文档库 最新最全的文档下载
当前位置:文档库 › 等差、等比数列知识点总结材料

等差、等比数列知识点总结材料

等差、等比数列知识点总结材料
等差、等比数列知识点总结材料

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)

2()

1(11

n S S n S a n n n

二、等差数列

1、等差数列及等差中项定义

d a a n n =--1、2

1

1-++=

n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+=

当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。

3、等差数列的前n 项和公式:2)(1n n a a n S +=

d n n na S n 2

)

1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+

5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、……

仍为等差数列。

6、B A a A d Bn An S n +==+=122,,

7、在等差数列}{n a 中,有关n S 的最值问题

利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列

1、等比数列及等比中项定义:

q a a n n

=-1

、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n =

当1≠q 时,q q a S n n --=1)

1(1 q

q a a S n n --=11

4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=?

5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、

m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则

四、求数列}{n a 的最大的方法:

1

-1n n n n a a a a ≥≥+

五、求数列}{n a 的最小项的方法:

1

-1n n n n a a a a ≤≤+

例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。

例:已知数列}{n a 的通项公式为:n

n n n a 10

)

1(9+=,求数列}{n a 的最大项。

数列求和方法总结

1、公式法

(1)等差数列

(2)等比数列

2、分组求和法

类型:数列{a n}的通项公式形如a n=b n±c n,而{b n}是等差数列,{c n}是等比数列。例4:计算的值

练习:求数列的前n项和Sn:

(1)

(2)

1

3

(3)1111

1

1

2

2

1

4

3

1

8

1

2

2

3

1

3

2

3

1

3

2

3

1

3

2

3

1

2

1

2

1

4

1

2

1

4

1

2

23456212

1

,,,…,,…;

,,,…,,…;

,+,+,…,+++…+,….

()

n

n

n n

n

+

++++

+

-

-

3、裂项相消法

常见裂项技巧:

?

?

?

?

?

-

-

=

-

-

=

=

1

1

)

1

)

1(

1

1

1

1

q

q

q

a

a

q

q

a

q

na

S

n

n

n

4

)]1

(

[

...

3

2

1)4(

2

3

3

3

3

+

=

+

+

+

+

n

n

n

6

)1

2

)(

1

(

...

3

2

1)3(2

2

2

2

+

+

=

+

+

+

+

n

n

n

n

d

n

n

na

n

a

a

S n

n2

)1

(

21

1

-

+

=

+

=

1111

+3+5++(2-1)

2482n

n

;

1

1

1

)1

(

1

)1(

+

-

=

+n

n

n

n

;

1

1

1

)2(n

n

n

n

-

+

=

+

+

);

1

2

1

1

2

1

(

2

1

)1

2

)(1

2(

1

)3(

+

-

-

=

+

-n

n

n

n

2

例5、化简

练习

4、倒序相加法

例5、

例6、1、已知()x

f x =,

设123()()()()n n

S f f f f n n n n

=+++

+,求n S

5、错位相减法

常应用于形如{a n ·b n }的数列求和,其中{a n }为等差数列, {b n } 为等比数列.

例7、

练习:

练习:数列}{n a 的前n 项和为n S ,11=a ,121+=+n n S a (1≥n ) (1)求数列}{n a 的通项公式n a

(2)等差数列}{n b 的各项为正数,且52=b ,又11b a +,22b a +,33b a +成等比数列,求n b (3)求数列}{n n b a ?的前n 项和n T

.11

341231121n n +++++++++ .)12()12(1751531311的值求+?-++?+?+?=n n S n ...

3

32211=+=+=+---n n n a a a a a a 特点:。 89sin 88sin 3sin 2sin 1sin 22222+++++1221-328252-?++?+?+=n n n S )( 1

2)21

(1-3)21(82152-?++?+?+=n n n S )( ;321132112111)2(n +++++++++++ 12413410474)3(-?+++?+?+n n )(

数列通项公式方法总结

1、公式法

等差数列的通项公式: d n a a n )1(1-+= d m n a a m n )(-+= 等比数列的通项公式: 11-=n n q a a

m n m n q a a -=

2、累加法

例1、

例2、

例3、

3、累乘法

例4、 练习:

)

)((1N n n f a a n

n ∈=-+类型:n n n a a n a a 求,,11211=++=+n

n n a a n a a 求,,12311=-+=+n n n n a a a a 求,,1311=+=+))((1N n n f a a n n ∈=+类型:n n n n a a a a 求,,3211==+111

1,,n n n n a a a a n ++==求n n a S 求、利用411 ,=1,2

n n

n S n a S S n -?=?-≥?431,n n n S a

=+例:求)

)(1(31*N n a S n

n ∈-=练习:.}{,,3,2,1,S 311S n }{)4(432n

11n 的通项公式的值及数列求,,且项和为的前、数列n n n a a a a n a a a ?

