文档库 最新最全的文档下载
当前位置:文档库 › 第一讲 排列组合(加法与乘法原理)

第一讲 排列组合(加法与乘法原理)

第一讲 排列组合(加法与乘法原理)
第一讲 排列组合(加法与乘法原理)

第1讲排列组合(加法与乘法原理)

1、加法原理:

完成一件工作共有N类方法。在第一类方法中有m

1

种不同的方法,在第二

类方法中有m

2种不同的方法,……,在第N类方法中有m

n

种不同的方法,那么

完成这件工作共有N=m

1+m

2

+m

3

+…+m

n

种不同方法。

运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。

2、乘法原理:

完成一件工作共需N个步骤:完成第一个步骤有m

1

种方法,完成第二个步

骤有m

2种方法,…,完成第N个步骤有m

n

种方法,那么,完成这件工作共有

m 1×m

2

×…×m

n

种方法。

运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步

骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。

运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。

例1:(1)教室图书角放有4种不同的故事书,有7种不同的漫画书,从中取一本,共有多少种不同的取法?

(2)教室图书角放有4种不同的故事书,有7种不同的漫画书,从中各取一本,共有多少种不同的取法?

练习:(1)由镇往县城有3条路,由县城往长青山旅游区有4条路,由镇区经县城去长青山有几种不同的走法?

(2)某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤。他要各买一样,共有多少种不同的买法?

例2:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?

练习:现有一架天平和1g,3g,9g,27g的砝码各一个,能称出多少种不同的重量?

例3:各数位的数字之和是24的三位数共有多少个?

练习:在所有四位数中,各位上的数之和等于34的数有种。

例4:(1)用1 、2、 3、 4 四个数字,可以组成个不同的四位数;

(2)用1、 9 、9 、5 四个数字,可以组成个不同的四位数。

练习:(1)用1、2、3、4、5、6六个数字,可以组成多少个不同的四位数?

(2)用1、2、3、4、5、6六个数字,可以组成多少个不同的四位偶数?

(3)用0、1、2、3、4、5六个数字,可以组成多少个不同的四位数?

(4)用0、1、2、3、4、5六个数字,可以组成多少个不同的四位偶数?例5:一本书有235页,打印页码共用了多少个数字码?其中有多少个数字“1”?

练习:一本书打印页码共用了6889个数字码,这本书有多少页?

例6:下图中有7个点和10条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过。问:这只甲虫最多有几种不同的走法?

练习:(1)如图所示,从甲地到乙地,最近的道路有几条?

(2)如果沿图中的线段,以最短的路程,从A点出发到B点,共有多少种不同的走法?

巩固练习:

1、学生饭堂有主食3种,副食有6种。从主食或副食中挑一种配成盒饭,可以配成()种。

2:学生饭堂有主食3种,副食有6种。从主、副食中各挑一种配成盒饭,可以配成()种。

3:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果每种颜色取一张,有()种取法。

4:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果要取一张画纸,有()种取法。

5.从1写到100,一共用了个“5”这个数字.

6:小红有不同的上衣4件,下装5种,鞋子3双,问小红能有()种不同的穿着方法?

7.数字和是4的三位数有个.

8:小芳要买数学、语文、外语的参考书各一本,他看见书架上数学书有3种,语文书有2种,外语书有2种可供选择,她有()种不同的选择方法?

9.用一个5分币、四个2分币,八个1分币买一张蛇年8分邮票,共有种付币方式.

10.“IMO”是国际数学奥林匹克的缩写,把这三个字母写成三种不同颜色,现有五种不同颜色的笔,按上述要求能写出种不同颜色搭配的“IMO”.

