监测人员及主要仪器设备、监测频率。

(3)监测报警值、异常情况下的监测措施。

(4)监测数据的记录制度和处理方法、工序管理及信息反馈制度等。

3、监测单位在现场踏勘、资料收集阶段的工作应包括以下内容:

(1)进一步了解委托方和相关单位的具体要求;

(2)收集工程的岩土工程勘察及气象资料、地下结构和基坑工程的设计资料,

(3)了解施工组织设计(或项目管理规划)和相关施工情况;

(4).收集周围建筑物、道路及地下设施、地下管线的原始和使用现状等资料。

(5)必要时应采用拍照或录像等方法保存有关资料;

4、下列基坑工程的监测方案应进行专门论证:

(1)地质和环境条件很复杂的基坑工程;

(2)邻近重要建(构)筑物和管线,以及历史文物、近代优秀建筑、地铁、隧道等破坏后果很严重的基坑工程;

(3)已发生严重事故,重新组织实施的基坑工程;

(4)采用新技术、新工艺、新材料的一、二级基坑工程;

(5)其他必须论证的基坑工程。

5、监测结束阶段,监测单位应向委托方提供以下资料,并按档案管理规定,组卷归档。

(1). 基坑工程监测方案;

(2). 测点布设、验收记录;

(3). 阶段性监测报告;

(4). 监测总结报告。

6、监测工作的程序,应按下列步骤进行:

(1). 接受委托,现场踏勘,收集资料;

(2). 制定监测方案,并报委托方及相关单位认可;

(3). 现场监测,监测数据的计算、整理、分析及信息反馈;

(4). 提交阶段性监测结果和报告和现场监测工作结束后,提交完整的监测资料。

7、基坑工程现场监测的对象包括:

(1)支护结构及相关的自然环境;

(2)施工工况及基坑底部及周围土体;

(3) 周围建(构)筑物及周围地下管线及地下设施等

(4) 其他应监测的对象。

8、支撑内力监测点的布置应符合的要求:

(1)监测点宜设置在支撑内力较大或在整个支撑系统中起关键作用的杆件上;

(2)每道支撑的内力监测点不应少于3个,各道支撑的监测点位置宜在竖向保持一致;

(3)钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3部位或支撑的端头。钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3部位;

(4)每个监测点截面内传感器的设置数量及布置应满足不同传感器测试要求。

9、围护墙侧向土压力监测点的布置应符合的要求:

(1)监测点应布置在受力、土质条件变化较大或有代表性的部位;

(2)平面布置上基坑每边不宜少于2个测点。在竖向布置上,测点间距宜为2~5m,测点下部宜密;

(3)当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土的中部;

(4)土压力盒应紧贴围护墙布置,宜预设在围护墙的迎土面一侧。

10、建(构)筑物倾斜监测点应符合的要求:

(1)监测点宜布置在建(构)筑物角点、变形缝或抗震缝两侧的承重柱或墙上;

(2)监测点应沿主体顶部、底部对应布设,上、下监测点应布置在同一竖直线上;

(3)当采用铅锤观测法、激光铅直仪观测法时,应保证上、下测点之间具有一定的通视件。

11、建(构)筑物的裂缝监测点应符合的要求:

(1)选择有代表性的裂缝进行布置,

(2)在基坑施工期间当发现新裂缝或原有裂缝有增大趋势时,应及时增设监测点。

(3)每一条裂缝的测点至少设2组,

(4)裂缝的最宽处及裂缝末端宜设置测点。

12、土压力计埋设可采用埋入式或边界式(接触式)。埋设时应符合下列要求:

(1)受力面与所需监测的压力方向垂直并紧贴被监测对象;

(2)埋设过程中应有土压力膜保护措施;

(3)采用钻孔法埋设时,回填应均匀密实,且回填材料宜与周围岩土体一致。

(4)做好完整的埋设记录。

13、当出现下列情况之一时,必须立即报警;若情况比较严重,应立即停止施工。

(1)当监测数据达到报警值;

(2)基坑支护结构或周边土体的位移出现异常情况或基坑出现渗漏、流砂、管涌、隆起或陷落等;

(3)基坑支护结构的支撑或锚杆体系出现过大变形、压屈、断裂、松弛或拔出的迹象;

(4)周边建(构)筑物的结构部分、周边地面出现可能发展的变形裂缝或较严重的突发裂缝;

(5)根据当地工程经验判断,出现其他必须报警的情况。

14、现场的监测资料应符合下列要求:

(1)使用正式的监测记录表格;

(2)监测记录应有相应的工况描述;

(3)监测数据应及时整理;

(4)对监测数据的变化及发展情况应及时分析和评述。

15、阶段性监测报告应包括下列内容:

(1)该监测期相应的工程、气象及周边环境概况;

(2)该监测期的监测项目及测点的布置图;

(3)各项监测数据的整理、统计及监测成果的过程曲线;

(4)各监测项目监测值的变化分析、评价及发展预测;

(5)相关的设计和施工建议。

四、简答题

1、基坑工程施工前,建设方应如何委托监测单位进行前期的准备工作;

答:应由建设方委托具备相应资质的第三方对基坑工程实施现场监测。监测单位应编制监测方案,监测方案应经建设、设计、监理等单位认可,必要时还需与市政道路、地下管线、人防等有关部门协商一致后方可实施。

2、简述监测工作的程序和步骤:

答:1. 接受委托;

2. 现场踏勘,收集资料;

3. 制定监测方案,并报委托方及相关单位认可;

4. 展开前期准备工作,设置监测点、校验设备、仪器;

5. 设备、仪器、元件和监测点验收;

6. 现场监测;

7. 监测数据的计算、整理、分析及信息反馈;

8. 提交阶段性监测结果和报告;

9. 现场监测工作结束后,提交完整的监测资料。

3、监测单位在现场踏勘、资料收集阶段的工作应包括那些内容;

答:(1). 了解委托方和相关单位的具体要求;

(2). 收集工程的岩土工程勘察及气象资料、地下结构和基坑工程的设计资料,

(3) .了解施工组织设计(或项目管理规划)和相关施工情况;

(4). 收集周围建筑物、道路及地下设施、地下管线的原始和使用现状等资料。

(5) .必要时应采用拍照或录像等方法保存有关资料;

5、监测结束阶段,监测单位应向委托方应提供那些资料,并按档案管理规定,组卷归档。

答:(1). 基坑工程监测方案;

(2). 测点布设、验收记录;

(3). 阶段性监测报告;

(4). 监测总结报告。

6、基坑工程现场监测应包括的对象有那些:

答:(1) 支护结构;

(2) 相关的自然环境;

(3) 施工工况;

(4) 地下水状况;

(5) 基坑底部及周围土体;

(6) 周围建(构)筑物;

(7) 周围地下管线及地下设施;

(8) 周围重要的道路;

(9) 其他应监测的对象。

8、基坑工程巡视检查应包括主要内容有那些:

答:(1)支护结构成型质量;

(2)冠梁、支撑、围檩有无裂缝出现;

(3)支撑、立柱有无较大变形;

(4)止水帷幕有无开裂、渗漏;

(5)墙后土体有无沉陷、裂缝及滑移;

(6)基坑有无涌土、流砂、管涌。

(7)地下管道有无破损、泄露情况;

(8)周边建(构)筑物有无裂缝出现;

(9)周边道路(地面)有无裂缝、沉陷;