?===+

5、取倒数

例6、已知数列{a n }中,a 1=1, a n +1+3a n+1a n -a n =0, 求数列{a n }的通项公式.

6、取对数

例7、

7、构造法

主要用于形如a n+1=c a n +d 的已知递推关系式求通项公式。 例8、a 1=3,a n+1=2a n +3,求a n

1n n n pa a p qa +=

+类型:n

n n n a

a a a a 求,、例,122511=+=+1p n n a Aa +=类型:n

n n a a a a 求,2,13

1==+1111111,23

(2)691,n n n n n n a a a a a a a a ++=+==+=练习:(1),求,求111,32n n n n a a a a a +==+练习:,求1122,1,n n n n a a a a +=+=求1

1123,1,n n n n a a a a ++=+=求{}

{}

11(6)3,2(2)..

n n n n n n n a a a n s a s s n a -==?≥、已知数列的首项通项与前项和之间满足求数列的通项公式

8、特征根法

形如(其中p,q 为常数)型

设p q ,为实数,αβ,是方程20x px q -+=的两个实根,

数列{}n x 满足1x p =,2

2x p q =-,12n n n x px qx --=-(34n =,,

…). (1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,1

4

q =

,求{}n x 的前n 项和n S .

111296,1,2,n n n n a a a a a a +-=+==例、求11121044,1,2,n n n n a a a a a a +-=-==例、求1212

11,()n n n n n x x a Ax Bx x a A Bn x =+=方法总结:若方程有两个根,则 若方程只有一个根,则+111228,1,2,n n n n a a a a a a +-=+==练习、求111269,1,2,n n n n a

a a a a a +-=-==练习、求

等差等比数列的证明例举

等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S k q k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+(等差) 2 12n n n a a a ++=?(等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1 n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 1121 33n n a a +=+ ,在考虑构造“1-”:112111111333n n n a a a +?? -=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列

等差、等比数列知识点总结

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、…… 仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1)1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10) 1(9+=,求数列}{n a 的最大项。

等比数列知识点总结 (1)

等比数列 知识梳理: 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?= ?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即: 2 A ab = 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项 互为相反数) (2)数列{}n a 是等比数列2 11n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,为等比数列 (2)等比中项:2 1111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质:

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈)注:下面所有涉及n ,*n N ∈省略,你懂的。 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列, 那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211()2 2 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项 和等于项数乘以中间项) 5、等差数列的判定方法

(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、 d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中 的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和 211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0。 (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系

等比数列知识点总结

等比数列知识点总结 1、等比数列的定义:,称为公比 2、通项公式:,首项:;公比:推广: 3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列是等比数列 4、等比数列的前项和公式:(1)当时,(2)当时,(为常数) 5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列(2)等比中项:为等比数列(3)通项公式:为等比数列 6、等比数列的证明方法:依据定义:若或为等比数列 7、等比数列的性质:(1)当时①等比数列通项公式是关于的带有系数的类指数函数,底数为公比;②前项和,系数和常数项是互为相反数的类指数函数,底数为公比。(2)对任何,在等比数列中,有,特别的,当时,便得到等比数列的通项公式。因此,此公式比等比数列的通项公式更具有一般性。(3)若,则。特别的,当时,得注:(4)数列,为等比数列,则数列,,,,(为非零常数)均为等比数列。(5)数列为等比数列,每隔项取出一项仍为等比数列(6)如果是各项均为正数的等比数列,则数列是等差数列(7)若为等比数列,则数列,,,成

等比数列(8)若为等比数列,则数列,,成等比数列(9)①当时,②当时,③当时,该数列为常数列(此时数列也为等差数列);④当时,该数列为摆动数列、(10)在等比数列中,当项数为时,二 例题解析 【例1】 已知Sn是数列{an}的前n项和,Sn=pn(p∈R,n∈N*),那么数列{an}、() A、是等比数列 B、当p≠0时是等比数列 B、 C、当p≠0,p≠1时是等比数列 D、不是等比数列 【例2】 已知等比数列1,x1,x2,…,x2n,2,求x1x2x3…x2n、式;(2)已知a3a4a5=8,求a2a3a4a5a6的值、 【例4】 设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d) 2、 【例5】