11:公园里有小红旗4款,小白旗5款,小蓝旗6款,如果三种颜色的小旗各取一款,有()不同的取法。

12.电影院有六个门,其中A、B、C、D门只供退场时作出口,甲、乙门作为入口也作为出口.共有种不同的进出路线。

排列组合问题之—加法原理和乘法原理

排列组合问题之—加法原理和乘法原理 华图教育梁维维 加法原理和乘法原理是排列组合问题的基本思想,绝大多数的排列组合问题都会应用到这两个原理,所以对加法、乘法原理广大考生要充分的了解和掌握。 1.加法原理 加法原理:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N)种方法。 例如:从长春到济南有乘火车、飞机、轮船3种交通方式可供选择,而火车、飞机、轮船分别有k1,k2,k3个班次,那么从武汉到上海共有N=k1+k2+k3种方式可以到达。加法原理指的是如果一件事情是分类完成的,那么总的情况数等于每类情况数的总和,比如如下的题目:【例1】利用数字1,2,3,4,5共可组成 ⑴多少个数字不重复的三位数? ⑵多少个数字不重复的三位偶数? 【解析】⑴百位数有5种选择;十位数不同于百位数有4种选择;个位数不同于百位数和十位数有3种选择.所以共有5×4×3=60个数字不重复的三位数。 【解析】⑵先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数。 在公务员考试当中,排列组合也是考察比较多的一个问题,国考和联考当中也对加法原理做了考察。例如如下的两道题: 【例2】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?( ) A.7种 B.12种 C.15种 D.21种 【解析】不同的订报方式对于同学可以选择订一种、两种、三种、四种这样四类,第一类,选择一种有4种订报方式,第二类选订两种有6种订报方式,第三类选定三种有4种订报方式,第四类四种都订有1种订报方式。所以每个同学有4+6+4+1=15种订报方式。 对于加法原理大家要掌握的是分类思想,对于分类问题要掌握加法原理。总的情况数等于每类的情况数加和。下面我们继续了解排列组合问题的基本原理之乘法原理。

加法原理和乘法原理

教师姓名 学科 数学 上课时间 年 月 日 --- 学生姓名 年级 课题名称 加法原理和乘法原理 教学目标 1、理解加法原理和乘法原理;2、解决具体的加乘原理的题目 教学重点 加法原理和乘法原理 教学过程 加法原理和乘法原理 知识要点一:加法原理——分类计数原理 【知识导入1】 我们先来看这样一些问题: 问题1:从西安到北京,每天有3个航班的飞机,有4个班次的火车,有两个班次的汽车.那么,乘坐以上工具从西安到北京,在一天中一共有多少种选择呢? 问题2:用一个大写英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少种不同的号码? 问题3:一个学生从3本不同的物理资料、4本不同的英语资料、6本不同的课外书中任取一本来学习,不同的选法有多少种? 【提炼特点】 (1)完成一件事有若干种方法,这些方法可以分成n 类; (2)每一类中的每一种方法都可以完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数。 【抽象概况】 分类加法计数原理:完成一件事情,可以有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有 2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有 n m m m N +???++=21 种不同的方法. 注意:○ 1 这个原理也称为“加法原理”; ○ 2 分类加法计数原理针对的是“分类”问题,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.

【例1】用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法? 【解析】运用加法原理,把组成方法分成三大类: ①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。 ②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。 ③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。 所以共有组成方法:3+5+2=10(种)。 举一反三 1、书架上有10本故事书,3本历史书,12本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 2、一列火车从上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票? 3、已知往返于甲、乙两地的火车中途要停靠四个站,问:要有多少种不同车票票价(来回票价一样)?需准备多少种车票? 4、各数位的数字之和是24的三位数共有多少个?

乘法原理与加法原理教案

第十一讲 乘法原理与加法原理 知识提要 理解和初步掌握:加法原理、乘法原理、排列和组合的概念及计算方法。 加法原理: m 1+m 2+……+。 乘法原理: m 1×m 2×……×。 经典例题 例1 小刚从家到学校要经过一座桥,从家到桥时有3条路可以走,过了桥再到学校时有4 条路可以走(如下图)。小刚从家到学校一共可以有多少种不同的走法? 分析与解: 把从小刚家到学校的路分为两步。 第一步从家到桥,第二步从桥到学校。 这两步中每一步都不能单独走完从家到学校的路,只有两步合在一起,才能完成。 从图中看出从家到学校共有 12种不同的走法: 根据此题,得出如下结论: 乘法原理 要完成一项任务,由几个步骤实现,第一步有m 1种不同的方法;第二步有m 2种不同的方法;……第n 步有种不同的方法;那么要完成任务共有: m 1×m 2×……×。 例2 有四张数字卡片, 用这四张数字卡片组成三位数,可以组成多少个? 分析与解: 用卡片组成三位数要分成三步,第一步选取百位上的数字,可以有4种选择;第二步选取十位上的数字,可以有3种选择;第三步选取个位上的数字,可以有2种选择。所以可以组成不同的三位数共有: 4×3×2=24(个) 例3:由数字1、2、3、4、5、6可以组成多少个没有重复数字的四位奇数? 分析与解:要求奇数,所以个位数字只能取1、3、5中的一个,有3种取法;十位数字可以从余下的五个数字中任取一个,有5种不同取法;百位数字还有4种取法;千位数字只有3种取法。由乘法原理,共可组成: 3×5×4×3=180(个)没有重复数字的四位奇数。 例4:下图为4×4的棋盘,要把A 、B 、C 、D 四个不同的棋子放在棋盘的方格中,并使每行