(10)邻近基坑及建(构)筑物的施工情况。

9、围护墙侧向土压力监测点的布置应符合那些要求:

答:(1) 监测点应布置在受力、土质条件变化较大或有代表性的部位;

(2) 平面布置上基坑每边不宜少于2个测点。在竖向布置上,测点间距宜为2~5m,

测点下部宜密;

(3)当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土的中部;

(4) 土压力盒应紧贴围护墙布置,宜预设在围护墙的迎土面一侧。

10、基坑内地下水位监测点的布置应符合那些要求:

答:(1) 当采用深井降水时,水位监测点宜布置在基坑中央和两相邻降水井的中间部位;

当采用轻型井点、喷射井点降水时,水位监测点宜布置在基坑中央和周边拐角处,

监测点数量视具体情况确定;

(2) 水位监测管的埋置深度(管底标高)应在最低设计水位之下3~5m。对于需要降

低承压水水位的基坑工程,水位监测管埋置深度应满足降水设计要求。

11、基坑外地下水位监测点的布置应符合下列要求:

答:(1) 水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,监测点间距宜为20~50m。相邻建(构)筑物、重要的地下管线或管线密

集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕的外侧约2m处。

(2) 水位监测管的埋置深度(管底标高)应在控制地下水位之下3~5m。对于需要降低

承压水水位的基坑工程,水位监测管埋置深度应满足设计要求;

(3) 回灌井点观测井应设置在回灌井点与被保护对象之间。

12、建(构)筑物的竖向位移监测点布置应符合那些要求:

答:(1) 建(构)筑物四角、沿外墙每10~15m处或每隔2~3根柱基上,且每边不少于3个监测点;

(2) 不同地基或基础的分界处;

(3) 建(构)筑物不同结构的分界处;

(4) 变形缝、抗震缝或严重开裂处的两侧;

(5) 新、旧建筑物或高、低建筑物交接处的两侧;

(6) 烟囱、水塔和大型储仓罐等高耸构筑物基础轴线的对称部位,每一构筑物不得少

于4点。

13、变形测量点分为基准点、工作基点和变形监测点。其布设应符合那些要求:

答:(1) 每个基坑工程至少应有3个稳固可靠的点作为基准点;

(2) 工作基点应选在稳定的位置。在通视条件良好或观测项目较少的情况下,可不设工

作基点,在基准点上直接测定变形监测点;

(3) 施工期间,应采用有效措施,确保基准点和工作基点的正常使用;

(4) 监测期间,应定期检查工作基点的稳定性。

14、测斜管应在基坑开挖1周前埋设,埋设时应符合下列要求:

答:(1) 埋设前应检查测斜管质量,测斜管连接时应保证上、下管段的导槽相互对准顺畅,接头处应密封处理,并注意保证管口的封盖;

(2) 测斜管长度应与围护墙深度一致或不小于所监测土层的深度;当以下部管端作为位

移基准点时,应保证测斜管进入稳定土层2~3m;测斜管与钻孔之间孔隙应填充密实;

(3) 埋设时测斜管应保持竖直无扭转,其中一组导槽方向应与所需测量的方向一致。

15、裂缝监测可采用以下方法:

答(1) 对裂缝宽度监测,可在裂缝两侧贴石膏饼、划平行线或贴埋金属标志等,采用千分尺或游标卡尺等直接量测的方法;也可采用裂缝计、粘贴安装千分表法、摄影量测等方法。

(2) 对裂缝深度量测,当裂缝深度较小时宜采用凿出法和单面接触超声波法监测;深度

较大裂缝宜采用超声波法监测。

16、因围护墙施工、基坑开挖以及降水引起的基坑内外地层位移应按下列条件控制:

答:(1) 不得导致基坑的失稳;

(2)不得影响地下结构的尺寸、形状和地下工程的正常施工;

(3) 对周边已有建(构)筑物引起的变形不得超过相关技术规范的要求;

(4) 不得影响周边道路、地下管线等正常使用;

(5) 满足特殊环境的技术要求。

岩土工程测试与监测技术课后思考题答案

岩土工程测试与监测技术课后思考题答案 Revised at 2 pm on December 25, 2020.

第一章绪论1、论述岩土工程测试和监测的主要内容及其重要性? 答:(1)、岩土工程测试技术一般分为室内试验技术,原位实验技术和现场监测技术等几个个方面。在原位测试方面,地基中的位移场、应力场测试,地下结构表面的土压力测试,地基土的强度特性及变形特性测试等方面将会成为研究的重点,随着总体测试技术的进步,这些传统的难点将会取得突破性进展。 (2)、a.、不论设计理论与方法如何先进、合理,如果测试技术落后,则设计计算所依据的岩土参数无法准确测求,不仅岩土工程设计的先进性无法体现,而且岩土工程的质量与精度也难以保证。所以,测试技术是从根本上保证岩土工程设计的精确性、代表性以及经济合理性的重要手段。b.测试工作是岩土工程中必须进行的关键步骤,它不仅是学科理论研究与发展的基础,而且也为岩土工程实际所必需。c.监测与检测可以保证工程的施工质量和安全,提高工程效益。在岩土工程服务于工程建设的全过程中,现场监测与检测是一个重要的环节,可以使工程师们对上部结构与下部岩土地基共同作用的性状及施工和建筑物运营过程的认识在理论和实践上更加完善。依据监测结果,利用反演分析的方法,求出能使理论分析与实测基本一致的工程参数。岩土工程测试包括室内土工试验、岩体力学实验、原位测试、原型实验和现场监测等,在整个岩土工程中占有特殊而重要的作用。 第二章测试技术基础知识 1、简述传感器的定义与组成。 答:传感器是指能感受规定的物理量,并按一定规律转换成可用输入信号的器件或装置。

传感器通常由:敏感元件、转换元件、测试电路三部分组成。 2、传感器的静态特性的主要技术参数指标有哪些? 答:主要有:灵敏度、线性度(直线度)、回程误差(迟滞性)。 3、钢弦式传感器的工作原理是什么? 答:工作原理:是由敏感元件(一种金属丝弦)与传感器受力部件连接固定,利用钢弦的自振频率与钢弦所受到的外加张力关系式测得各种物理量。 4、什么是金属的电阻应变效应怎样利用这种效应制成应变片 答:金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象,称为金属的电阻应变效应。 5、如何进行传感器的标定传感器的标定步骤有哪些 答:标定的方法:利用标准设备产生已知“标准”输入量,或用标准传感器检测输入量的标准值,输入待标定的传感器,并将传感器的输出量与输入标准量相比较,获得校准数据和输入输出曲线、动态响应曲线等,由此分析计算而得到被标传感器的技术性能参数。 标定步骤:(1)、将传感器测量范围分为若干等间距点;(2)、根据传感器量程分点情况,输入量由小到大逐渐变化,并记录各输入输出值;(3)、将输入值由小到大逐点减少下来,同时记录下与各输入值相对应的输出值;(4)、重复上述两步,对传感器进行正反行程多次重复测量,将得到的测量数据用表格列出或绘制曲线;(5)、进行测量数据处理,根据处理结果确定传感器的静态特性指标。 6、如何选择监测仪器和元件?