证明或判断等差(等比)数列的常用方法

证明或判断等差(等比)数列的常用方法 湖北省 王卫华 玉芳 翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢且听笔者一一道来. 一、利用等差(等比)数列的定义 在数列 {} n a 中,若 1n n a a d --=(d 为常数)或 1 n n a q a -=(q 为常数),则数列{}n a 为等差(等比)数列.这是证明数列{}n a 为等差(等比)数更最主要的方法.如: 例1.(2005北京卷)设数列{}n a 的首项114a a =≠,且11 214 n n n a n a a n +???=??+??为偶数为奇数 , 记211 1234 n n b a n -=-=,,,,…. (Ⅰ)求23a a ,;(Ⅱ)判断数列{}n b 是否为等比数列,并证明你的结论. 解:(Ⅰ)213211111 44228a a a a a a =+=+==+,; (Ⅱ)43113428a a a =+=+,所以54113 2416 a a a ==+, 所以1123351111111144424444b a a b a a b a a ????=- =-=-=-=-=- ? ????? ,,, 猜想:{}n b 是公比为 1 2 的等比数列. 证明如下:因为121221111111()424242 n n n n n b a a a b n *++-??=-=-=-=∈ ???N , 所以{}n b 是首项为14a - ,公比为1 2 的等比数列. 评析:此题并不知道数列{}n b 的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。

等比数列性质及其应用知识点总结与典型例题(经典版)

等比数列知识点总结与典型例题 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或 为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若* (,,,) m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? 等差和等比数列比较:

高二数学知识点总结高二数学必修5等比数列知识点总结

高二数学知识点总结高二数学必修5等比数列 知识点总结 等比数列在人们的日常生活中运用比较广泛,也是高二数学课本重点知识点,下面是WTT给大家带来的高二数学必修5等比数列知识点总结,希望对你有帮助。 高二数学必修5等比数列知识点 高二数学学习方法 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。 (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由

一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。 (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。 (7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 (8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。 看了“高二数学必修5等比数列知识点总结”的人还看了: 1.高二数学等比数列公式归纳 2.高中数学必修五等比数列及其前n项和知识点总结 3.高二数学必修5等差数列知识点 4.高中数学必修5等比数列练习 5.高一数学必修5等比数列的前n项和知识点总结

高一数学必修5等比数列知识点总结

高一数学必修5等比数列知识点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

等差数列与等比数列 一、基本概念与公式: 1、等差(比)数列的定义; 2、等差(比)数列的通项公式: 等差数列d n a a n )1(1-+=【或=n a d m n a m )(-+】 等比数列(1)11-=n n q a a ; (2)m n m n q a a -= .(其中1a 为首项、m a 为第m 项,0≠n a ;),*∈N n m 3、等差数列的前n 项和公式:2)(1n n a a n S += 或2 )1(1d n n na S n -+= 等比数列的前n 项和公式:当q=1时,S n =n a 1 (是关于n 的正比例式); 当q≠1时,S n =q q a n --1) 1(1=,K q K n -? S n =q q a a n --11 二、有关等差 、比数列的几个特殊结论 等差数列、① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 等比数列{}n a 中,若),,,(*∈+=+N q p n m q p n m ,则q p n m a a a a ?=? 注意:由n S 求n a 时应注意什么? 1n =时,11a S =; 2n ≥时,1n n n a S S -=-. 2、等比数列{}n a 中的任意“等距离”的项构成的数列仍为等比数列. 3、公比为q 的等比数列{}n a 中的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、 S 4m - S 3m 、……(S m ≠0)仍为等比数列,公比为m q . 4、若{}n a 与{}n b 为两等比数列,则数列{}n ka 、{} k n a 、{}n n b a ?、? ?????n n b a

等差、等比数列证明(补差1)

1. 等差、等比数列证明 例 1:已知数列前n 项和n s n n 22 +=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]121222 1-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 例2: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2=,求证:数列{}n c 是等差数列; 证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111 -+-?=-∴?=n n n n n a a b (),432321 22122111111 1=??=-=-=-∴-++++++n n n n n n n n n n n a a a a c c 又21 21 1==a c , {}n c ∴是首项为21,公差为43 的等差数列。