加法原理与乘法原理

加法原理与乘法原理 教学内容: 思维训练内容《加法原理与乘法原理》。 教学目标: (1)知识教学目标:理解和掌握加法原理和乘法原理。 (2)能力训练目标:通过分析、探究将现实情景问题转化为加法原理与乘法原理的数学问题来解决。 (3)情感、态度、价值观目标:通过对问题的解决激发学生的学习兴趣,感受数学与生活的密切联系 教学过程: (一)加法原理 如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。 例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法? 解析:把乘坐不同班次的车、船称为不同的走法。要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法 (二)乘法原理 如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。 例:用1、2、3、4这四个数字可以组成多少个不同的三位数? 解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。 选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法 选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法 选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法 单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理所以,可以组成:4×3×2=24(个)不同的三位数 二、加法原理和乘法原理的区别 什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。 三、加乘法原理的综合应用 有时候,做某件事有几类方法,而每一类方法又要分几个步骤完成。在计算做这件事的方法时,既要用到加法原理,也要用到乘法原理,这就是加乘法原理的综合应用。 例:从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3

高中数学第一册(上)加法原理和乘法原理的应用

加法原理和乘法原理的应用 【教学目标】 1.进一步理解两个基本原理. 2.会利用两个原理分析和解决一些简单的应用问题 【教学重点】两个基本原理的进一步理解和体会. 【教学难点】正确判断是分类还是分步,分类计数原理的分类标准及其多样性. 【教学过程】 一、复习引入: 1.分类计数原理: 2.分步计数原理: 3.原理浅释 分类计数原理(加法原理)中,“完成一件事,有n类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以. 分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏. 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理. 可以看出“分”是它们共同的特征,但是,分法却大不相同. 这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要合理、灵活而巧妙地分类或分步. 强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比. 两个基本原理的作用:计算做一件事完成它的所有不同的方法种数 两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成” 二、范例分析: 例1.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种? 解:取b b+是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,a+与取a 由分步计数原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据分类计数原理共有45+45=90种不同取法. 例2.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种? 解:分类标准一:固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种. 分类标准二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,

排列组合与计数原理

排列组合与计数原理 【复习目标】1.能熟练的判断利用加法原理和乘法原理。简单的排列组合组合数公式。 【复习重难点】加法原理和乘法原理公式的计算及应用。 1.高三(1),(2),(3)班分别有学生52,48,50人。 (1)从中选1人当学生代表的不同方法有____________种; (2)从每班选1人组成演讲队的不同方法有____________种; (3)从这150名学生中选4人参加学代会的不同方法有____________种; (4)从这150名学生中选4人参加数理化三个课外活动小组,共有不同方法有__________种。 2.假设在200件产品中有三件次品,现在从中任意抽取5件,期中至少有2件次品的抽法有__________种。 3.若,64 3n n C A 则n=___________。 例1.在1到20这20个整数中,任取两个数相加,使其和大于20,共有________种取法。 变式训练:从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_______。 例2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有______________种. 例3.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_______ . 变式训练:要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有_______ 种不同的排法.

第一讲 加法原理和乘法原理 (练习题)

第一讲加法原理和乘法原理(练习题) 1. 从武汉到上海,可以乘飞机·火车·轮船和汽车。一天中飞机有两班,火车有4班,轮船有2班,汽车有3班。那么一天从武汉到上海,一共有多少种不同的走法? 2. 商店有铅笔5种,钢笔6种,圆珠笔3种。小红要从中任选一种,一共有多少种不同的选法? 3. 4个好朋友在旅游景点拍照留念(不考虑站的顺序),共有多少种不同的照法? 4. 有0、2、3三个不同的数字组成不同的三位数,一共可以组成多少种不同的三位数? 5. 一列火车从甲地到乙地中途要经过5个站,这列火车从甲地到乙地共要准备多少种不同的车票? 6. 五个人进行下棋比赛,每两个人之间都要赛一场,一共要赛多少场? 7. 在5×5的方格中(如右图),共有多少个正方形?

