文档库 最新最全的文档下载
当前位置:文档库 › 复合材料损伤及其修复技术研究

复合材料损伤及其修复技术研究

复合材料损伤及其修复技术研究
复合材料损伤及其修复技术研究

复合材料损伤及其修复技术研究

【摘要】:复合材料是一种新材料,因为其许多特有的优点已经在航空航天、建筑桥梁等领域得到广泛应用,复合材料的损伤修复也逐渐成为研究项目中的热点。其中光修复技术是用得较多的一种,本研究以较常用的复合材料为试件,在简要介绍复合材料的基础上对光修复技术做了详细介绍,期望能为进一步研究复合材料的光修复技术奠定基础。

【关键词】:复合材料;损伤;光修复

引言

复合材料无论是力学性能、损伤情况、失效方面都要比单一材料复杂很多。由于其基体的强度要比增强纤维的强度低很多,导致它抗冲击的性能较差,横向强度以及层间的剪切强度也比较低,当受到局部的冲击时,复合材料普遍会出现纤维断裂、凹痕、剥层、基体破裂等一些损伤现象。而且一旦发生损伤,损伤的区域会在周期性的应力作用下逐渐扩大,进一步影响到复合材料的继续使用。从上个世纪的80年代初,国外已经着手研究和解决复合材料的修复问题,先后投入了大量的人力、物力和资金。到目前为止,美国和欧洲的一些大公司对关于飞机复合材料损伤修理问题开展了较为广泛的研究,并且己经取得一定的成果,但仍然在不断的发展中。早在上个世纪80年代中期,欧美的许多大公司就在飞机的设计文件以及使用手册里面详细规定了复合材料的修复方法,比如美国波音公司的A320维护手册和F-16修理手册。近年来,国内航空航天系统的相关部门对这个问题的紧迫性和重要性已经有所认识,在复合材料的修复问题上也作了许多工作并取得了一些进展,相继成立了空中客车亚洲复合材料结构维修和中国东方航空公司空中客车复合材料结构修理专家系统等致力于研究复合材料修复的机构。但从总体上来看,重视程度依然不够、投资也不足,所以基本上没解决什么问题。对许多缺陷和损伤没有制定明确的修理方法,修理材料、工艺设备等也不够完善。因此,我们通过研究制定关于复合材料的修复手册,更加高效地解决有关复合材料修复的问题,使复合材料能够得到更加广泛的应用。

1.复合材料的性能与特点

复合材料具有很多良好的性能,复合材料代替铝合金结构,可大大降低飞行

器的自重。复合材料最为突出的优势是比模量和比强度(即模量、强度和密度的比值)高。比模量和比强度是材料的承载能力相当重要的指标,如果比强度值越高,其零件的自重就会越小;比模量值越高,零件自身的刚性就会越大。表1是一些金属材料和复合材料的比刚度以及比强度的对照。

表1 常用材料的比强度和比刚度(单位:Gpa)

复合材料另一个突出特点是它的抗疲劳性很好,疲劳破坏是指材料由于变载荷的作用,产生裂缝并导致裂缝逐渐扩展而形成的低应力破坏。金属材料发生疲劳破坏时没有任何预兆,是突然发展的。但是纤维材料却不同,它的破坏一般是从纤维的最薄弱的环节展开的,然后逐渐扩展到纤维与基体的结合面上,正是这一界面能阻止裂纹的进一步扩展,因此,它的破坏是有明显预兆的。另外,纤维复合材料还具有很好的抗声振疲劳性能。出了以上突出有点,复合材料还具有吸能、减振、耐磨、绝缘、耐热和耐腐蚀等许多优点。这也是为什么复合材料能够在民用飞机和军用飞机上都得到极为广泛的应用。

2.复合材料修复的要求

2.1要求修复后可以恢复结构达到标准

修补后,材料的刚度和强度要恢复到设计许可值;恢复结构的耐久性;恢复结构的使用功能:结构修补后重量增加最少;对于飞机控制面的修补,重量分布要满足气动平衡要求。美国联邦航空管理局(FAA)于1984年专门就复合材料飞机结构发出的答询通报AC-107中就修复问题明确规定:维修手册中提供的修复程序应通过分析和实验验证,证明该修复方法可以恢复结构达到适航标准。

2.2要求可以在线修复

修理时间要求尽量少,修补过程中使用的设备和工具要少。由于复合材料及其构件在使用过程中损伤或局部破坏不可避免,现役飞行器的外场快速修复矛盾日益突出:同样在生产过程中冷、热加工的不当操作导致的损伤将直接影响产品质量与经济效益,在线产品的快速修复技术也日趋重要。传统的修复方法如铆(螺)接、粘接、超声波焊接、电阻加热、感应加热虽各具特色,但都有不足之处,难以达到快速修复的目的。寻找适合于在线产品快速修复以及现役飞行器的外场快速修复方法,是复合材料在航空航天领域应用的迫切需要。

3.光修复技术在复合材料的损伤修复中的应用

3.1基本原理

颜色不同的光,其波长不同,具有的能量的也会不同。通过光化当量定律能够求出各种不同波段的光具有的能量,爱因斯坦认为,在光化学反应中,反应分子在吸收一定量的频率光之后会发生反应。

从力学上看,分子是由一种具有质量的原子以及能够将这些原子结合起来的、具有一定结合能力的“弹簧”所组成的。而这种“弹簧”一般有两种类型的振动,一类是沿着结合成原子的那个方向作的伸缩运动;一类是脱离结合轴从而改变角度的变角振动。在常温下,几乎所有的分子都处于不断振动且量子数为零的状态,通过吸收光线能这一方式达到改变分子能级是不大可能的。实际上,因为不同的振动能级的分子能够形成许多转动能级,所以要想改变分子的振动能级,还需要一个必要条件,那就是通过振动是分子的对称性发生变化从而改变偶极矩。如果分子里面的伸缩振动是由同一种原子造成的,那么这种震动就是对称性的,就不会显示出极性,这样分子就不能吸收光子。同样的道理,在有两个原子的分子中,如果原子大小不一,我们就可以认为该分子不是对称的,从直观来说,可认为该分子极性大,对光线是极为敏感的,产生震动时偶极距变化很大。由于分子吸收光线的能力是与原子发生振动时产生的偶极矩变化成正比的,因此,极性大的分子中的原子通过振动增大量子数的能力就会强,以平衡位置为中心的振幅就会变强,温度也就相应上升,这就是分子吸收光线产生热量的原理。