例3:设数列{}n a 的前n 项的和() +∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2()1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ()()()[] 12412142221+=+-+--++=-=-n n n n n S S a n n n ∴()[](),2121121=+-++=-+n n a a n n 对于任意2≥n 都成立,从而数列 432,,a a a 是等差数列。 注:由于212-=-a a ,故21=-+n n a a 不对任意N n ∈成立,因此,数列{}n a 不是等差数列。 例4:设数列{}n a 的首项11=a ,前n 项和n s 满足关系()t s t ts n n 33231=+--,求证{}n a 为等比数列。 证明如下:3≥n 时: ()t s t ts n n 33231=+-- ()t s t ts n n 332321=+--- 两式相减得:()()()0323211=-+-----n n n n s s t s s t 即:()03231=+--n n a t ta 所以:t t a a n n 3321+=- (这只能说明从第二项开始,后一项与前一项的比为定值,所以需要对第二项与第一项的比另外加以证明,以达到定义的完整性。) 又因为2=n 时: ()t s t ts 332312=+-

等比数列知识点总结及题型归纳

等比數列知識點總結及題型歸納 1、等比數列の定義: ()()*1 2,n n a q q n n N a -=≠≥∈0且,q 稱為公比 2、通項公式: ()11110,0n n n n a a a q q A B a q A B q -===??≠?≠,首項:1a ;公比:q 推廣:n m n m n n n m n m m m a a a a q q q a a ---=?=?= 3、等比中項: (1)如果,,a A b 成等比數列,那麼A 叫做a 與b の等差中項,即:2A ab =或A ab =± 注意:同號の兩個數才有等比中項,並且它們の等比中項有兩個 (2)數列{}n a 是等比數列211n n n a a a -+?=? 4、等比數列の前n 項和n S 公式: (1)當1q =時,1n S na = (2)當1q ≠時,() 11111n n n a q a a q S q q --==-- 11''11n n n a a q A A B A B A q q =-=-?=---(,,','A B A B 為常數) 5、等比數列の判定方法: (1)用定義:對任意のn ,都有11(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,為等比數列 (2)等比中項:21111(0){}n n n n n n a a a a a a +-+-=≠?為等比數列 (3)通項公式:()0{}n n n a A B A B a =??≠?為等比數列 6、等比數列の證明方法: 依據定義:若()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?為等比數列 7、等比數列の性質: (2)對任何*,m n N ∈,在等比數列{}n a 中,有n m n m a a q -=。 (3)若*(,,,)m n s t mn st N +=+∈, 則n m s t a a a a ?=?。特別の,當2m n k +=時,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? (4)數列{}n a ,{}n b 為等比數列,則數列{ }n k a ,{}n k a ?,{}k n a ,{}n n k a b ??,{}n n a b (k 為非零常數)均為等比數列。 (5)數列{}n a 為等比數列,每隔*()k k N ∈項取出一項23(,,,,)m m k m k m k a a a a +++???仍為等比數列 (6)如果{}n a 是各項均為正數の等比數列,則數列{log }a n a 是等差數列 (7)若{}n a 為等比數列,則數列n S ,2n n S S -,32,n n S S -???,成等比數列 (8)若{}n a 為等比數列,則數列12n a a a ??????,122n n n a a a ++??????,21223n n n a a a ++???????成等比數列

等差等比数列练习题(含答案)

一、选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列 ( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列 {}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则 y c x a +的值为 ( ) (A ) 2 1 (B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项, y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列 {}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C ) z y x 1,1,1成等差数列 (D )z y x 1 ,1,1成等比数列 7、数列 {}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列 (A )4 (B )3 (C )2 (D )1 8、数列1 ?,16 1 7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212 112 +--+n n n 9、若两个等差数列 {}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足 5 524-+= n n B A n n ,则 13 5135b b a a ++的值为 ( ) (A ) 9 7 (B ) 7 8 (C ) 2019 (D )8 7 10、已知数列 {}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) (A )56 (B )58 (C )62 (D )60 11、已知数列 {}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列 的前n 项和为 ( )

