文档库 最新最全的文档下载
当前位置:文档库 › 风力发电设备可靠性评价规程

风力发电设备可靠性评价规程

风力发电设备可靠性评价规程
风力发电设备可靠性评价规程

风力发电设备可靠性评价规程(试行)

1 范围

1.1 本规程规定了风力发电设备可靠性的统计办法和评价指标。适用于我国境内的所有风力发电企业发电能力的可靠性评价。

1.2 风力发电设备的可靠性统计评价包括风电机组的可靠性统计评价和风电场的可靠性统计评价两部分。

1.3 风电机组的可靠性统计评价范围以风电机组出口主开关为界,包括风轮、传动变速系统、发电机系统、液压系统、偏航系统、控制系统、通讯系统以及相应的辅助系统。

1.4 风电场的可靠性统计评价范围包括风电场内的所有发电设备,除了风电机组外,还包括箱变、汇流线路、主变等,及其相应的附属、辅助设备,公用系统和设施。

2 基本要求

2.1 本规程中指标评价所要求的各种基础数据报告,必须尊重科学、事实求是、严肃认真、全面而客观地反应风力发电设备的真实情况,做到准确、及时、完整。

2.2 与本规程配套使用的“风电设备可靠性管理信息系统”软件及相关代码,由中国电力企业联合会电力可靠性管理中心(以下简称“中心”)组织编制,全国统一使用。

3状态划分

风电机组(以下简称机组)状态划分如下:

运行

(S)

可用(A)

调度停运备用

备用 (DR)

(R)

场内原因受累停运备用

在使用受累停运备用 (PRI)

(ACT) (PR) 场外原因受累停运备用

(PRO)

计划停运

不可用(U) (PO)

非计划停运

(UO)

4 状态定义

4.1 在使用(ACT)——机组处于要进行统计评价的状态。在使用状态分为可用(A)和不可用(U)。

4.2 可用(A)——机组处于能够执行预定功能的状态,而不论其是否在运行,也不论其提供了多少出力。可用状态分为运行(S)和备用(R)。

4.2.1 运行(S)——机组在电气上处于联接到电力系统的状态,或虽未联接到电力系统但在风速条件满足时,可以自动联接到电力系统的状态。机组在运行状态时,可以是带出力运行,也可以是因风速过高或过低没有出力。

4.2.2 备用(R)——机组处于可用,但不在运行状态。备用可分为调度停运备用(DR)和受累停运备用(PR)。

4.2.2.1 调度停运备用(DR)——机组本身可用,但因电力系统需要,执行调度命令的停运状态。

4.2.2.2 受累停运备用(PR)——机组本身可用,因机组以外原因造成的机组被迫退出运行的状态。按引起受累停运的原因,可分为场内原因受累停运备用(PRI)和场外原因受累停运备用(PRO)。