3.2光修复技术参数的确定

3.2.1胶粘剂的确定

不同种类的胶粘剂具有的性能是不同的,这也就决定了它们各自的用途不同,因此选用胶粘剂时,必须全面了解粘接的条件,明确粘接的用途以及目的,依据被粘物体的性质,选择一种适合的胶粘剂。为了更好的恢复材料修复后结构部件的物理以及机械性能,一般要选用与原结构相近或者是的胶系。选用的胶粘剂要具备以下几点特性:(1)要能够经受得住在使用过程中遇到的温度、应力、化学环境的急剧变化;(2)在使用时,胶系要具有高效的载荷传递性能;(3)胶粘剂要具有较好的抗疲劳特性,使其能够抵抗应力松弛;(4)具有比较低的固化温度。但是,没有哪一种胶粘剂系统能在各个方面都达到理想的状态。因此,在实际应用的时候,一般根据自己的需要,通过分析实验结果合理的选择胶粘剂系统。为了确定哪一种胶粘剂最适合用于光修复技术,选择出了三种不同的胶粘剂,根据已有的条件,用光波照射并进行对比分析,根据液固化需要的时间的长短来选择胶液。实验结果如表2所示。

表二胶液选择实验结果

由表二可知,用光照射时,B、C型胶液没有变化,其固化时间与自然状态下的固化时间没有什么区别,而A型胶在受到675、550hm光波的照射后,固化时间则有明显时间缩短。因此,根据实验的要求和目的决定在后面的实验中选择A 型胶。

3.2.2光修复波长选择

不同波段的光波具有的能量不同,光修复技术利用的就是胶液在受到光波照射后能够吸收光波的能量并将其转化为热能,从而是使胶液在较短的时间内液化,然后将损伤或者缺陷的部位修复这一原理,归根结底,它的实质就是能量的相互转换。虽然胶液在吸收光线后能够产生热量,但并不是所有的光线都能够被吸收并发生光化学反应,从而转化成热量。因此,通过实验选择一种最适合于光修复技术就显得尤为重要,这样可以为高效修复受损的复合材料打好基础。试验

中,把光波的波长分为为365、405、435、550、675nm几种,直接照射需要修复的试件,记录下达到同样的修复效果所需要的修复时间,结果如表3所示。

表3 不同的波长修复时间所有的时间

由表3可知,在同样的光激励的条件下,在365、405、435、550、675nm这几个不同波长的光波中,光波550nm以及657nm所需要的修复时间是最短的。通过进一步的分析与比较,在相同的时间范围内, 675nm的光波最容易被所选用的实验材料吸收,550nm的光波相对来说就比较弱。所以在进一步进行光修复的技术研究时,优先选用波长为675nm的光波。

3.2.3实验验证675mm光波修复的可行性

为了进一步验证675nm长的光波在修复受损复合材料方面的可行性,试验中选用目前在飞行器上使用较多的环氧树脂基这一种复合材料制作了两个试件,这两个试件的大小、形状以及重量都相同,其中一个是在人为对其损伤后,用光纤传输波长为675nm的光进行固化,然后用A型胶粘剂将其修复好。试验中记录了在同激振、同振频的条件下的平均时间全息图。实验光路图如下图1所示。

将所拍摄的试件的全息图通过再现后,翻拍成为普通的照片。结果如下图2所示。a是试件在标准状态下的全息干涉条纹图,b是试件在受到损伤之后的全息干涉条纹图,c是用675nm长的光波修复之后的试件全息干涉条纹图。比较a、b两组图可知,与试件的标准状态相比,损伤试件的条纹特点是:条纹间距变窄。说明试件在受到损伤后,振幅增大,即离面位移变大。从弹性力学的角度可知,

抗弯刚度和离面位移成反比,因此,由实验结果可知:试件受损后抗弯刚度变小,即复合材料在损后其机械性能发生了变化;比较a、c两组图可以发现其条纹分布情况基本上相似,说明进行光固化修复后,试件基本恢复了其原始状态,达到了较为理想的效果,因此,该方法是可行的。

图2 全息时间平均干涉条纹图

4.结论

复合材料在日常工程中的应用逐渐增多,因此,快速修复复合材料的技术也越来越重要。找到一种设备简单、效果好、时间短的修复方法变得尤为急切。光修复技术的本质是将光能转化成热能,只有能够被胶体选择并且吸收的光波,其能量才能够被转化成热能,所以研究光波的波长、传播方式以及胶体的类型及其重要。文中探讨了光修复技术在修复复合材料损伤中的应用,并用相关实验证明了光修复的可行性,为进一步研究光修复技术提供了一些实验根据。当然,光修复技术作为一项有待开发的新的技术,很多方面还都处在基础性的研究阶段,还需要进一步努力进行探索。

参考文献

[1]田秀云.复合材料结构及维修[M].北京:中国民航出版社,2005

[2]薛克兴.复合材料结构的损伤及其修补[M].北京:航空工业出版社,2007,

7:31、107—298.

[3]赵桀森.先进复合材料手册[M3.北京:机械工业出版社,2003:1541-1545.

[4]陈祥宝.复台材料结构损伤修理[M].北京:化学工业出版社,2009;8-10.

浅析飞机复合材料结构修理技术

浅析飞机复合材料结构修理技术 随着科技的不断进步,复合材料逐渐出现在航空领域,在现代航空领域的发展中被广泛应用。由于复合材料已经成为现代飞机结构的重要组成部分,并且其损伤机理与金属损伤存在差异,对复合材料结构修理技术研究具有重要的现实意义。文章主要基于飞机复合材料结构修理基础之上进行研究,促进飞机复合材料的可持续发展。 标签:飞机复合材料;结构修理;技术分析 前言 国内对于先进复合材料在航空领域的应用已经取得一定成效,但对于飞机复合材料结构修理技术的研究依旧需要不断完善。由于现代航空领域需求的不断增加,对复合材料的使用要求逐渐严格。同时在具体的应用过程中需要对复合材料进行维护,体现出飞机复合材料结构修理技术的重要性。 1 飞机复合材料结构类型以及损伤类型 目前,国内外的复合材料在航空领域的应用具有广泛性特点,材料用量占总体用量总重的25%-40%,其中民用飞机占11%-16%,直升机高达60%以上。由此可见,飞机复合材料结构在航空领域的应用具有广泛性特点。对于复合材料以及损伤类型进行分析,加深对复合材料修理技术的理解。 1.1飞机复合材料结构类型 1.1.1 压层板。复合材料当中的压层板主要是由单层板粘合而成,同时构成材料可为不同材质的单层板,也可为各向异性单层板进行构成。由于单层板构成存在复杂性以及非匀质性,导致单层板的实际构成具有各向异性的特点。 1.1.2 蜂窝夹芯结构。蜂窝夹芯机构主要是由薄面板与中间胶接低密度的夹芯构成,具体的面板结构为层压板,面板较薄。其中具体的使用材料为纤维玻璃布、单向碳纤维、编织布、芳纶有机纤维布等材料。蜂窝夹芯结构比常规金属结构具有较高的比强度、抗弯强度、高结构阻尼、消音以及耐声震、隔热性等良好的性能,在航空领域应用具有较好效果。 1.1.3 蜂窝壁板。蜂窝壁板主要是承力面以及蜂窝夹芯构成,蜂窝夹芯位于承力面板之间,使得整个蜂窝壁板的强度增加[1]。此外还有骨架元件以及众多的不锈钢板材料进行实际构成。在蜂窝壁板的实际结构当中,承力面板所承受的质量一般只是自身在平面内的负荷,骨架元件在具体应用中保证局部刚劲,提升固定地点的安全性以及耐用性。 1.2 飞机复合材料损伤类型