安全监测方案说明

安全监测方案 一、工程概述 南干渠工程位于市南部地区,工程地点位于丰台区卢沟桥地区老庄子乡,沿五环路向南转向东,终点到亦庄水厂调节池,全长27.282km。南干渠上游与总干渠永定河倒虹吸相接,为Ⅰ等Ⅰ级建筑物,以京九铁路东侧桩号11+302为界分为上、下两段。上段长11.302km,为2条DN3400隧洞,采用浅埋暗挖法施工,共布置有15座暗挖竖井(不包括试验段2座竖井)。下段自京九铁路东11+302开始,终点桩号为27+282(亦庄调节池),长15.98km,为单条DN4700隧洞,采用盾构法施工,共有5座盾构始发井。上段设计流量30m3/s,加大流量35m3/s,下段设计流量27m3/s,加大流量32m3/s。 本合同段起自中心导线桩8+440.040,止于9+797.040,中心导线长1357m。左洞起至点桩号:8+444.231~9+798.775,全长1354.544米。右洞起至点桩号:8+457.181~9+816.637,全长1357.456米。主要工程容包括:浅埋暗挖隧洞、13号和14号排气阀井,黄村分水口、1号排空井。 本标工程开工日期为2010年5月21日,计划完工日期为2012年9月21日,工期为28个月。 二、规程规 《水利水电工程岩石试验规程》SL264; 《水利水电工程施工测量规程》SL52;

《混凝土坝安全监测技术规》DL/T 5178-2003; 《地铁工程监控量测技术规程》DB11/490-2007; 《岩土工程用钢弦式压力传感器国家标准》GB/T13606-92 《土石坝安全监测技术规》SL60-94 注:以上规程规均采用最新版本。 三、安全监测的目的及容 1.安全监测的目的 通过对暗涵围岩及其地表部位的变形监控量测,一是及时采取合适措施,确保施工过程中的安全和工作面的稳定;二是将现场实测结果及时反馈设计,对设计的安全性、经济性作出评价;三是对施工安全实行动态管理。 2. 安全监测的容 施工期主要的监控量测的容:竖井水平收敛,圈梁沉降、位移;基坑失稳、地表沉降;洞拱顶沉降、结构净空收敛、围岩压力、初期支护钢筋格栅应力监测、初期支护、二衬应力等为主。 四、安全监测的方法 1.结构应力、应变观测:在施工时在暗涵断面中埋设应力、应变计,并由电缆将信号传送至自动化监控系统。 2.沉降观测:一是顶拱沉降观测是在暗涵顶拱埋设沉降观测标点进行观测,二是地表沉降观测是在地面按规定间距设置沉降观测点观测地表沉降,沉降观测仪器必须是经过检定合格的精密仪器。沉降观测拟采用精密二等水准测量。

岩土工程测试与检测技术复习资料

岩土工程测试与检测技术 名词解释6?4分=24分 简答(基本概念、方法)7?6分=42分 计算与论述 4个 34分 §1概念、系统选型精度高量程低,如何选择仪器 测试技术基本概念(线性度、灵敏度) 压电式、正弦式传感器的基本原理 稳定性、误差等选测试方法 §2 传感器:相关概念、分类、命名了解 (压电式如何标定、如何采用措施消除误差 正弦式原理(土压力计典型代表、相应计算) 正弦式基本概念及计算 §3 声波测试、声发射(课件) 声波测试基本原理 纵、横波概念、计算方法、 测桩完整性、裂缝测试等测试方法 新测裂缝测试反象 在岩体中测试应用:完整性指标凯瑟效应 §4载荷试验:静载荷试验(及基本原理) 拐点——判断桩的极限荷载 加载方法:终止加载的判断 判桩的极限荷载——拐点 承载力特征值与极限荷载的确定(曲线拐点) 桩基础检测、多根桩——求平均值——误差系数(<,均值——特征荷载;>,——查表修正)动测:应力波反射法曲线判定桩体缺陷的位置——计算 §5现场检测的常用特殊方法 边坡、 基坑、的安全监测监测: 地下洞室(多点位移计、收敛观测) 监测内容:{锚杆检测、地表变形——大地水准测量、水平监测——原理、方法(基坑顶部、坑底) 项目选取 沉降观测、大地水准测量 深层水平位移的方法、原理了解 垂直监测 水平监测 测试系统元件的选取(参数) 锚杆无损检测 第一、二章测试技术基础知识、传感器 1.检测的基本概念: (1)检测与测量:检测是意义更为广泛的测量;测量是以确定被测对象的属性和量值为目的的全部操作。 (2)检测技术:包含测量和信号检测极为重要。

(3)测试系统的原理结构:被测对象的被测量传感器数据传输环节数据处理环节数据显示环节。 (4) 测量系统:由传感器(一次仪表)、中间变换和测量电路(二次仪表) 组成。 (5)显示和记录系统:它是将信号及其变化过程显示或记录(或存储)下来,是测试系统的输出环节。 2.传感器:指能感受规定的物理量,并按一定规律转换成可用输入信号的器件或装置。 3.组成:敏感元件、转换元件、测试电器 参数:a灵敏度:单位被测量引起的仪器输出值的变化。 b线性度:标定曲线与理想直线的接近程度。 c迟滞性:指输入逐渐增加到某一值与输入逐渐减小到同一输入值时的输出值不相等。(百科:指一系统的状态(主要多为物理系统),不仅与当下系统的输入有关,更会因其过去输入过程之路径不同,而有不同的结果。) d分辨率:指传感器可感受到的被测量的最小变化的能力。 4.传感器的分类:(1)按变换原理分类:电阻式、电容式、压电式、钢弦式、光电式等;(2)按被测物理量分类:位移传感器、压力传感器、速度传感器。 5.传感器的命名: 6.(1)传感器的全称由“主题词+四级修饰语”组成。 7.一级修饰语——被测量(位移、压力、速度) 8.二级修饰语——转换原理(应变式、电阻式、电容式、压电式、钢弦式、光电式) 9.三级修饰语——特征描述(指务须强调的传感器结构、性能、材料特征及敏感元件等) 10.四级修饰语——主要的技术指标(如,量程、精度、灵敏度等) 11.(2)使用场合不同修饰语排序亦不同 12.a在有关传感器的统计表、图书检索及计算机文字处理等场合,命名顺序为正序“主题词+一级修饰语+二级修饰语+三级修饰语+四级修饰语”;(例,传感器、位移、应变式、100mm) 13.b在技术文件、产品说明书、学术论文、教材、书刊等的陈述句中,传感器名称采用反序为“四级修饰语+三级修饰语+二级修饰语+一级修饰语+主题词”(例,100mm应变计式位移传感器) 14.压电式传感器:是基于压电效应的传感器,其敏感材料由压电材料制成。原理:压电材料受力后表面产生电荷,电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出,从而达到检测目的装置。 15.优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 16.压电效应:指某些物质,当沿着一定方向对其加力而使其变形时,在一定表面上将产生电荷,当外力去掉后,又重新回到不带电状态的现象。 17.振弦式(钢弦式)传感器:敏感元件为一根金属丝弦。原理:将敏感元件与传感器受力部件连接固定,利用钢弦的自振频率与钢弦所受到的外加张力关系式测得各种物理量。 18.优点:结构简单可靠,传感器的设计、制造、安装和调试非常方便,且钢弦经过热处理后蠕变极小,零点稳定。 19.计算:书P15(2-12、2-13) 20.传感器的标定(率定): 21.(1)定义:是利用精度高一级的标准器具对传感器进行定度的过程,从而确定其输出量与输入量之间的对应关系,同时也确定不同使用条件下的误差关系。 22.(2)标定原因:由于传感器在制造上的误差,即使仪器相同,其输出特性曲线也不尽相同。尽管传感器在出厂前都作了标定,但传感器在运输、使用等过程中,内部元件和结构因外部环境影响和内部因素的变化,其输出特性也会有所变化,因此,必须在使用前或定期进行标定。