8. 书架上有8本故事书和6本童话书,王刚要从书架上去一本故事书和一本童话书,一共有多少种不同的取法? 9. 服装店里有5件不同的儿童上衣、4条不同的裙子。妈妈为小红买了一件上衣和一条裙子配成一套,一共有多少种不同的选法? 10. 从1、3、5、7这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数? 11.用1、2、3、4这四个数字可以组成多少个不同的三位数? 12.(如图所示):A、B、C、D四个区域分别用红、黄、蓝、绿四种颜色中的某一种涂色。如果要求相邻的区域涂不同的颜色,共有多少种不同的涂色方法? 13. 从4名男生和2名女生中选出班干部3名,其中至少要有一名女生,一共有多少种不同的选法? 14. 有红、黄、蓝、白四种颜色的旗各一面,从中选一面、两面、三面或者四面旗从上到下挂在旗杆上表示不同的信号(顺序不同时,表示的信号也不同),一共可以表示多少种不同的信号?

小学奥数——乘法原理与加法原理

乘法原理与加法原理 在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决. 例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法? 分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即: 第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法: 3×1=3. 如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法: 共有六种走法,注意到3×2=6. 在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的. 在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数. 一般地,如果完成一件事需要个步骤,其中,做第一步有种不同的方法,做第二步有种

不同的方法,…,做第步有种不同的方法,那么,完成这件事一共有 种不同的方法. 这就是乘法原理. 例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法? 例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法? 例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形? 例5.由数字0、1、2、3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数? 分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成. ①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.

第十章排列组合和概率(第1课)加法原理和乘法原理(1)

课题:10.1加法原理和乘法原理(一) 教学目的: 1了解学习本章的意义,激发学生的兴趣. 2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力. 3.会利用两个原理分析和解决一些简单的应用问题. 教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样 的,目的就在于帮助学生对这一知识的理解与应用 两个原理是教与学重点,又具有相当难度.加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想.更具体地说就是把事物分成类或分成步去数.“分类”、“分步”,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点.两个原理,要能在各种场合灵活应用并非易事,所以,着实有其难用之处 教学过程: 一、复习引入: 一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少? 某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法? 揭示本节课内容:等我们学了这一部分内容后,这些问题会很容易解决而这部分内容是代数中一个独立的问题,与旧知识联系很少,但它是以后学习二

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

四年级奥数专题 加法原理和乘法原理

二讲加法与乘法原理 知识导航 加法原理:做一件事情,完成 ..它有n类办法,在第一类办法中有M1种不 同的方法,在第二类办法中有m 2种不同的方法,……,在第n类办法中有m n 种不同的方法,那么完成这件事情共有m 1+m 2 +……+m n 种不同的方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m 1 种方法,完 成第二个步骤有m 2种方法,…,完成第N个步骤有m n 种方法,那么,完成这件 工作共有m 1×m 2 ×…×m n 种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 精典例题 例1:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法?

思路点拨 ①:从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法。所以是加法原理的问题。 ②:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题。 模仿练习 孙老师的一个口袋内装有60个小球,另一个口袋内装有80个小球,所有这些小球颜色各不相同。问: (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法? 例2:一把钥匙只能开一把锁,淘气有7把钥匙和7把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙? 思路点拨 要求“最多”多少次配好锁和钥匙,就要从最糟糕的情况开始考虑:第1把钥匙要配到锁,最多要试6次(如果6次配对失败,第7把锁就一定是这把钥匙,不用再试);同理,第2把钥匙最多要试5次;……第6把锁最多试1次,最好一把锁不用试。

乘法原理和加法原理

乘法原理和加法原理 加法原理:完成一件工作有几种不同的方法,每种方法又有很多种不同的方法,而且这些方法彼此互斥,那么完成这件方法的总数就是等于各类完成这件工作的综合。这类方法称为加法原理,也叫分类计数原理。 乘法原理:如果完成一件工作需要很多步骤,每个步骤又有很多种方法,那么完成这件工作的方法就是把每一步骤中的不同方法乘起来,这类方法称为乘法原理,也叫分步计数原理。 例题: 例1. 小军、小兰和小红三个小朋友排成一排照相,有多少种不同的排法, 例2. 书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书。如果从中各取 一本科技书、一本故事书、一本英语书,那么共有多少种取法, 例3.一个盒子里装有5个小球,另一个盒子里装有9个小球,所有的这些小球的颜色各不相同。 (1)从两个盒子任取一个球,有多少种不同的取法, (2)从两个盒子里各取一个球,有多少种不同的取法, 例4.四个数字3、5、6、8可以组成多个没有重复数字的四位数, 例5.用四种不同的颜色给下面的图形涂色,使相邻的长方形颜色不相同,有多少种不同的涂法, B A C D