证明数列是等差或等比数列的方法

一、证明或判断数列为等差数列的方法 1.定义法 在数列{}n a 中,若d a a n n =--1(d 为常数),则数列{}n a 为等差数列 例:已知正项数列{}n a 的前n 项和为n S ,3 21=a ,且满足2 11322++=+n n n a S S (*N n ∈) 证明:数列{}n a 是等差数列 证明:由2 11322++=+n n n a S S 得2 1132)(2++=++n n n n a S a S 整理得12 1234++-=n n n a a S 则n n n a a S 23421-=- 两式相减得n n n n n a a a a a 2233412 2 1+--=++ n n n n a a a a 2233122 1+=-++ 因为{}n a 是正项数列,所以01>++n n a a 所以()231=-+n n a a ,即3 21=-+n n a a 所以{}n a 是首项为32,公差为3 2 的等差数列 2.等差中项法 212{}n n n n a a a a +++=?是等差数列 例:设数列{}n a 的前n 项和为n S ,已知11=a ,62=a ,113=a ,且 1(58)(52)123n n n S n S An B n +--+=+=,,,,,其中A 、B 为常数 (1)求A 与B 的值 (2)证明数列{}n a 是等差数列 解:(1)因为11=a ,62=a ,113=a ,所以1231718S S S ===,, 把1=n ,2=n 分别代入()()B An S n S n n n +=+--+25851 得B A +=?-?-1773 B A +=?-?2712182 解得:20-=A ,8-=B (2)由(1)知()()82025851--=+--+n S n S n n n 整理得()82028511--=---++n S S S S n n n n n

等比数列知识点总结及题型归纳(5.17)

等比数列知识点总结及题型归纳 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m n m m m a a a a q q q a a ---=?= ?= 3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或 A ab =± 注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或 为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若()()*12,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? (4)数列{}n a ,{}n b 为等比数列,则数列{}n k a ,{}n k a ?,{}k n a ,{}n n k a b ??,{} n n a b (k 为非零常数)均为等比数列。 (5)数列{}n a 为等比数列,每隔*()k k N ∈项取出一项23(,,,,)m m k m k m k a a a a +++???仍为等比数列

等差数列与等比数列的证明方法

等差数列与等比数列的证明方法 证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。 一、 定义法 01.证明数列是等差数列的充要条件的方法: {}1()n n n a a d a +-=?常数是等差数列 {}2222()n n n a a d a +-=?常数是等差数列 {}3333()n n n a a d a +-=?常数是等差数列 02.证明数列是等差数列的充分条件的方法: {}1(2)n n n a a a d n --=≥?是等差数列 {}11(2)n n n n n a n a a a a +--=-≥?是等差数列 03.证明数列是等比数列的充要条件的方法: {}1 (00)n n n a q q a a +=≠≠?1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法: 1 n n a q a -=(n>2,q 为常数且≠0){}n a ?为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有 1 n n a q a -== (常数0≠);②

n *∈N 时,有 1 n n a q a +== (常数0≠) . 例1. 设数列12,,,,n a a a 中的每一项都不为0。 证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有 1223111 111n n n n a a a a a a a a +++++= 。 证明:先证必要性 设{}n a 为等差数列,公差为d ,则 当d =0时,显然命题成立 当d ≠0时, ∵ 111111n n n n a a d a a ++?? =- ??? 再证充分性: ∵ 122334 111 a a a a a a ++???1111n n n n a a a a ++++= ?? ………① ∴ 122334 111 a a a a a a ++???11212111n n n n n n a a a a a a ++++++++= ??? ………② ②﹣①得: 121211 11n n n n n n a a a a a a +++++=- ??? 两边同以11n n a a a +得:112(1)n n a n a na ++=+- ………③ 同理:11(1)n n a na n a +=-- ………④ ③—④得:122()n n n na n a a ++=+ 即:211n n n n a a a a +++-=- {}n a 为等差数列 例2. 设数列}{n a 的前n 项和为n S ,试证}{n a 为等差数列的充要条件是

等差等比数列知识点梳理及经典例题

A 、等差数列知识点及经典例题 一、数列 由n a 与n S 的关系求n a 由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段 函数的形式表示为1 1(1)(2)n n n S n a S S n -=?=?-≥?。 〖例〗根据下列条件,确定数列{}n a 的通项公式。 分析:(1)可用构造等比数列法求解; (2)可转化后利用累乘法求解; (3)将无理问题有理化,而后利用n a 与n S 的关系求解。 解答:(1) (2) …… 累乘可得, 故 (3)

二、等差数列及其前n 项和 (一)等差数列的判定 1、等差数列的判定通常有两种方法: 第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。 2、解选择题、填空题时,亦可用通项或前n 项和直接判断。 (1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列; (2)前n 项和法:若数列{n a }的前n 项和n S 是2 n S An Bn =+的形式(A ,B 是常数),则{n a }是等差 数列。 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。 〖例〗已知数列{n a }的前n 项和为n S ,且满足111120(2),2 n n n n S S S S n a ---+=≥=g (1)求证:{ 1 n S }是等差数列; (2)求n a 的表达式。 分析:(1)1120n n n n S S S S ---+=g → 1n S 与1 1n S -的关系→结论; (2)由 1 n S 的关系式→n S 的关系式→n a