a) 场内原因受累停运备用(PRI)——因机组以外的场内设备停运(如汇流线路、箱变、主变等故障或计划检修)造成机组被迫退出运行的状态。

b) 场外原因受累停运备用(PRO)——因场外原因(如外部输电线路、电力系统故障等)造成机组被迫退出运行的状态。

4.3 不可用(U)——机组不论什么原因处于不能运行或备用的状态。不可用状态分为计划停运(PO)和非计划停运(UO)。

4.3.1计划停运(PO)——机组处于计划检修或维护的状态。计划停运应是事先安排好进度,并有既定期限的定期维护。

4.3.2非计划停运(UO)——机组不可用而又不是计划停运的状态。

5 状态转变时间界线和时间记录的规定

5.1 状态转变时间的界线

5.1.1 运行转为备用或计划停运或非计划停运:以发电机在电气上与电网断开时间为界。

5.1.2 备用或计划停运或非计划停运转为运行:以机组投入正常运行状态时间为界。

5.1.3 计划停运或非计划停运转为备用:以报复役的时间为界。

5.1.4 备用或非计划停运转为计划停运:以主管电力企业批准的时间为界。

5.1.5 备用转为非计划停运:以超过现场规程规定的启动时限或预定的并网时间为界;在试运行和试验中发生影响运行的设备损坏时,以设备损坏发生时间为界。

5.1.6 计划停运转为非计划停运:在检修过程中发生影响运行的设备损坏时,以计划检修工期终止日期为界。

5.2 时间记录的规定

5.2.1 设备状态的时间记录采用24小时制。00:00为一天开始,24:00为一天之末。

5.2.2 设备状态变化的起止时间,以机组的计算机自动统计记录或运行日志为准,运行日志记录要和计算机自动统计记录相一致。

5.2.3 机组非计划停运转为计划停运只限于该机组临近原计划检修的时段。填报按下述规定:自停运至原计划检修开工前或至调度批准转入计划检修前计作非计划停运;或临近原计划检修时近并经申请征得上级生产技术部门同意和调度批准转为计划检修的时段,从原计划开工时起为计划停运。

5.2.4 新建机组可靠性统计评价从首次并网开始。

6 容量、电能和时间术语定义

6.1 毛最大容量(GMC)——指一台机组在某一给定期间内,能够连续承载的最大容量。一般可取机组的铭牌额定容量(INC),或经验证性试验并正式批准确认的容量。

6.2 毛实际发电量(GAG)——指机组在给定期间内实际发出的电量。

6.3 时间术语定义

6.3.1 运行小时(SH)——机组处于运行状态的小时数。

6.3.2 备用小时(RH)——机组处于备用状态的小时数。

用公式可表示为:

RH=DRH+PRH=DRH+ PRIH+PROH,其中:

6.3.2.1 调度停运备用小时(DRH)——机组处于调度停运备用状态的小时数。

6.3.3.2 受累停运备用小时(PRH)——机组处于受累停运备用状态的小时数。受累停运备

用小时又可分为下列2类:

a) 场内原因受累停运备用小时数(PRIH )——机组处于场内原因受累停运备用状态的小时数。

b) 场外原因受累停运备用小时数(PROH )——机组处于场外原因受累停运备用状态的小时数。

6.3.3 计划停运小时(POH )——机组处于计划停运状态的小时数。

6.3.4 非计划停运小时(UOH )——机组处于非计划停运状态的小时数。

6.3.5 统计期间小时(PH )——机组处于在使用状态的日历小时数。

6.3.6 可用小时(AH )——机组处于可用状态的小时数。

可用小时等于运行小时与备用小时之和,用公式表示为:

AH=SH +RH

6.3.7 不可用小时(UH )——机组处于不可用状态的小时数。

不可用小时等于计划和非计划停运小时之和或统计期间小时与可用小时之差。用公式表示为:

UH=POH+UOH=PH-AH

6.3.8 统计台年(UY )——为一台机组的统计期间小时数或多台机组的统计期间小时数之和除以8760h ,即

对一台设备 UY= —— 对多台设备 UY=∑——

6.3.9 利用小时(UTH )——指机组毛实际发电量折合成额定容量的运行小时数。

8760 PH

8760 PH

UTH= ——— 7 状态填报的规定

7.1 运行

7.1.1 设备每月至少应有一条事件记录。否则,此台设备该月被视为未统计。

7.1.2 机组在全月运行时,只须填写一条运行事件记录(FS );若当月发生任何停运事件,只需如实填写停运事件,运行事件可不填写。

7.2 备用

7.2.1 机组因电网需要安排停运但能随时投入运行时,记为调度停运备用(DR )。

7.2.2 因机组以外的场内设备停运(如汇流线路、箱变、主变等故障或计划检修)造成停运时,视作场内原因受累停运备用(PRI )。

7.2.3 机组因自然灾害(如冰冻)等不可抗拒原因、电力系统故障等外部原因造成停运时,视作场外原因受累停运备用(PRO )。

7.3 计划停运

7.3.1 在机组计划检修中发生新的设备损坏,且在原来计划检修工期内不能修复时,自计划检修工期终止日期起应转为非计划停运事件。

7.4 非计划停运

7.4.1 机组在非计划停运修复期间,若发生设备损坏或发现新的必须消除的缺陷,除填写原发事件记录外,尚须填写新事件记录。

7.4.2由于设备(或零部件)多种原因造成机组非计划停运时,对于能够区分先后的,以最先发生的事件视作“基础事件”;对于不能区分先后的,以修复时间最长的事件作为“基础事件”。把机组此次停运状态的时间作为基础事件的记录时间。