叶片修复复合材料 - 副本

风机叶片修复材料浅谈 内容摘要 风力发电机组长期在恶劣的自然环境中暴露运行,不仅要承受强大的风载荷,还要经受气体冲刷、砂石粒子冲击,以及强烈的紫外线照射等外界侵蚀。为了提高损伤修复过程中所使用复合材料的载荷、耐腐蚀和耐冲刷等性能, 必须对所使用叶片修复材料中的树脂基体系统进行精心研究和筛选, 对传统叶片修复工艺进行创新。采用性能优异的环氧树脂, 改善玻璃纤维/树脂界面的粘结性能, 提高叶片的承载能力, 扩大玻璃纤维在大型叶片中的应用范围。研究结果表明叶片修复过程中合理使用的复合材料完全可以达到在恶劣工作环境中长期使用的性能要求。 关键词:风力机; 叶片; 环氧树脂;

引言 随着风力发电机单机功率的不断提高,叶片的质量和尺寸也越来越大,对叶片的要求也越来越高:要求叶片质量轻且分布均匀,外形尺寸精度控制准确;具有最佳的疲劳强度和机械性能,能经受暴风等极端恶劣条件和随机负荷的考验;叶片旋转时的振动频率特性曲线正常,传递给整个发电系统的负荷稳定性好;耐腐蚀、抗紫外线照射和抗雷击的性能好;发电成本较低,维护费用最低。叶片的材料越轻、强度和刚度越高,叶片抵御载荷的能力就越强,叶片就可以做得越大,它的捕风能力也就越强。因此,轻质高强、耐蚀性好、具有可设计性的玻璃纤维增强环氧树脂复合材料是目前国内大型风机叶片生产及修复的首选材料。 本文主要探讨了风机叶片生产和修复过程中所用的主要材料玻璃纤维增强环氧树脂复合材料,以及PVC材料。

一、叶片损伤原因 为了提高风机的发电效率,风机绝大多数处在地理、气候环境相对恶劣的地区,从而导致风机叶片容易遭受损伤。 其中对于风机叶片发生故障率最大的损伤原因是雷击,而且雷击往往会给风机叶片带来较严重的损伤甚至报废。 其次为风沙磨损、酸雨腐蚀,导致叶片表面出现麻点,影响风机使用寿命。 飞鸟撞击也是造成风机叶片损伤的一大杀手,由于风机所在地人眼稀少,所以飞鸟较多,飞鸟撞击往往会使风机叶片表面大面漆胶衣脱落。 另外由于风机叶片质量和体积较大,所以运输和吊装存在较大难度,不可避免的造成一定程度的损伤,发生率较小但若发生后果不堪设想,可能直接导致叶片报废,不可修复。 最后叶片材料老化也是导致风机叶片损伤的一大原因,但是由于材料质量在不断提高,所以发生概率会越来越小。

复合材料泡沫夹层结构冲击损伤的研究

复合材料泡沫夹层结构冲击损伤的研究

毕业设计(论文)题目:复合材料泡沫夹层结构冲击损伤的研究

学士学位论文原创性声明 本人声明,所呈交的论文是本人在导师的指导下独立完成的研究成果。除了文中特别加以标注引用的内容外,本论文不包含法律意义上已属于他人的任何形式的研究成果,也不包含本人已用于其他学位申请的论文或成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌航空大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 作者签名:日期: 导师签名:日期:

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

冲击损伤下航空复合材料修复技术研究进展

冲击损伤下航空复合材料修复技术研究进展 发表时间:2019-01-02T14:25:47.017Z 来源:《信息技术时代》2018年3期作者:李伟栋董少兵郝伟[导读] 随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展 (河南省新乡市飞机场,河南新乡 453000) 摘要:随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展,同时,航天事业也对复合材料的应用提出了新的要求。在航天器材建造中,所使用的复合材料具有各向异性和非均质性的特点,这种特点使得其对于分层损伤和层间断裂十分敏感,为了减少这种损伤对于航天器材的作用发挥的影响,研究人员开始对于冲击损伤下航空复合材料修复技术进行了研究。 关键词:冲击损伤;航空复合材料;修复技术 一、冲击损伤评估 (一)冲击损伤 航天设备在进行使用的过程中,一般所处的环境都是外太空中,这样的外界环境使得在航天器材发挥作用的过程中,可能会出现众多的不可测因素,这些因素的存在会对航天器作用的正常发挥造成一定的影响,为了减少材料的因素对于航天器材的影响,航天器材制作人员在进行材料选择的过程中,一般都会选择高强度、高刚性的复合材料[1]。但是复合材料在使用的过程中,难免会在制造、服役、维修的过程中不可避免的出现缺陷或者损伤,因此复合材料修理的难题就受到了业界的广泛关注。 航空复合材料结构损伤产生的原因或是由制造缺陷引起或是由机械载荷引起,或是由于外界环境引起,在结构损伤中,冲击损伤是对航天器材造成影响最大的。复合材料在进行作用的发挥过程中,由于其各向异性和非均质性对于冲击及其敏感[2]。并且复合材料冲击损伤的机理较为复杂,因此国内外专家针对复合材料的冲击损伤提出了不同的损伤机理计算模型。这些模型的出现有助于研究人员对于航空复合材料修复的进一步研究,推动航天事业的发展与进步。 (二)损伤评估 在对复合材料进行修复时应当提前进行损伤评估,在对复合材料进行损伤评估的过程中,需要进行多方面内容的评估,但是确定修理容限是损伤评估中最为重要的核心工程。在材料修复行业中,所讲的修理容限是指在材料发生故障时观察材料的整体性能是否发生了变化,判断材料是否还存在修理的价值。世界上的航天部门在对复合材料进行修理的过程中一般都会采用冲击后压缩性能来对复合材料的抗冲击和冲击损伤性能进行表征。并且将这种冲击后压缩性能作为复合材料修理容限的一种测量值,通过这种测量值对于复合材料的修理价值做出具体的评价,但是在这种评估方法的使用过程中,也有研究人员提出不应当将这种方法作为唯一的评价标准,因为损伤阻抗与损伤容限是两个不同的概念,在进行研究的过程中,不应当将这两种概念进行混淆,在这种概念的影响下,作者提出用典型铺层试样在规定的冲击条件下得到的冲击损伤破坏曲线的门槛值作为表征复合材料体系损伤容限的物理量[3]。 二、修复技术 (一)机械连接修理 机械连接修理主要是指在复合材料发生损伤时将补板材料与母体材料利用专用的铆钉或螺栓进行联合,这样的修理方法在复合材料的修理过程中由于成本较低,因此在修理过程中较为常见。但是这种修理技术由于在材料修理过程中所使用的铆钉或螺栓密度较高,在修理处易形成二次损伤,导致材料的整体性能下降。随着中国科技技术的不断发展,在机械连接技术的发展中也在不断融入新型制造技术,使机械连接技术向着高智能化方向进行发展[4]。在进行修理的过程中,为了能够较为清晰的观察到复合材料的修理状况,一般会采用数据模型与实验数据相结合的方式。飞机结构在进行连接的过程中一般都是单搭接,所以在进行修理检测的过程中会采用单相静拉伸的方法。并且在近些年对于修复检测的实验中开始考虑到了螺钉载荷分配问题,因而将智能螺栓测试引用到了机械连接之中。智能螺栓在进行检测的过程中,应用其内变形片的变形量输出所形成的电信号来确定在变形片上所形成的具体载荷。 (二)胶结修复技术 在航天材料的修理过程中,除了机械修理外,胶接修复技术也是较为常见的一种修复技术。这种技术在进行应用的过程中,是通过足量的胶粘剂将复合材料补板与母体进行必要的连接,使复合材料的损伤得到修复。胶接修复技术与机械连接修复技术相比,具有更高的实用价值,胶接技术在使用中所形成的胶接区域受力更加均匀,表面更加光滑,受到二次损伤的可能性较小。在胶接修复技术中较为常见的就是贴补法,贴补法在进行应用的过程中,将补板贴于复合材料的损伤处,通过粘贴剂使得材料之间能够进行充分的联合,使用这种技术进行修复的航天材料,在进行使用的过程中,性能比例能够得到相应提高。但是贴补材料在进行使用的过程中易造成修复表面不平滑现象,因此在进行使用的过程中,一般仅仅是在对气动外形要求不高的结构中进行应用。同时这种贴补技术进行的贴补会因为受到外力的影响,发生贴补脱落的情况,因此在贴补过程中,为了避免这种情况的发生,一般都会采用贴板外张扬的方法。除了贴补法外,挖补法也是一种修复技术,在进行挖补修复的过程中,会将复合材料的损伤处打磨成锥形再将修补材料连接到损伤区域,但是这种修复技术在使用的过程中需要高温作用以满足性能和外部结构的需求[5]。 结语: 冲击损伤下航空复合材料修复技术随着航空事业的发展,被越来越多的国家所重视,在进行修复技术的研究过程中投入了大量的资金和技术资源。我国在航天事业的发展上已经取得了重大的成就,但是对于损伤修复技术额研发中依旧存在众多的不足,因此在航天事业的发展过程中,国家航天部应当加大对修复技术的研究力度。 参考文献 [1]韩志杰,刘振宇.航空复合材料薄壁壳体高速冲击损伤特性仿真研究[J].科技与创新,2018(09):19-21. [2]王长越,邢素丽.冲击损伤下航空复合材料修复技术研究进展[J].玻璃钢/复合材料,2017(12):91-98.

复合材料修复资料

玻璃纤维材料的修复 -----------------------------------------------------------------------------------------其他行业的玻璃纤维修复 1.汽车保险杠是玻璃钢的,损坏了只能用玻璃纤维和树脂来修补,首先你需要买树脂和玻璃纤维毡,这些卖玻璃钢产品的门市都有的,树脂论公斤卖的,叫他们给你配好了,因为其实它有三种材料:树脂、催干剂和固化剂,问清楚怎么用?因为都是化学材料,三者放在一起会起化学反应,放热的,量大的话还会爆炸的,所以要注意安全,不要被烫到了,不要被溅到眼睛里;玻璃纤维布注意最好买毡,因为毡是丝状的,可以一根根抽出来,便于修复修平汽车保险杠表面。两者都买好了,开始修理了:拿个容器另外装树脂,少装些,别一次倒完了,然后再放几滴固化剂,注意搅拌均匀,固化剂可以少放,因为他起固化作用,少放固化慢一些就是了,放多了几分钟就完全固化了,你还没来的及修补呢!用个毛刷刷到到损坏的地方,然后贴些玻璃纤维毡,再刷些树脂上去,刷一次贴一次就可以了!干了以后打磨表面,最后喷漆就可以了!做玻璃这行看起来简单,其实也是技术活,要熟练才刷的平,没有空隙才行!液体是不饱和聚酯树脂【型号一般时191和196】但是要加固化剂和促进剂【俗称红水和白水】比例根据温度而不同,调和后要在规定时间内糊完,否则就会固化 2.买玻璃丝布,环氧树脂,固化剂和柔软剂,先把破口处理一下,再刷环氧树脂混合液,后铺玻璃丝布,这样做三脂两布,固化后,打磨平整。 玻璃钢(FRP)亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢,注意与钢化玻璃区别开来。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,性能稳定.机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。 3.树脂和纤维都是玻璃钢的原材料,在混合固化剂和促进剂、在一定温度作用下,粘有树脂的玻璃纤维,因树脂的固化而被粘合在一起,就形成了玻璃钢材质。玻璃钢具有高强、轻质、耐腐蚀的特点,属于复合材料,也就是集合了多种材料的优点而制作出的一种材料。玻璃钢有狭义范畴和广义范畴的说法,狭义就是指玻璃纤维和树脂制作而成的,而广义的玻璃钢,还包括树脂和其它纤维制作成的复合材料,比如碳纤维玻璃钢(比如多数钓鱼竿)、涤纶纤维玻璃钢等等。 4.玻璃钢开裂怎么办 沿着裂缝周围用粗砂纸磨成粗糙,后用树脂和玻璃钢纤维补上 那如果非要修的话,也不是没有办法。树脂选用好点的,一般的也行,还有促进剂、固化剂、优质玻璃纤维布。粉子就不要放了。现在是秋季,温度低,所以固化剂要比夏天时多放,至于精确的比例,我随便估摸一下应该是:固化剂、促进剂、树脂;1:1.5:8 配合玻璃纤维缠在管道上,要让配好的玻璃钢迅速的涂在玻璃纤维布上,要让玻璃钢把玻璃纤维布充分浸透,等待玻璃钢充分固化后,再反复做上几层。就会结实了 航空复合材料结构修理方法 --------------------------------------------------------------------------------------适用于整流罩和玻璃纤维蒙皮1. 1复合材料的缺陷/ 损伤与修理容限

复合材料损伤研究现状

复合材料损伤研究现状 复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。 结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。 结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。 结构损伤诊断技术方面的工作在国外大体分为三个发展阶段: (1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