岩土工程测试与检测技术精彩试题

一、选择题 1.可以采用 ( )方法测试地基土的变形模量和承载力。 A.动力触探 B.静力触探 C.静载试验 D.波速试验 2.应力波在桩身中传播时,遇到截面阻抗变大的界面会产生反射波,该反射波产生的质点运动速度与入射波产生的质点运动速度的方向 ( ) A.相同 B.不同 C.相反 D.垂直 3.采用预压法进行地基处理时,必须在地表铺设( ) A.塑料排水管 B.排水砂垫层 C.塑料排水带 D.排水沟 4.用标准贯入试验锤击数N判定沙土的密实度,其划分标准按照《建筑地基基础设计规》,当判定沙土的密实度为稍中密时,标准贯入试验的锤击数是多少() A. N<=10 B.1030 5.在静荷载试验中,若试验的土层性质为软弱黏性土,粉土,稍密沙土,每级荷载的增量为()KPa A.15~25 KPa B.25~50KPa C.50~100KPa D.100~200KPa 6.重型圆锥动力触探的落距距离() A. 50cm B.76cm C.100cm D.60cm 7.重型圆锥动力触探的落锤质量() A.10kg B.63.5kg C.120kg D.30kg 8.在一级基坑工程监测过程中,下列不是应测项目的是 ( ) A .墙体水平位移 B.墙体力 C.土压力 D.坑底隆起 9.在一二三级基坑工程检测中,不属于应测项目的是() A.墙顶水平位移沉降 B.临近建筑物的沉降和倾斜 C.地下管线沉降和水平位移 D.土体深层竖向位移和侧向位移 10.在一级基坑监测中基坑墙体最大位移允许的变形值为() A.30mm B.35mm C.40mm D.60mm 11.在二级基坑监测中,地面允许最大沉降值为() A. 25mm B.30mm C.40mm D. 60mm 12.下列为选测项目的是() A.周边位移 B.拱顶下沉 C.锚杆和锚索力及抗拔力 D.围岩弹性测试

岩土工程测试与监测技术课后思考题答案

第一章绪论1、论述岩土工程测试和监测的主要内容及其重要性? 答:(1)、岩土工程测试技术一般分为室内试验技术,原位实验技术和现场监测技术等几个个方面。在原位测试方面,地基中的位移场、应力场测试,地下结构表面的土压力测试,地基土的强度特性及变形特性测试等方面将会成为研究的重点,随着总体测试技术的进步,这些传统的难点将会取得突破性进展。(2)、a.、不论设计理论与方法如何先进、合理,如果测试技术落后,则设计计算所依据的岩土参数无法准确测求,不仅岩土工程设计的先进性无法体现,而且岩土工程的质量与精度也难以保证。所以,测试技术是从根本上保证岩土工程设计的精确性、代表性以及经济合理性的重要手段。b.测试工作是岩土工程中必须进行的关键步骤,它不仅是学科理论研究与发展的基础,而且也为岩土工程实际所必需。c.监测与检测可以保证工程的施工质量和安全,提高工程效益。在岩土工程服务于工程建设的全过程中,现场监测与检测是一个重要的环节,可以使工程师们对上部结构与下部岩土地基共同作用的性状及施工和建筑物运营过程的认识在理论和实践上更加完善。依据监测结果,利用反演分析的方法,求出能使理论分析与实测基本一致的工程参数。岩土工程测试包括室内土工试验、岩体力学实验、原位测试、原型实验和现场监测等,在整个岩土工程中占有特殊而重要的作用。 第二章测试技术基础知识 1、简述传感器的定义与组成。

答:传感器是指能感受规定的物理量,并按一定规律转换成可用输入信号的器件或装置。 传感器通常由:敏感元件、转换元件、测试电路三部分组成。 2、传感器的静态特性的主要技术参数指标有哪些? 答:主要有:灵敏度、线性度(直线度)、回程误差(迟滞性)。 3、钢弦式传感器的工作原理是什么? 答:工作原理:是由敏感元件(一种金属丝弦)与传感器受力部件连接固定,利用钢弦的自振频率与钢弦所受到的外加张力关系式测得各种物理量。 4、什么是金属的电阻应变效应?怎样利用这种效应制成应变片? 答:金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象,称为金属的电阻应变效应。 5、如何进行传感器的标定?传感器的标定步骤有哪些? 答:标定的方法:利用标准设备产生已知“标准”输入量,或用标准传感器检测输入量的标准值,输入待标定的传感器,并将传感器的输出量与输入标准量相比较,获得校准数据和输入输出曲线、动态响应曲线等,由此分析计算而得到被标传感器的技术性能参数。 标定步骤:(1)、将传感器测量范围分为若干等间距点;(2)、根据传感器量程分点情况,输入量由小到大逐渐变化,并记录各输入输出值;(3)、将输入值由小到大逐点减少下来,同时记录下与各输入值相对应的输出值;(4)、重复上述两步,对传感器进行正反行程多次重复测量,将得到的测量数据用表格列出或绘制曲线;(5)、进行测量数据处理,根据处理结果确定传感器的静态特性指标。