当堂练: 1. 五一前夕,学校举行亲子活动,玲玲有红、白、黄、花四件上衣和蓝、黄、青共三种颜 色的裙子,找出来搭配着穿,一共有多少种不同的搭配方法, 2.甲、乙、丙三个组,甲组6人,乙组5人,丙组4人,如果从三组中选出一个代表,有多少种不同的选法, 3.有7、3、6三个数字卡片,能组成几个不同的三位数, 课堂作业: 1. 春节期间,有四个小朋友,如果他们互相寄一张贺卡,一共寄了多少张, 2. 有8,0,2,4,6五个数字可以组成几个不同的五位数, 3. 一个袋子里装有6个白色乒乓球,另一个袋子里装有8个黄色乒乓球。 (1).从两个袋子里任取一个乒乓球,共有多少种不同取法? (2).从两个袋子里各取一个乒乓球,有多少种不同取法, 4. 南京到上海的动车组特快列车,中途只停靠常州、无锡、苏州三个火车站, 共要准备多少种不同的车票,有多少种不同的票价,(考虑往返) 5.在A、B、C、D四个长方形区域中涂上红、黄、蓝、黑这四种颜色,使任何相邻两个长方形颜色不同,一共有多少种不同的涂法, A B C D 6.有6个不同的文具盒,4支不同的铅笔,4支不同的钢笔,2把不同的尺子。若从中各取一个,配成一套学习用具,最多可以有多少种不同的配法,

抽屉原理与排列组合.

抽屉原理 把4只苹果放到3个抽屉里去,共有3种放法,不论如何放,必有一个抽屉里至少放进两个苹果。同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。……更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。 利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。 【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。 【例2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么? 【分析】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。 想一想,例2中4改为7,3改为6,结论成立吗? 【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)? 【分析】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。 【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球? 【分析】从最“不利”的取出情况入手。 最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

四年级数学思维训练:加法原理与乘法原理

四年级数学思维训练:加法原理与乘法原 理 1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个? 分析:从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个 2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页? 分析:按数位分类:一位数:1~9共用数字1*9=9个;二位数:10~99共用数字2*90=180个;

三位数:100~999共用数字3*900=2700个,所以所求页数不超过999页,三位数共有:2355-9-180=2166,2166 3=722个,所以本书有722+99=821页。 3、上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页? 分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数,利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)2=351个(351- 189)3=54,54+99=153页。 4、从1、2、3、4、 5、 6、 7、 8、 9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。 分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55 从极端考虑分成最小和最大的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55 最接近的

两组为27+28 所以共有27-15+1=13个不同的积。 另从15到27的任意一数是可以组合的。 5、将所有自然数,自1开始依次写下去得到:12345678910111213 ,试确定第206788个位置上出现的数字。 分析:与前面的题目相似,同一个知识点:一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置,还剩:206788-9-180-2700-36000=167899,167899 5=33579 4 所以答案为33579+100=33679的第4个数字7. 6、用1分、2分、5分的硬币凑成1元,共有多少种不同的凑法? 分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5