复合材料损伤及其修复技术研究

复合材料损伤及其修复技术研究 【摘要】:复合材料是一种新材料,因为其许多特有的优点已经在航空航天、建筑桥梁等领域得到广泛应用,复合材料的损伤修复也逐渐成为研究项目中的热点。其中光修复技术是用得较多的一种,本研究以较常用的复合材料为试件,在简要介绍复合材料的基础上对光修复技术做了详细介绍,期望能为进一步研究复合材料的光修复技术奠定基础。 【关键词】:复合材料;损伤;光修复 引言 复合材料无论是力学性能、损伤情况、失效方面都要比单一材料复杂很多。由于其基体的强度要比增强纤维的强度低很多,导致它抗冲击的性能较差,横向强度以及层间的剪切强度也比较低,当受到局部的冲击时,复合材料普遍会出现纤维断裂、凹痕、剥层、基体破裂等一些损伤现象。而且一旦发生损伤,损伤的区域会在周期性的应力作用下逐渐扩大,进一步影响到复合材料的继续使用。从上个世纪的80年代初,国外已经着手研究和解决复合材料的修复问题,先后投入了大量的人力、物力和资金。到目前为止,美国和欧洲的一些大公司对关于飞机复合材料损伤修理问题开展了较为广泛的研究,并且己经取得一定的成果,但仍然在不断的发展中。早在上个世纪80年代中期,欧美的许多大公司就在飞机的设计文件以及使用手册里面详细规定了复合材料的修复方法,比如美国波音公司的A320维护手册和F-16修理手册。近年来,国内航空航天系统的相关部门对这个问题的紧迫性和重要性已经有所认识,在复合材料的修复问题上也作了许多工作并取得了一些进展,相继成立了空中客车亚洲复合材料结构维修和中国东方航空公司空中客车复合材料结构修理专家系统等致力于研究复合材料修复的机构。但从总体上来看,重视程度依然不够、投资也不足,所以基本上没解决什么问题。对许多缺陷和损伤没有制定明确的修理方法,修理材料、工艺设备等也不够完善。因此,我们通过研究制定关于复合材料的修复手册,更加高效地解决有关复合材料修复的问题,使复合材料能够得到更加广泛的应用。 1.复合材料的性能与特点 复合材料具有很多良好的性能,复合材料代替铝合金结构,可大大降低飞行

(完整word版)飞机夹层结构复合材料零部件的损伤形式及修理方法

常见飞机蜂窝板损伤形式及修理方法 航空器复合材料中的蜂窝板是由薄而强的两层面板中间胶接蜂窝材料而成的一种新型复合材料,也称蜂窝层合结构(见图1)。其面板选材有金属板、玻璃纤维、石英纤维、碳纤维等;夹心材料主要有芳纶、玻璃纤维、铝合金及发泡型结构。蜂窝可制成不同的形状。飞机上的蜂窝结构是由耐腐蚀夹心、面板、衬垫、隔板(假梁)、边肋等零件胶合而成。面板与夹芯之间用胶膜胶接,蜂窝夹芯用芯子胶和耐腐蚀胶根据实际需要形状施加真空压力后加温胶接成型。 图1 蜂窝夹心板结构 一、航空复合材料蜂窝结构损伤种类 根据航空复合材料蜂窝结构部件在使用过程中可能出现损伤的情况,我们可以大致将胶接蜂窝结构部件的损伤分以下5类: 1、表面损伤 图2 典型表面凹坑 此类损伤一般通过目视检查发现,包括表面擦伤、划伤、局部轻微腐蚀、表面蒙皮裂纹、表面小凹坑和局部轻微压陷等。这类损伤一般对结构强度不产生明显的削弱。 2、脱胶及分层损伤

该损伤是指纤维层与层之间或面板与夹芯之间的树脂失效缺陷,主要通过敲击检查、超声波检测等手段发现。此类损伤一般不引起结构外观变化,大多是在生产过程中造成的初始缺陷,并在反复使用过程中缺陷不断扩展而导致的。脱胶或分层面积过大会引起整体复合材料强度的削弱,应及时予以修补。 3、单侧面板损伤 这类损伤包括单侧面板局部压陷、破裂或穿孔,一般通过目视检查即可发现。该类型损伤能使一侧面板和蜂窝夹芯都受到损伤(表面塌陷),对气动性能和结构强度影响较大。一旦发现该类损伤必须经过修理和检验确认后方能能重新使用。 4、穿透损伤 该类型损伤是指蜂窝部件出现穿透性损伤、严重压陷和较大范围的残缺损伤等。此类损伤对结构性能和强度有严重的影响,根据受损情况立即予以修理或按需更换新件。 5、内部积水 该损伤原因主要由于蜂窝结构边缘或蜂窝材料对接边缘密封不严或密封失效,在长期使用过程中由于雨水渗透、油液浸泡以及水汽冷凝而造成蜂窝夹芯出现积水。虽然一般情况蜂窝内部积水不会造成严重影响;但在冬季日夜气温变化较大的情况下,由于积液结冰膨胀将会会造成复合材料部件内部树脂基体脱胶;同时在积液的长期浸泡下也会使复合材料的树脂基体的胶接强度大幅降低而降低部件的整体性能;特别是各类复合材料制备的舵面、襟翼、翼身整流罩及发动机部件等,均应及时检查其内部蜂窝结构的积水情况并作出相应修理措施。目前该类损伤主要通过红外热成像、X-射线检测仪等手段进行检测。 二、蜂窝结构的检查方式 1、目视检查 目视检查法是使用最广泛、最直接的无损检测方法。主要借助放大镜和内窥镜观测结构表面和内部可达区域的表面,观察明显的结构变形、变色、断裂、螺钉松动等结构异常。它可以检查表面划伤、裂纹、起泡、起皱、凹痕等缺陷;尤其对透光的玻璃钢产品,可用透射光检查出内部的某些缺陷和定位,如夹杂、气泡、搭接的部位和宽度、蜂窝芯的位置和状态、镶嵌件的位置等。 2、手锤敲击法 用于单层蒙皮蜂窝结构。用手锤敲击蜂窝结构的蒙皮,根据不同的声响来判断蜂窝结构是否脱胶。敲击时,注意锤头与蒙皮垂直,力度适当,以能判断故障不损坏蒙皮表面为宜。为使判断准确,可先在试件上试验。敲击回声清脆是良好,沉闷是脱粘。 3、外场在位检测的便携式相控阵超声波C扫描检测系统

复合材料修复系统产品说明书

目录 一、复合材料管道补强原理 二、复合材料修复系统型号介绍 三、石油天然气管道补强专用产品 ST60 性能介绍 四、石油天然气管道补强专用产品 ST85 性能介绍