新时期深基坑工程安全监测和信息化监控

新时期深基坑工程安全监测和信息化监控 发表时间:2018-09-06T10:30:08.670Z 来源:《防护工程》2018年第9期作者:张宇 [导读] 其在快速增加的同时也产生了很多新的问题和理论。基于此,本文主要从基坑安全监测的角度入手,详细分析了深基坑现有的研究方向、监测方式、信息化等方面的现状,然后在此过程中,论述了深基坑监测后期发展趋势。 张宇 昆明勘测设计研究院云南省昆明650031 摘要:最近几年,伴随着社会经济的不断发展,深基坑工程数量有了明显增加,其在快速增加的同时也产生了很多新的问题和理论。基于此,本文主要从基坑安全监测的角度入手,详细分析了深基坑现有的研究方向、监测方式、信息化等方面的现状,然后在此过程中,论述了深基坑监测后期发展趋势。 关键词:新时期;深基坑工程安全监测;信息化监控 深基坑在开挖支护施工期间,因工程岩土构造具有地质条件复杂、受力性能特殊等特点,因此,在监测参数设定,监控方案设计环节中,预估值计算值和具体施工中的实测值存在较大的差别性,离散性,随机性。从中看出,对于深基坑工程的质量和安全管理,不仅和规范设计有一定的联系,同时还在一定程度上取决于施工整个过程的安全监测情况。安全监测作为保证深基坑工程施工安全的关键性措施,其具有十分重要的作用。 在深基坑施工期间,对土体以及支护结构实际现状进行定性分析和定量检测/监测,能够为后期工程稳定运行提供有利的条件,对此,进行深基坑施工的时候,要从基坑周围支护结构和工程地质,水文地质分析入手,在全面了解和掌握施工过程安全控制的基础上保证工程整体质量和毗邻建筑物、构筑物,相关施工人员及设施的安全。 1、监测项目以及监测方法 1.1位移的具体监测方法 在工程项目当中,监控方通常使用的位移监测方法有两种:水平以及侧向监测。在具体的监测过程中,通常所说的位移速率的监测是指的在拟定监测的计划之内,把相应监测位间隔的时间段作为项目参考的过程。同时,项目的位移监测是最为重要的安全监测项目。 1.1.1项目工程的水平位移监测方法 监控方在进行工程项目的位移监测后,可以在监测后数据处理提供基坑边壁的水平变形量以及位移的变形速率和整个基坑平面几何变形分布信息。一般可以通过分析信息数据,进一步研究基坑边壁的稳定性及变形发展趋势。与此同时,通常情况下,水平位移监测使用经纬仪、全站仪、固定点GPS等方法来进行相关的测量工作。进行视准线方法的操作时,可以依据不同的标准分为距离变化方法以及角度变化方法。在工程项目当中,利用精密全站仪来测量某个监测点的具体坐标,将其称为坐标变化方法。在项目工程监测过程中,使用后一种测量方法与人工三角网监测来比较,目前如使用TCA2003自动全站仪进行工程监测时,监测过程具有精度高,响应快,数据处理快,人工工作量较小等优点。 GPS已经在工程项目的基坑监测过程中得到了广泛的应用。根据测量技术的使用案例,从相关工程基坑施工监测的实践数据以及实践效果来看,使用这种测量方法不仅可以避免光学仪器方法对于工地现有条件的项目限制,还可以在工程施工的工作效率和工程测量数据的精准度上得到较大提高,确保监测工作的质量始终处于受控状态。 1.1.2深基坑侧位移监测方法 监控方在进行工程项目的侧向位移监测中,通过这种测量,可以为基坑开挖/支护提供基坑围护结构及坑壁不同深度,不同范围的倾斜位移的具体分布情况数据,在基坑的施工中,侧向位移监测的有关数据对于基坑的建设安全特别重要,因此需要在测量和数据分析时特别重视。进行侧向位移监测时,可在测量中采用石英挠性加速器作为敏感元件的滑动式测量斜度的测斜仪,测斜仪在工作过程中,是将倾斜的角度以电压的形式输出,其电压转换精度在mv级别,从而可以在滑动过程中连续不断地测量基坑预埋测斜管(轨道)整体倾斜方位角和累计变形量。在测量斜度的仪器当中,通常采用伺服加速度计式以及电阻应变式两种形式,在具体工程项目中可根据实际情况灵活选用,通常情况下,通过对比试验得出,伺服加速度计式测斜仪精密度比较高,并且在进行监测的过程当中工况相对稳定。但是伺服加速度测斜仪在价格方面也比较昂贵,监控方应根据实际情况和工程经济论证进行仪器比选。 1.2压力的监测方法 对于深基坑土体的压力监测,通常包括的是对于基坑内外土压力(主动土压力、被动土压力、静止土压力)以及土层孔隙水压力的具体监测。可以通过上述两种压力监测方法来掌握基坑开挖过程中的土体压力变化情况以及具体的土体压力变化规律,来及时的发现影响基坑土层稳定性的有关因素,及时采取具体控制措施来确保土层以及围护结构的安全稳定。 在工程项目当中,在进行工程基坑的开挖以及边坡支护时,在施工的基坑现场都会采取土层压力以及土层孔隙水压力的有关观测措施,且该观测方法已经在建筑行业实行了很长的时间,与此同时,业已在观测施工中积累了较多的工程经验,对于监测行业来说,也促进了很多监测传感器的改进发展。在当前,我国通常使用的压力传感器可以依据不同的工作原理分成电阻应变片式和电感调频式,还包括了钢弦式(振弦式)等等。在这些众多类型的传感器当中,根据工程现场的使用情况,以钢弦式(振弦式)压力传感器性质最为稳定,并且对于电的绝缘性要求也不高,可以在长期的基坑工程中埋设使用而不易损坏,在基坑恶劣的自然环境下也不影响土层压力以及土层孔隙水压力的正常观测。但是在进行传感器的埋设之前,必须要对于所使用的传感器进行工程防水性检测,线路保护,以及具体的传感器温度设定,初始监测频率记录等工作。 1.3 基坑边坡支护结构的内力监测 1.3.1基坑边坡支护结构中主受力结构应力的监测方法 基坑维护结构类型较多,对支撑式以板桩,灌注桩,型钢桩,地下连续墙等类型居多。工程基坑的边坡支护结构的施工时,一般情况下,最重要的结构受力体当属基坑当中钢筋混凝土支护桩和地下连续墙的主要受力钢筋,在这其中进行结构受力的监测时,应布置钢筋应力(应变)计,以此对基坑支护结构进行应力监测。在进行应力监测点的设置时,应该要全方位的进行考虑整体受力情况和薄弱点监测,

岩土工程安全监测课程设计

岩土工程安全监测课程设计 二〇一二年十二月

目录 1 概述 (3) 2工程背景 (3) 3设计依据 (3) 4滑坡监测说明 (3) 4.1监测原则 (3) 4.2监测内容 (4) 4.3监测方法 (4) 4.4监测仪器 (5) 5设计方案 (8) 5.1布点原则 (8) 5.2选点、埋石 (8) 5.3滑坡体监测方法设计 (8) 5.4监测预算 (9) 5.5附图 (9) 6结语 (11)

1 概述 岩土工程监测是一门综合性很强的应用技术,它是以工程地质学、土力学、岩石力学、钢筋混凝土力学及土木工程设计理论和方法等学科为理论基础,以仪器仪表、传感器技术、计算机与通信技术、大地测量技术、测试技术、信息科学等学科为技术支持,同时还融合土木工程施工工艺和工程实践经验,以岩土体及工程结构的稳定性动态评估为主要目的的综合性应用技术。 滑坡是一种重力地质现象,是地球上广泛存在的一种次生地质灾害。其主要特征是不稳定的天然斜坡或人工边坡,在岩体重力、水及震动力作用下,失去原有平衡和存在的基础,发生了危害性的变形破坏,结果倾倒或滑落产生的大量岩土堆积物,引起交通中断,村镇埋没,江河堵塞,水库淤积,甚至酿成巨大的地质灾害。大部分滑坡都不同程度的与人类工程建设活动有关。因此,滑坡监测已成为工程勘测、设计、施工和运行工程中不可缺少的重要手段,被视为工程设计效果、施工和运行安全的直接指示器。 2工程背景 深圳市宝安区西乡街道固戍社区朱坳山滑坡地质灾害点位于宝安区西

乡街道固戍社区。

2008年6月13日特大暴雨引发本次山体滑坡,斜坡岩土体产生滑动,对 坡下的别墅造成一定程度的损坏。 3设计依据 《建筑边坡工程技术规范》GB50330-2002; 《地质灾害防治条例》(中华人民共和国国务院令,第394条,2004.3.1) 《地质灾害防治工程设计规范》DB50/5029-2004 《国家地质灾害应及预急预案》(国办函[2005]37号文 《建筑变形测量规程》JGJ/T8-97。 《工程测量规范》GB50026-2007。 《岩土工程勘察规范》GB50021-2002 《深圳市宝安区西乡街道固戍社区朱坳山滑坡应急治理工程设计方 案》 4滑坡监测说明 4.1监测原则 ⑴监测方法应充分考虑边坡特征、地质条件及监测外部环境,选择合适的监测方法,做到旧、新设备结合,仪器监测和宏观监测相结合,人工监测和自动监测相结合。通过多种方法的比较,使监测工作即经济安全,又适用可靠,避免单方面追求高精度、自动化、多参数而脱离工程实际的监测方案。在选择监测