等差、等比数列证明的几种情况

等差、等比数列证明的几种情况 在高中数学教材中,对等差,等比数列作了如下的定义:一个数列从第二项起,每一项与前一项的差等于一个常数d ,则这个数列叫等差数列,常数d 称为等差数列的公差。一个数列从第二项起,每一项与前一项的比等于一个常数q ,则这个数列叫等比数列,常数q 称为等比数列的公比。在涉及到用定义来说明一个数列为等差数列或等比数列时,很多时候往往容易忽略定义的完整性,现举一些例子来加以说明。 1、简单的证明 例 :已知数列前n 项和n s n n 22+=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]1212221-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 2、数列的通项经过适当的变形后的证明 例: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2= ,求证:数列{}n c 是等差数列;

证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111-+-?=-∴?=n n n n n a a b (),432321221221 1 11111=??=-=-= -∴-++++++n n n n n n n n n n n a a a a c c 又2 1 211== a c , {}n c ∴是首项为21,公差为4 3 的等差数列。 3、证明一个数列的部分是等差(等比)数列 例3:设数列{}n a 的前n 项的和()+∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2() 1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ( )()()[] 124121422 21+=+-+--++=-=-n n n n n S S a n n n

(完整版)等差等比数列知识点总结

等差等比数列知识点总结 1. 等差数列: 一般地,如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d叫做等差数列的公差,即 a n a n 1 d (d为常数)(n 2); 2. 等差中项: 1)如果a , A ,b成等差数列,那么A叫做a与b的等差中 项.即: 或2A a b 3. 等差数列的通项公式: 一般地,如果等差数列 a n 的首项是a1 ,公差是 d ,可以得到等差数列的通 项公式为: a n a1 n 1d 推广:a n a m(n m)d .a n a m 从而 d ; nm 4.等差数列的前n 项和公式: n(a1 a n)n(n 1) d 2 1 2 S n na1 d n (a1 d)n An Bn 2 2 2 2 (其中A、B是常数,所以当d≠ 0时,S n是关于n的二次式且常数项为0)5.等差数列的判定方法 (1)定义法:若a n a n 1 d或a n 1 a n d(常数n N )a n 是等差数列.(2)等差中项:数列a n是等差数列 2a n a n-1 a n 1(n 2)2a n 1a n a n 2 . (3)数列a n 是等差数 列a n kn b (其中k,b 是常数)。 (4)数列a n 是等差数 列S n An2Bn, (其中A、B是常数)。 6.等差数列的证明方法 定义法:若a n a n 1 d 或 a n1a n d (常数n N )a n 是等差数列. ab 2 2)等差中项数列a n是等数列2a n a n-1 a n 1(n 2) 2a n 1 a n a n 2

高一数学等比数列知识点总结

高一数学等比数列知识点总结 1.等比中项 如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。 有关系: 注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。 2.等比数列通项公式 an=a1*q’(n-1)(其中首项是a1,公比是q) an=Sn-S(n-1)(n≥2) 前n项和 当q≠1时,等比数列的前n项和的公式为 Sn=a1(1-q’n)/(1-q)=(a1-a1*q’n)/(1-q)(q≠1) 当q=1时,等比数列的前n项和的公式为 Sn=na1 3.等比数列前n项和与通项的关系 an=a1=s1(n=1) an=sn-s(n-1)(n≥2) 4.等比数列性质 (1)若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq; (2)在等比数列中,依次每k项之和仍成等比数列。

(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。 记πn=a1·a2…an,则有π2n-1=(an)2n-1, π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做 指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正 项等比数列与等差数列是“同构”的。 (5)等比数列前n项之和Sn=a1(1-q’n)/(1-q) (6)任意两项am,an的关系为an=am·q’(n-m) (7)在等比数列中,首项a1与公比q都不为零。 注意:上述公式中a’n表示a的n次方。 1、ac b2是a,b,c成等比数列的() A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件 2a b2、已知a,b,c,d是公比为2的等比数列,则等于 ()2c d 111A.1B.C.D.248 3、已知{an}是等比数列,且an0, a2a42a3a5a4a625,那么a3a5的值是() A.5 B.6 C.7 D.25 4、在等比数列{an}中,已知a1,a43,则该数列前5项的 积为()9

相关文档
相关文档 最新文档