一复合材料系统管道补强原理 (一)管道补强原理 “管道补强”是通过某种手段对管道进行修复,以起到增加管道强度、恢复管道安全运 行的目的。为了对缺陷进行修复,一般采用焊接、夹具和复合材料三大类型的方法进行 修复。复合材料修复技术具有“不动火&不停输”的优点,在过去的 10 年内逐步兴起, 在管道缺陷修复中得到越来越多的应用。 通过对管道进行复合材料修复补强,可以起到如下三种主要作用(根据 ASME 做出的定义): (一) 降低缺陷处的应力 (二) 降低缺陷处的应变 (三) 恢复管道的承压能力 复合材料修复技术利用树脂基纤维增强复合材料在管道外形成复合材料修补层,分担管 道承受的载荷,降低管壁的应力并且限制管道缺陷处的应力集中,从而达到对管道补强 的目的,恢复管道的正常承压能力。碳纤维复合材料为补强层,修复后,补强层上产生了一定的应力,补强层起到了为管壁分担的内压的作用,这样就降低了管壁和处承受的应力,降低了管道的风险,达到修复补强的目的。 (二)补丁修复原理 “补丁修复”这是一种区别于管道修复中采用的“补焊”、“补板”等“打补丁”的办法的一种新型的无需动火的复合材料补丁技术,直接粘贴于待修复区域,起到止漏、补强的作用。 其技术特点是: 1. 对结构平面内强度补强效果好。 2. 耐受内压,可修复有泄漏的储罐结构。

3. 热膨胀系数与钢极为接近,服役寿命长。 4. 无需动火。与传统的手糊玻璃钢修补方法相比:1.增加了特殊的真空辅助工艺,使得界面粘结力大为提高,耐受内压,可修复有泄漏的储罐结构;2.热膨胀系数与钢接近,服役寿命长。 二复合材料修复系统型号介绍 压力管道修复补强专用的复合材料修复系统,具有寿命长、安全可靠、施工便捷、成本低廉和适用性广等特点,深受管道行业客户信赖。复合材料修复系统的产品家族包括以下基本型号: ST60-------------标准型,耐温 60 摄氏度 服役温度:-30℃~+60℃ 固化条件:+5℃~+60℃ 适用于:石油、天然气长输管道 ST85 ------------标准型,耐温 85 摄氏度 服役温度:-30℃~+85℃ 固化条件:+5℃~+85℃ 适用于:石油、天然气长输管道 MT120-----------中温型,耐温 120 摄氏度 服役温度:-30℃~+120℃ 固化条件:+85℃~+120℃ 适用于:各种工业管道 MT150-----------中温型,耐温 150 摄氏度 服役温度:-30℃~+150℃ 固化条件:+120℃~+150℃ 适用于:各种工业管道 HT180-----------高温型,耐温 180 摄氏度 服役温度:-30℃~+180℃ 固化条件:+150℃~+180℃ 适用于:各种工业管道 服役温度:-30℃~+260℃

复合材料胶接修补技术的实验研究_徐建新

第17卷 第2期1998 年 3 月 机械科学与技术 M ECHAN I CAL SCIEN CE AN D T ECHN O LO GY V o l.17 N o.2M ar 1998 徐建新 复合材料胶接修补技术的实验研究 徐建新 乔 新 (西北工业大学 西安 710072)(南京航空航天大学 南京 210016) 曹正华 刘善国 (北京航空工艺研究所 北京 100024) 摘 要 通过静强度和疲劳寿命对比试验,证实了在含裂纹的铝合金的裂纹部位,胶接 碳/环氧复合材料补片的修理方法的可行性和有效性。实验结果表明,裂纹板经胶接 修补后,其静强度和疲劳寿命均有显著的提高,这为实际结构的胶接修补工作积累了可靠的实验数据。 关键词 复合材料补片 对比试验 疲劳寿命 静强度中图号 T B323 引 言 采用先进的复合材料补片对损伤的金属结构进行胶接修理,是一种全新的结构修理技术,与传统的机械修理方法相比,具有结构增重小、抗疲劳性能和耐腐蚀性能好、修理时间、成本低等优点,是一种优质、高效、低成本的结构修理方法,目前已被一些先进国家所采用[1~4]。国内在这方面的研究工作起步较晚,仅进行过一些基础性的理论研究工作,缺乏必要的实验数据,极大地阻碍了该项先进技术在我国航空修理领域的推广使用。 本文在复合材料胶接修补理论分析的基础上[5],用含裂纹的铝合金板模拟损伤的金属飞机结构,并用碳/环氧单向复向材料层合板对损伤部位进行局部胶接修补。通过静强度和疲劳寿命对比试验,全面考察了裂纹板胶接修补前后的静强度、疲劳寿命、疲劳裂纹扩展速率以及临界裂纹长度的改变情况,从而为实际结构的胶接修补工作提供了可靠的实验数据。1 试验概况 裂纹板由飞机上常用的L Y12CZ 铝合金材料制成,厚为3mm ,并加工成300m m ×66mm 的长方形(如图1所示 )。板中心用 1钻头钻一圆孔,并用钨丝切割出一条长为16mm ,宽为0.17mm 的缺口(即为人工预制裂纹)。板两端 图1 裂纹板试件 *收稿日期:19970606 分别钻有3个Υ8的圆孔,用以安装夹具。 复合材料补片采用T300/QY8911碳/环氧层 合板,根据理论分析结果[5] ,确定补片的形状和尺寸如图2所示。为了最大限度地发挥补片的修补效果,层合板的纤维方向平行于载荷方向,即均为0°方向铺层。 裂纹板的修补效果随着补片厚度的增加而增加,但当补片厚度较大时,补片胶接端头内胶层的剪切应力也较大,容易发生剪切破坏,从而降低补片的修补效果。因此,经综合考虑,补片由四层单向层合板组成,总厚度为0.5m m 。 图2 碳/环氧补片 为了保证胶接修补结构具有较高的剪切强度和良好的抗疲劳性能,胶粘剂采用J-47-A 胶膜,其厚度为0.2mm ,它是一种中温固化的环氧树脂-丁腈橡胶体系结构胶粘剂,在我国的航空工 业中被普遍采用,具有很好的应用基础。该种胶粘剂适合于金属和非金属之间的粘接,而且胶的成分和厚度易于控制,性能稳定,工艺操作简单。 对裂纹板和复合材料补片的胶接部位进行表面处理后(用砂纸打磨掉表面杂质,再用丙酮溶液清洗),把补片胶接到试件的裂纹部位,放入烘箱内加温固化(130℃,3小时)。经无损探伤,证实试件胶接质量较好。 2 试验结果及分析2.1 静强度对比试验 DOI:10.13433/https://www.wendangku.net/doc/b08151521.html, k i .1003-8728.1998.02.046