高中数学排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

3年级加法原理与乘法原理

加法原理与乘法原理 例1 书架上有1 0本故事书、3本历史书、1 2本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 例2 一列火车从上海到南京,中途要经过6个站,这列火车要准备多少种不同的车票? 例3 . 数数图中有多少正方形。 例 4 爸爸、妈妈和小明三人在公园照相,共有多少种不同的照法? 例5 从甲地到乙地有2条路可走,从乙地到丙地有3条路可走。试问从甲地经乙地到丙地共有多少种不同的走法? 例6 书架上有4本故事书,7本科普书,志远从书架上任 取1本故事书和1本科普书。共有多少种不同的取法? 例7 用9、8、7、6这4个数字可以组成多少个没有重复数字的三位数?这些三位数的和是多少? 例8如图,A 、B 、C 、D 4个区域分别用红、黄、蓝、白4种颜色中的某一种染色。若要求相邻的区域染不同的颜色,那么共有多少种不同的染色方法? 例9 如图,小明家到学校有3条东西向的马路和5条南北向的马路。他每天步行从家到学校只能向东或向南 思考与练习: 1.从甲城到乙城,可乘汽车、火车或飞机。已知一天中汽车有2班,火车有4班,飞机有3班,从甲城到乙城共有多少种不同的走法 2.书架上层放有7本不同的故事书,中层有6本不 同的科技书,下层有4本不同的历史书。如果从书架上任取一本书,有多少种不同的取法? 3.平面上有8个点(其中没有任何三个点在一条直线上),经过每两点画一条直线,共可以画多少条直线? 4.从2、3、5、7 、11、13这六个数中,每次取出两个数,分别作为一个分数的分子和分母,一共可以组成多少个真分数? 5.十把钥匙开十把锁,但钥匙已经搞乱了,问:最多试多少次即可将钥匙和锁配起来? 6.用1、2.3.4、5这五个数字可以组成多少个没有重复数字的四位数?将它们从小到大排列起来,5124是第几个? 7.某人到食堂去买饭,主食有3种,副食有5种,他 主食和副食各买一种,共有多少种不同的买法? 8.衣架上有2顶帽子、3件上衣、3条裤子。从中任取1顶帽子、1件上衣、1条裤子可以组成一套装束,最多可配成多少种不同的装束? 9.甲、乙两个班级进行乒乓球比赛,每班选3人,每人都要和对方的每个选手赛一场,一共要赛多少场? 10.从5、7、11、13这四个数中每次取2个数组成分数,一共可以组成多少个分数?

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

加法原理与乘法原理随堂练习含答案

加法原理与乘法原理随堂练习含答案 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

加法原理与乘法原理 一、选择题 1. [2013·苏州联考]某电话局的电话号码为139××××××××,若最后五位数字是由6或8组成的,则这样的电话号码一共有( ) A. 20个 B. 25个 C. 32个 D. 60个 答案:C 解析:采用分步计数的方法,五位数字由6或8组成,可分五步完成,每一步有两种方法,根据分步乘法计数原理有25=32个,故选C. 2. [2013·四川德阳第二次诊断]现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) A. 81 B. 64 C. 48 D. 24 答案:A 解析:每个同学都有3种选择,所以不同选法共有34=81(种),故选A. 3. [2013·抚顺模拟]只用1、2、3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有( ) A. 6个 B. 9个 C. 18个 D. 36个 答案:C 解析:对于1、2、3三个数组成一个四位数,其中必有一个数要重复,从三个中选一个有C1 3 种,这样重复的数有2个,利用插空法知共有 A3 3种,因此共有3A3 3 =18个这样的四位数. 4. [2013·福州质检]如图所示2×2方格,在每一个方格中填入一 个数字,数字可以是1、2、3、4中的任何一个,允许重复.若填入A方

格的数字大于B 方格的数字,则不同的填法共有( ) A. 192种 种 C. 96种 D. 12种 答案:C 解析:可分三步:第一步,填A 、B 方格的数字,填入A 方格的数字大于B 方格中的数字有6种方式(若方格A 填入2,则方格B 只能填入1;若方格A 填入3,则方格B 只能填入1或2;若方格A 填入4,则方格 B 只能填入1或2或3);第二步,填方格 C 的数字,有4种不同的填 法;第三步,填方格D 的数字,有4种不同的填法.由分步计数原理得,不同的填法总数为6×4×4=96. 5. 若从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数,则不同的取法共有( ) A. 66种 B. 63种 C. 61种 D. 60种 答案:D 解析:从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇 数的取法分为两类:第一类取1个奇数,3个偶数,共有C 15C 3 4=20种取法;第二类是取3个奇数,1个偶数,共有C 35C 14=40种取法.故不同的取 法共有60种,选D. 6. [2013·西安调研]某种体育彩票规定:从01至36共36个号码中抽出7个号码为一注,每注2元,某人想从01至10中选3个连续的号码,从11至20中选2个连续的号码,从21至30中选1个号码,从31至36中选1个号码,组成一注,则要把这种特殊要求的号码买全,至少要花费( ) A. 3360元 B. 6720元 C. 4320元 D. 8640元 答案:D

排列组合问题2:加法原理和乘法原理

加法原理和乘法原理导言: 加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。把握这两个原理,并能正确区分这两个原理,至关重要。 一、概念 (一)加法原理 如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。 例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法? 解析:把乘坐不同班次的车、船称为不同的走法。要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。而乘坐火

车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法 (二)乘法原理 如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。 例:用1、2、3、4这四个数字可以组成多少个不同的三位数? 解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。 选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法 选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法 单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理

相关文档
相关文档 最新文档