《岩土工程测试与检测技术》考题解析

一、选择题 1.可以采用 ( C )方法测试地基土的变形模量和承载力。 A.动力触探 B.静力触探 C.静载试验 D.波速试验 2.应力波在桩身中传播时,遇到截面阻抗变大的界面会产生反射波,该反射波产生的质点运动速度与入射波产生的质点运动速度的方向( C ) A.相同 B.不同 C.相反 D.垂直 3.采用预压法进行地基处理时,必须在地表铺设( B ) A.塑料排水管 B.排水砂垫层 C.塑料排水带 D.排水沟 4.用标准贯入试验锤击数N判定沙土的密实度,其划分标准按照《建筑地基基础设计规范》,当判定沙土的密实度为稍中密时,标准贯入试验的锤击数是多少( B ) A. N<=10 B.1030 5.在静荷载试验中,若试验的土层性质为软弱黏性土,粉土,稍密沙土,每级荷载的增量为( A )KPa A.15~25 KPa B.25~50KPa C.50~100KPa D.100~200KPa

6.重型圆锥动力触探的落距距离( B ) A. 50cm B.76cm C.100cm D.60cm 7.重型圆锥动力触探的落锤质量( B ) A.10kg B.63.5kg C.120kg D.30kg 8.在一级基坑工程监测过程中,下列不是应测项目的是 ( C ) A .墙体水平位移 B.墙体内力 C.土压力 D.坑底隆起 9.在一二三级基坑工程检测中,不属于应测项目的是( D ) A.墙顶水平位移沉降 B.临近建筑物的沉降和倾斜 C.地下管线沉降和水平位移 D.土体深层竖向位移和侧向位移 10.在一级基坑监测中基坑墙体最大位移允许的变形值为( D ) A.30mm B.35mm C.40mm D.60mm 11.在二级基坑监测中,地面允许最大沉降值为( D ) A. 25mm B.30mm C.40mm D. 60mm 12.下列为选测项目的是( D ) A.周边位移 B.拱顶下沉 C.锚杆和锚索内力及抗拔力 D.围岩弹性测试

深基坑工程施工安全监测与预警

深基坑工程施工安全监测与预警 发表时间:2016-06-13T16:47:41.563Z 来源:《基层建设》2016年4期作者:马中晓[导读] 经济的快速发展带动建筑产业的发展,越来越多的建筑产业开始增加高度,深基坑高层建筑在实际的施工中是极其常见的。 江苏正成测绘技术有限公司江苏苏州 215000 摘要:经济的快速发展带动建筑产业的发展,越来越多的建筑产业开始增加高度,深基坑高层建筑在实际的施工中是极其常见的。深基坑的快速发展与高层建筑技术水平的发展有关系。在深基坑建筑工程施工中需要对各种技术要点进行安全监测和分析,对可能产生的威胁进行及时预警。本文将针对深基坑的施工安全要点进行分析,研究深基坑施工安全监测的技术要点,对监测安全问题进行调整,及时确定施工相关参数,优化施工设计标准,完善施工安全管理水平。 关键词:深基坑;安全监测;预警 引言 在城市中往往需要建筑高的建筑物,需要深基坑进行开挖。建筑物以及周围的地下管线受深基坑作业的影响容易出现变形,特别对于深基坑作业施工,变形量过大就会造成建筑的破坏。因此在深基坑建筑施工中需要严格的监测施工进展,对深基坑周围的地下情况进行准确的判断,及时监测和预警,确保施工工程的顺利开展。 一、安全监理工作 1 维护监测点的管理 维护监测点,需要在深基坑开挖前,对周围进行支护处理,防止深基坑作业造成位移或下沉。对周围的护桩进行稳定测试。按照维护监测的标准,采用有效的桩顶部测试方法,采用有效的钻孔灌注方法,将孔洞钻好后,将其中的桩砂浆、钢筋灌入其中,确保顶部中线位置的标准钉扣。然后进行浇筑和打浆处理,确定测试的标准点。围护桩的变形监测需要控制实际的监测要点,在深基坑作业开挖的过程中,需要对每一个点的位置、深度进行分析,对相关数据的不同进行判断,确定其中可能存在的问题。按照规定的集成标准进行倾斜或拉伸。倾斜量不同可能产生的效果有所不同。必须要对围护桩的内部倾斜量进行监测分析,确定不同的倾斜量标准。依照围护桩内部的倾斜量进行监测分析,确定整个围护桩在不同时刻、不同深度、不同位置的位移标准,逐步确定测量点的基本中心,按照重心点进行分析,尽可能的设定深基坑的边条中心位置。按照中心位置的深度,使用泥沙进行填实加固处理,使用PVC管作为监测标志。 2 维护结构监测标准位置 2.1 对轴力的监测 按照围护结构的轴力对围护桩进行承担处理,使用挡土墙的倾斜力进行传递。通过合理的侧向支撑,逐步加深环向横成力,确保围护结构的合理和安全,确保围护结构的稳定性。按照支撑体系的内部结构和整体重要作用,对整体支撑体系进行处理和监测。支撑体系的测量点需要具有良好的灵活性,不可以随便的改变支撑体系的形态,需要按照受力特点进行设置,根据位置点的不同,对测量点进行轴力钢筋的加固。 2.2地下监测 深基坑的开挖需要对地下水的管道影响进行监测。地下水因渗透会造成基坑塌陷,影响基坑的稳定。按照地下水的监测标准,对防水效果进行监测分析,设定基坑外围测试点,对周围的稳定性进行判断,确保基坑作业的有效性。及时对可能产生的地下塌陷问题进行预警,发现开挖基坑的作业面深度,采用有效的监测方法对基坑周围的效果进行判断和分析。 2.3 沉降的监测 深基坑在开挖过程中,受周围环境的影响容易出现沉降的问题,需要对建筑物周围的水平高度进行监测,分析施工车辆、施工材料以及其他物品对建筑物的影响,对存在地下管线的位置需要重点分析。按照深基坑的设计理念,采用有效的监测方法,及时对可能产生的沉降问题进行预警,更好设计方案和施工方案,有序的实现信息化施工,安全化施工管理。 2.4 边坡稳定性的监测 根据施工周围的环境和岩石土层条件进行分析,确定基坑作业开挖的方案。开挖边坡的设计方案很多,需要对开挖的坡面,降水面进行有效的防护处理。在深基坑作业施工中,需要加强坡面高度的处理,对开挖可能产生的边坡侧滑问题进行处理,防止因为人身安全问题影响施工工程。在设置开挖坡测点的时候,需要对间距进行调整,合理的设计监测点,确保边坡的稳定性。测点位置需要使用1.5m的钢筋打入地下,地面上的钢筋头需要有3-5cm。 二、监测数据的分析和预警 按照深基坑工程施工监测的安全标准,对可能存在的危险进行监测,对存在的预警值进行判断,确定深基坑围护结构标准,确保深基坑围护结构标准的安全可靠性。依照建筑物地下管线布局,设计出最优的设计方案,提出良好的改进建议。需要对建筑物地下管线的沉降问题进行分析,加强支护体系的管理,对基坑底部存在的开挖产生的裂缝进行处理,增加支护,加强施工进度的管理。按照预定产生的裂缝进行施工,确保施工结构的稳定性。地下管线需要对水位进行测量和分析,准确的判断静水位值,采用动态水位信号分析的方法进行监控,确保动态监测判断的合理性,逐步完善后续基坑开挖的施工效果。 三、结语 综上所述,深基坑施工中需要对施工进行安全监测,分析施工监测理论标准,对施工实际监测可能出现的问题进行研究,在施工中严格的遵守施工制度管理,做好安全监测提高安全预警技术效果。通过合理的监测和预警,逐步完善可能存在施工问题的处理,确保施工安全效果的有效解决,优化施工设计水平,降低施工造价,提高施工工程成本控制管理。 参考文献: [1]朱坚敏,李国光.信息化监测技术在基坑施工管理中的应用[J]. 今日科技. 2006(10). [2]孙志斌. 深基坑工程对周围环境的影响[J]. 岩土工程界. 2006(05).