聚合物基自修复复合材料的国内外研究进展

聚合物基自修复复合材料的国内外研究进展 【摘要】目前具有自诊断、自修复功能的智能复合材料已成为新材料领域研究的重点之一。本文通过介绍微胶囊、液芯纤维等不同类型的聚合物基自修复复合材料的制备方法和自修复的基本原理总结了微胶囊和液芯纤维在聚合物基自修复复合材料中的详细应用和研究进展 【关键词】微胶囊;液芯纤维;自修复;聚合物基符合材料 智能材料是指能模仿生命系统 ,同时具有感知和激励双重功能的材料。自愈合(自修复)是生物的重要特征之一。材料一旦产生缺陷,在无外界作用的情况下材料本身具有自我恢复的能力称为自修复。自修复复合材料的自修复机理就是源于生物体系损伤后自动愈合的原理。聚合物基复合材料的自修复功能是通过在复合材料中埋置包覆有修复剂的微胶囊或填充有修复剂的液芯纤维等来实现的。1. 自修复填充材料 1.1 微胶囊 1.1.1 微胶囊的特殊性能 用于聚合物基自修复复合材料的微胶囊具有良好的热稳定性、适当的力学性能、与聚合物基体具有良好的相容性等。在制备这类微胶囊时,壁材与囊芯原料的选择十分严格。选择的囊芯应该具有良好的稳定性和较低的粘度,当微胶囊破裂时,能适时流出并填充裂纹,以便有效粘结裂纹。微胶囊壁材应具有良好的密封性、热稳定性和适当的力学性能,这样才能保护囊芯及微胶囊在复合材料制备过程中的完整性与使用性。同时壁材与树脂基体之间应有较好的相容性,以利于微胶囊与基体界面粘接强度的提高。 1.1.2微胶囊的制备方法 微胶囊的制备方法有很多,大致可分为物理法、物理化学法、化学法3类。物理法有空气悬浮法、喷雾干燥法、包结络合法等,物理化学法有相分离法、熔化分散法和 冷凝法等,化学法主要有界面聚合法、原位聚合法等。 1.2 液芯纤维 1.2.1 液芯纤维的制备方法 制备用于聚合物基自修复复合材料的液芯玻璃纤维时,需选择合适直径和容积的空心玻璃纤维,并在其中注入修复剂单体。可选择的修复剂主要有环氧树脂、苯乙烯等。 1.2.1 液芯纤维的制备难点 制备液芯纤维自修复复合材料的主要难点是玻璃纤维在树脂基体中的排列,需要考虑纤维的排列方向、纤维之间的间距等问题。 2. 自修复复合材料的国内外研究成果 2.1微胶囊型自修复材料 在聚合物基自修复材料领域,微胶囊是研究和应用相对较多的一种填充材料。用于复合材料自修复的微胶囊主要是聚脲甲醛包覆双环戊二烯微胶囊[36-38]、聚脲甲醛包覆环氧 树脂微胶囊等[20]。其中报道较多的是用聚脲醛树脂包覆双环戊二烯(DCPD)微胶囊和Grubbs催化剂组成的自修复体系制得的自修复材料。Blaiszik B J等[22]在环氧树脂基体中加入聚脲甲醛包覆DCPD纳米微胶囊时,发现微胶囊几乎可以全部破裂,修复剂充分释放,达到较好的修复效果,但是这种微胶囊的加入会使材料的弹性模量和拉伸模量有一定程度的降低。Keller M W等[39]将微胶囊化的聚二甲基硅氧烷(PDMS)和微胶囊化的交联剂埋覆在PDMS基体中,通过拉伸实验发现,加入该微胶囊体系的基体拉伸形变达到50%时 无明显损伤,并且拉伸强度恢复率可达70%,可见微胶囊的加入不仅能实现材料的自修复,还能提高材料的抗拉强度。对于纤维增强复合材料,纤维之间的空隙可以成为微胶 囊天然的保护场所,因此制备纤维增强的自修复复合材料较为简便。Kessler M R等[36]在纤

复合材料损伤机理整理_final

一、立项依据与研究内容: 1.立项依据: 1.1 研究意义与目的 近几十年以来,随着科学技术的迅速发展,对材料的性能提出了更高的要求。当前高技术材料一般分为:高技术陶瓷、高技术聚合物和复合材料三种类型。由于复合材料可以根据工程结构对性能的要求来进行设计,其发展速度和规模在近几年尤为迅猛。一些先进的复合材料己经在航空、航天、机电、化工、能源、交通运输以及生物、医疗器械等领域中得到了广泛的应用。可以说复合材料已经深入到了我们生活的方方面面。 在航空领域,由于飞机结构设计和材料性能要求的不断提高,复合材料在飞机上的比例不断增加。目前,波音B 787代表了当前飞机技术发展的最高水平,其基本特点之一为采用复合材料主结构,其中复合材料的用量为50%(如图1所示)。[陈绍杰, 复合材料技术与大型飞机. 航空学报, 2008. 29(3): p. 605-610]先进战斗机上复合材料用量基本上在飞机机体结构重量的30%左右,图2为国外新一代军用飞机上复合材料的用量。在航天方面,复合材料也被广泛用于火箭发动机壳体、航天飞机的构件、卫星构件等。固体火箭发动机喷管的工作温度高达3000~3500℃,为了提高效率还要在推进剂中掺入固体粒子,发动机喷管的工作环境是高温、复合材料能承受这种工作环境:化学腐蚀、固体粒子高速冲刷,因此固体火箭目前只要碳/碳人造卫星每减轻Ikg,运载火箭可以减轻1000kg,因此用复合材料制造的卫星有很大的优势。此外,复合材料还被广泛用于化学工业、电气工业、建筑工业、机械工业、体育用品等多个方面。我国从上世纪七十年代就开始了先进复合材料方面的研究工作,到八十年代时,我国已将复合材料应用技术列入重点发展领域,通过三十多年的发展,我国航空复合材料技术应用水平己有了大幅度的提高。目前我国军用飞机上复合材料用量已达到6%以上,已基本实现从次承力构件(如垂直安定面、水平尾翼、方向舵、前机身等)到主承力构件(如机翼、直升机旋翼等)的转变[王慧杰等.我国航空复合材料技术发展展望.第九界全国复合材料学术会议论文集,1996:l-6]。

新型智能材料-自修复复合材料的进展

实验名称:新型智能材料指导教师:殷陶 学院:建筑与城市规划学院专业:风景园林 年级班别:2014级1班学生姓名:梁挚呈 学号:3114009992 论文选题:自修复复合材料的进展 智能材料是指能模仿生命系统,同时具有感知和激励双重功能的材料。自诊断与自修复是智能材料的重要功能。 智能自修复材料的研究是一门新兴的综合科学技术。自修复又称自愈合,是生物的重要特征之一,人们把产生缺陷时在无外界作用的情况下,材料本身自我判断、控制和恢复的能力称为自修复。 材料在使用过程中不可避免地会产生局部损伤和微裂纹,并由此引发宏观裂缝而发生断裂,影响材料正常使用和缩短使用寿命。裂纹的早期修复,特别是自修复是一个现实而重要的问题。 目前,具有自诊断、自修复功能的智能自修复材料已成为新材料领域的研究重点之一,自修复的核心是能量补给和物质补给,其过程由生长活性因子来完成。模仿生物体损伤愈合的原理,使得复合材料对内部或者外部损伤能够进行自修复自愈合,从而消除隐患,增强材料的机械强度,延长使用寿命,在军工、航天、电子、仿生等领域显得尤为重要。 智能自修复材料的自修复原理有分子间相互作用的修复机理、内置胶囊仿生自修复机理、液芯纤维自修复机理、热可逆交联反应修复机理。 热可逆交联反应修复机理是目前最新的技术。近年来,出现了一种高交联度的真正具有自修复能力的透明聚合物材料,这种材料只要施以简单的热处理就可以在材料需要修补的地方形成共价键,并能多次对裂纹进行修复而不需添加额外的单体。文献以呋喃多聚体和马来酰亚胺多聚体进行Diels Alder(DA)热可逆共聚,形成的大分子网络直接由具有可逆性的交联共价键相连,可以通过DA逆反应实现热的可逆性。这种材料的力学性能可与一般的树

金属基复合材料的研究进展及发展趋势

金属基复合材料界面的研究进展及发展趋 势 周奎 (佳木斯大学材料科学与工程学院佳木斯 154007)摘要本文介绍了目前金属基复合材料界面的研究现状,存在的问题及优化的有效途径。重点阐述了金属基复合材料在各个领域的应用情况。最后在综述金属基复合材料界面的研究进展与应用现状的基础上,对学者未来研究呈现的趋势进行了简述并对其发展趋势进行了展望。 关键词金属基复合材料界面特性应用发展趋势 The research progress of metal matrix composites interface and development trend ZHOU Kui (jiamusi university school of materials science and engineering jiamusi 154007) Abstract:Interface of metal matrix composites are introduced in this paper the current research status, existing problems and the effective ways to optimize. Expounds the metal matrix composites and its application in various fields. Finally in this paper the research progress and application of metal matrix composites interface status quo, on the basis of research for scholars in the future the trend of the present carried on the description and its development trend is prospected. Keywords: metal matrix composites application Interface features the development trend 1前言 金属基复合材料(MMCS)是以金属、合金或金属间化合物为基体,含有增强成分的复合材料。 研究金属基复合新材料是当代新材料技术领域中的重要内容之一。金属基复合材料的品种繁多,有碳(石墨)、硼、碳化硅、氧化铝等高性能连续纤维增强铝基、镁基、钦基等复合材料,碳化硅晶须、碳化硅、氧化铝颗粒、氧化铝短纤维增强铝基、镁基复合材料,以及牡钨丝增强超合金等高温金属基复合材料等.但它们的发展和应用并不迅速。主要原因是存在界面问题,制备方法较复杂,成本高。学者们在金属基复合材料的有效制备方法、金属基体与增强体之间的界面反应规律、控制界面反应的途径、界面结构、性能对材料性能的影响、界面结构与制备工艺过程的关系等进行了大量的研究工作,取得了许多重要成果,推动了金属基复合材料的发展和应用。但随着金属基复合材料要求的使用性能和制备技术的发展,界面问题仍然是金属基复合材料研究发展中的重要研究方向。特别是界面精细结构及性质、界面优化设计、界面反应的控制以及界面对性能的影响规律等。尚需结合材料类型、使用性能要求深入研究。

自修复混凝土的现状及发展(原创)

自修复混凝土的现状及发展(原创) 摘要:自修复是生物的重要特征之一。自修复的核心是物质补给和能量补给,其过程由生长活性因子来完成[5]。自修复混凝土是模仿动物的骨组织结构受创伤后的再生,恢复机理,采用修复胶粘剂和混凝土材料相复合的方法,对材料损伤破坏具有自修复和再生的功能,恢复甚至提高材料性能的一种新型复合材料。 1 自修复混凝土的基本特征 自修复是生物的重要特征之一[4]。自修复的核心是物质补给和能量补给,其过程由生长活性因子来完成[5]。自修复混凝土是模仿动物的骨组织结构受创伤后的再生,恢复机理,采用修复胶粘剂和混凝土材料相复合的方法,对材料损伤破坏具有自修复和再生的功能,恢复甚至提高材料性能的一种新型复合材料。 据此,学者们设想具有自修复行为的智能材料模型为,在材料的基体中布有许多细小纤维的管道。管中装有可流动的物质——修复剂。在外界环境作用下,一旦材料基体开裂,则纤维随即裂开,其内装的修复剂流淌到开裂处,由化学作用自动实现粘合,从而抑制开裂修复材料。这可以提高开裂部分的强度,增强延性弯曲的能力,从而提高整个结构的性能[6]。若采用低模量的胶粘剂修复混凝土,则可以改善建筑结构的阻尼特性,以减轻地震的大风对建筑物的破坏;如果胶粘剂弹性模量较大,则可以恢复结构的刚度和强度;不同凝固时间的胶粘剂可以用于对结构的弯曲进行控制。 自修复混凝土,从严格意义上来说,应该是一种机敏混凝土。机敏混凝土是一种具有感知和修复性能的混凝土,是智能混凝土的初级阶段,是混凝土材料发展的高级阶段[7]。由这种材料构建的混凝上结构出现裂纹和损伤后,如何利用自身的材料特性达到自修复、自钝化,对混凝土结构起到自防护的作用,是我们关注的主要问题。近年来,损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的相继出现为智能混凝土的研究和发展打下了坚实的基础。未来,可在自修复混凝土的基础上,进一步融入信息科学的内容,如感知、识别和驱动控制等。从而达到适应环境、调节环境、材料结构和健康状况的自诊断和自修复等目的。使其具有多种完善的仿生功能,包括骨骼系统(基材)提供的承载能力,神经系统(传感网络)提供的检测和感知能力,肌肉系统(驱动元件)提供的康复能力,真正达到混凝土材料的结构——智能一体化的境界[8] 2 国内外的研究状况与存在的问题 智能混凝土是材料学的一个研究分支,其起源可追溯到上世纪六十年代,当时的苏联科学家采用碳墨为导电组分制备了水泥基导电复合材料。八十年代末期,日本土木工程界的研究人员设想并着手开发构筑高智能结构的所谓“对混进变化具有感知和控制功能”的智能建筑材料。美国在1993年,由于有国家科学基金的资助,开办了与土木建筑有关的智能材料与智能结构的工厂。然而,正如前面所说,智能混凝土材料是具有若干个S行为的材料[9],即具有自我诊断功能(s elf-diagnosis)、自我调节功能(self-tuning)、自我恢复功能(self-recovery)、

相关文档