岩土工程监测与检测

《岩土工程监测与检测》 上机作业 作业内容桩的静载试验数据处理 专业勘查技术与工程 班级学号 1803110124 姓名张江伟 南京工业大学 二〇一四年

目录 一、工程概况 二、单桩竖向抗压试验仪器、原理及方法 三、试验数据、试验曲线及说明 四、检测成果汇总、分析意见及结论 五、小结

扬中新世界花苑1#楼 单桩竖向抗压静力荷载试验报告 一、工程概况 1. 工程项目概况 1.1委托单位:江苏新世界房地产开发有限公司 1.2建设单位:江苏新世界房地产开发有限公司 1.3 工程名称:新世界花苑 1.4 工程地点:扬中市开发区新扬村,明珠湾西侧,凯旋山庄南侧 1.5勘察单位:扬中市明珠勘察测绘工程有限公司 1.6设计单位:华美(福建)建筑设计院 1.7 监理单位:扬中市明珠建设监理有限公司 1.8施工单位:扬中市基础工程有限公司 1.9单桩承载力设计极限值:1560kN 1.10桩端岩土层:⑦层含砾细砂 1.11检测单位:江苏省建苑岩土工程勘测有限公司 检测目的:检验单桩竖向极限承载力值 检测方法:慢速维持荷载法 检测日期:2013.11.12 — 2013.11.17 试验桩位选定:由建设方按设计要求选定 2. 工程地质概况 根据扬中市明珠勘察测绘工程有限公司提供的地质勘察报告揭示,各岩土层名称如下 2.1层杂耕土:土质松软,孔隙发育,植物根密集,场区普遍分布, 厚度0.50~1.50m,平均0.63m; 2.2层粉质粘土:土黄色,软塑,饱和,水平层理发育,稍有光泽, 无摇震反应,低干强度,低韧性,场区普遍分布,厚度1.10~2.90m,平均2.15m;

论岩土工程监测技术的发展及其应用综述

论岩土工程监测技术的发展及其应用综述 1.前言 近年来,随着我国基础建设的日益扩大,人们对岩土工程构筑物逐渐有了更高的安全要求。随着人类岩土工程监测技术的日趋成熟,其在基础建筑甚至地灾评价预测等方面也作出越来越大的贡献。本文在论述岩土工程监测技术发展及应用状况的基础上,结合各个学者提的一些关于岩土工程监测技术的新理论,较系统建的进行总结概括,以便后来读者查阅。 2. 岩土工程监测技术发展及应用状况 自50年代末期以来,现代科技成就,特别是电子技术和计算技术的成就被引 用到岩土工程中来,极大地推动了勘察测试技术和岩土构筑物以及地基设计理论 与方法的进展(魏道垛,孙福, 1998)。作为岩土工程重要内容的岩土工程监测技术(包括监测手段、方法与工具)的发展与进步,加速了信息化施工的推行,反过来又迅速提高了人们对岩土设计方法和理论的认识。 岩土工程设计原则正从强度破坏极限状态控制向着变形极限状态(或建筑物 功能极限状态)控制发展。目前,有一部分内容正努力试行着向新的概率极限状态(可靠性设计方法) 控制展。 我国岩土工程技术新进步的一个重要(在某种意义上可能是最重要的) 表现 是岩土工程信息化作业(融施工、监测和设计于一体的施工方法)的运行。信息化施工原理和环境效应问题被人们所注意、关心,以致被接受并付诸行动。这不仅是岩土工程技术本身的进步,更是工程界直至社会方面在岩土工程总体意识上的 更新、进步和发展,已日益表现在着力于岩土工程各类行为信息的监测、反馈、 监控及其信息数据的及时处理和技术与管理措施的及时更新等。岩土工程监测技术的进步和发展,则是岩土工程信息化得以实施的强有力的物质基础和技术保障。 横览中外,岩土工程监测技术的进步和发展具体表现在以下二个方面:一是 监测方法及机具本身的进步。现代物理,特别是电子技术的成就,已广泛应用于新型监测仪表器具中,如各种材料不同形式的收敛计、多点位移计、应力计、压力盒、远视沉降仪、各类孔压计及测斜仪等的设计与制作,优化了仪表结构性能, 提高了精度和稳定性; 二是监测内容的不断扩大与完整。分析方法的不断提高,岩土体

岩土工程测试与检测技术试题(doc X页)

岩土工程测试与检测技术试题(doc X页) 一、选择题 1(可以采用 ( C )方法测试地基土的变形模量和承载力。 A(动力触探 B(静力触探 C(静载试验 D(波速试验 2(应力波在桩身中传播时,遇到截面阻抗变大的界面会产生反射波,该反射波产生的质点运动速度与入射波产生的质点运动速度的方向 ( C ) A.相同 B.不同 C.相反 D.垂直 3.采用预压法进行地基处理时,必须在地表铺设( B ) A.塑料排水管 B.排水砂垫层 C.塑料排水带 D.排水沟 4.用标准贯入试验锤击数N判定沙土的密实度,其划分标准按照《建筑地基基础设计规范》,当判定沙土的密实度为稍中密时,标准贯入试验的锤击数是多少( B ) A. N<=10 B.1030 5.在静荷载试验中,若试验的土层性质为软弱黏性土,粉土,稍密沙土,每级荷载的增量为( A )KPa A.15~25 KPa B.25~50KPa C.50~100KPa D.100~200KPa 6.重型圆锥动力触探的落距距离 ( B ) A. 50cm B.76cm C.100cm D.60cm 7.重型圆锥动力触探的落锤质量( B ) A.10kg B.63.5kg C.120kg D.30kg 8.在一级基坑工程监测过程中,下列不是应测项目的是 ( C ) A .墙体水平位移 B.墙体内力

C.土压力 D.坑底隆起 9.在一二三级基坑工程检测中,不属于应测项目的是( D ) A.墙顶水平位移沉降 B.临近建筑物的沉降和倾斜 C.地下管线沉降和水平位移 D.土体深层竖向位移和侧向位移 10.在一级基坑监测中基坑墙体最大位移允许的变形值为( D ) A.30mm B.35mm C.40mm D.60mm 11.在二级基坑监测中,地面允许最大沉降值为( D ) A. 25mm B.30mm C.40mm D. 60mm 12.下列为选测项目的是( D ) A.周边位移 B.拱顶下沉 C.锚杆和锚索内力及抗拔力 D.围岩弹性测试 13.下列不是岩土力学参数测试的是( A ) A. 抗拉强度 B.变形模量 C.泊松比 D.内摩擦角 14.地下工程监测温度测试不包括( C ) A.岩体温度 B.洞内温度 C.洞外温度 D.气温 15.地表沉降的方法和工具是( C ) A.各类位移计 B.各种类型压力盒 C.水平仪、水准尺 D.各种类型收敛计 16.围岩应力应变测试仪器不包括( D ) A.钢弦式应变计 B.差动式电阻应变计 C.电测锚杆 D.钢弦式压力盒 17.锚杆参数不包括以下( D ) A.锚杆长度 B.直径 C.数量和钢材种类 D.锚杆入射角 18.判断围岩稳定性准则下列不可以用来表示的是( D )

最新岩土工程监测部分测试题及答案

建筑工程地基基础质量检测人员上岗培训 (岩土工程监测部分测试题及答案) 一、填空题 1、岩土工程监测工作是保证监测质量、优化设计、指导施工提供可靠依据。 2、岩土工程监测工作须做到安全适用、技术先进、经济合理。 3、建筑基坑工程监测应综合考虑基坑工程设计方案、工程地质和水文地质条件、周边环境条件、施工方案等因素。 4、监测工作须制定合理的监测方案、精心组织和实施监测。 5、基坑开挖影响范围是既有建(构)筑物、道路、地下设施、地下管线及地下水等的统称。 6、在建筑基坑施工及使用期限内,为保基坑安全须对建筑基坑及周边环境实施的检查、』控工作。 7、监测报警值为确保基坑工程安全,对监测对象变化所设定的监控值』以判断监测对象变化是否超出允许的范围、施工是否出现异常。 8开挖深度超过5m均应实施基坑工程监测。 9、基坑工程监测的技术要求,主要包括监测项目、测点位置、监测频率和监测报警值等。 10、基坑工程监测应委托具备相应资质的第三方对基坑工程实施现场监测。监测单位应编制监测方案应经建设、设计、监理等单位认可。 11、监测单位应了解委托方和相关单位对监测工作的要求,并进行现场踏勘,卫集、仝析和和_ 利用已有资料,制定合理的监测方案。 12、监测方案应包括工程概况、监测依据、监测目的、监测项目、测点布置、监测方法等。 13、监测单位应严格实施监测方案,及时分析处理监测数据,并将监测结果和评价及时向委托方及相关单位作信息反馈。 14、 15、当监测数据达到监测报警值时必须立即采取相应的处治措施及时通报委托方及相关单位。 16、基坑工程的现场监测应采用仪器监测与巡视检杳相结合的方法。 17、 18、基坑工程整个施工期内,每天应有专人进行巡视检查。 19、巡视检查的检查方法以目测为主,可辅以锤、钎、量尺、放大镜等设备进行。

岩土工程测试和检测技术试题(卷)

一、选择题 1.可以采用( )方法测试地基土的变形模量和承载力。 A.动力触探B.静力触探 C.静载试验D.波速试验 2.应力波在桩身中传播时,遇到截面阻抗变大的界面会产生反射波,该反射波产生的质点运动速度与入射波产生的质点运动速度的方向( ) A.相同 B.不同 C.相反 D.垂直 3.采用预压法进行地基处理时,必须在地表铺设( ) A.塑料排水管 B.排水砂垫层 C.塑料排水带 D.排水沟 4.用标准贯入试验锤击数N判定沙土的密实度,其划分标准按照《建筑地基基础设计规范》,当判定沙土的密实度为稍中密时,标准贯入试验的锤击数是多少()A. N<=10 B.1030 5.在静荷载试验中,若试验的土层性质为软弱黏性土,粉土,稍密沙土,每级荷载的增量为()KPa A.15~25 KPa B.25~50KPa C.50~100KPa D.100~200KPa 6.重型圆锥动力触探的落距距离() A. 50cm B.76cm C.100cm D.60cm

7.重型圆锥动力触探的落锤质量() A.10kg B.63.5kg C.120kg D.30kg 8.在一级基坑工程监测过程中,下列不是应测项目的是( ) A .墙体水平位移 B.墙体内力 C.土压力 D.坑底隆起 9.在一二三级基坑工程检测中,不属于应测项目的是() A.墙顶水平位移沉降 B.临近建筑物的沉降和倾斜 C.地下管线沉降和水平位移 D.土体深层竖向位移和侧向位移 10.在一级基坑监测中基坑墙体最大位移允许的变形值为() A.30mm B.35mm C.40mm D.60mm 11.在二级基坑监测中,地面允许最大沉降值为() A. 25mm B.30mm C.40mm D. 60mm 12.下列为选测项目的是() A.周边位移 B.拱顶下沉 C.锚杆和锚索内力及抗拔力 D.围岩弹性测试 13.下列不是岩土力学参数测试的是()

关于岩土工程安全监测数据中粗大误差的处理(精)

关于岩土工程安全监测数据中粗大误差的处理 摘要:随着岩土工程监测技术的不断发展,监测设备日趋多样,监测手段和方法日益完善,监测数据的数量也与日俱增。这些数据在不同程度上受到各种内外因素的干扰,包含着粗大误差。这种误差破坏了监测数据的真实性并在一定程度上对监测数据的可靠性造成影响,进而可能导致完全错误的数据分析和安全性评价,酿成不良后果。因此,对监测数据进行有效的误差分析成为数据处理的首要环节,也是对监测对象进行安全性评价的基础。总结了岩土工程监测数据中粗大误差的来源、处理方法的研究现状,提出了几种简单实用的误差处理方法,并对各种方法进行了比较,最后通过工程实例加以分析。 关键词:岩土工程,监测,粗大误差 1.粗大误差及其来源 粗大误差是由于某种不正确因素导致的与事实明显不符,明显超出规定条件的误差,通常属于测量错误,应予以剔除。粗大误差的来源可由环境因素和主观因素构成。 1.1 环境因素 环境因素可分为天气因素和施工因素。天气因素是指测量环境的温度、湿度的变化。环境造成测量误差的主要原因使测量装置包括标准器具、仪器仪表、测量附件和被测量的对象随着温度湿度的变化而变化。这部分变化并不反映工程体本身应力或应变的变化。例如锚杆应力计的钢筋,在高温环境中会伸长,在低温环境中会缩短。这样就导致了测量出来的位移变化不能反映实际被测物体的位移变化情况。温度变化对岩土工程的测量造成的影响是不能忽略的,一般的岩土工程测量仪器都具有温度补偿功能,可以记录温度并通过计算在最终结果中扣除这部分影响。施工因素是指由于不相干的放炮、开挖、钻孔、夯击等引起的震动,它会使监测仪器记录的数据值发生突跳,这种突跳属于仪器受到干扰后的一种短期变化,并不反映工程体本身的应力或应变状况。例如在钻爆法施工中由于施炮使已埋设的多点位移计受到震动,使放炮当天记录到的位移值发生突跳,该突跳值并不反映工程体变形的实际情况,应予以剔除。 1.2 主观因素 主观因素又可细分为测量方法因素和人员因素。测量方法得当与否会影响测量结果的正确性。测量被测量物体时,必须在符合要求的环境里,应用适当的测量装置,按照正确的测量方法严格地进行。如果测量方法不当,会导致误差的产生。如在地下厂房的测量中,在一个桩号的不同位置处埋设了两个品牌的多点位移计,那么在测量读数时如果用同一种读数仪而不作任何切换的话会产生错误的读数。由于测量人员工作态度、工作方法不规范,很容易导致仪器的保管和运输不安全,组装和安装不符合要求,数据读取或记录错误等问题。如在数据记录上,如果用人工手抄法记录数据很容易由于记录人员的粗心导致

相关文档
相关文档 最新文档