对于设备多种原因造成机组非计划停运,除了要填写“基础事件”外,还必须再将“基GAG

INC

础事件”和其他所有事件——按实际修复时间进行记录。

8 风电机组评价指标

8.1 计划停运系数(POF )

POF = ×100%=( )×100%

8.2 非计划停运系数 (UOF)

UOF = ×100%=( )×100%

8.3 可用系数 (AF)

AF = ×100%=( )×100%

8.4 运行系数(SF )

SF = ×100%=( )×100%

8.5 毛容量系数 (GCF)

GCF =[ ] ×100%=[ ]×100%

8.6 利用系数(UTF )

可用小时

运行小时 实际发电量

GA UTH

AH SH

计划停运小时 统计期间小时 POH

非计划停运小时 UOH

利用小时

UTF =( )×100%=( )×100%

8.7 出力系数 (OF)

OF =[ ]×100%=[ ]×100%

8.8 非计划停运率 (UOR)

UOR =( )×100%=( )×100%

8.9 非计划停运发生率 (UOOR) (次/年)

UOOR =( )×8760=( )×8760

8.10暴露率(EXR) EXR=%100%100?=?AH

SH 可用小时运行小时 8.11平均连续可用小时(CAH )(h )

8.12平均无故障可用小时(MTBF )(h )

对于机组:FOT AH MTBF ==强迫停运次数可用小时

8.13 检修费用(RC )(万元)——一台机组一次检修的费用(包括材料费、设备费、配件费、人工费用等子项)。

8.14非计划停运或受累停运备用电量损失(EL )——机组在非计划停运或受累停运备实际发电量

AG 非计划停运小时 非计划停运次数 UOT

UOH

用期间的发电量损失估计值,按停运小时和停运期间其它状况相似的风电机组平均出力的乘积来计算。

9 风电场评价指标

9.1 风电场评价指标按机组指标的容量加权平均值进行计算。

9.2 当统计风电场指标时,把因场内原因受累停运备用状态(PRI )的机组视为不可用,其受累停运备用小时(PRIH )计入不可用小时。这时的机组可用小时(AH 1)等于运行小时、

调度停运备用小时和场外原因受累停运备用小时之和。用公式表示:

AH 1=SH +DRH +PROH

9.3 风电场可用系数 (AFs)

计算公式为:

AFs =[ ]×100%

9.4 风电场非计划停运系数(UOFs )

计算公式为:

UOFs =[ ]×100%

10 基础数据注册

10.1 所有机组均应按规定代码、编号进行注册。

10.1 机组注册内容、机组主设备注册内容按表1~2要求进行填报。

11 事件数据填写规定

11.1事件代码是描述设备故障及其原因的特殊标识符,是基础数据的重要组成部分,所有代码应遵循“中心”对风电设备的有关要求填写。机组的所有计划和非计划或受累停运备用事件,都应填写相应的事件代码。

∑(AH 1×GMC ×PH ) ∑(UOH+ PROH )×GMC ×PH)

11.2 跨月事件必须拆成两条记录,迄于上月末记录和始于下月初记录。两条记录必须保持时间连续、状态、代码等一致。

11.3 机组计划检修以及非计划检修事件,应填写检修工日和费用。

11.4 当机组发生非计划停运或受累停运备用时,除了要填写事件代码外,还应填写电量损失值(EL)。

12统计评价报告

12.1 可靠性基础数据报告,分为四种(表1~4):即机组注册内容报表、机组主设备注册内容、机组月度发电量报表、机组月度事件数据报表。

12.2 机组可靠性基础数据由发电企业记录和统计,并按电力行业可靠性管理归口部门规定的报送时间和审核程序上报。

12.3 报告若需修改,必须以文件形式逐级上报,说明更改内容和变更原因;各级主管部门对上报的报告必须认真核实后进行转报;修改已报出“基础数据”须下次报告时一并完成。

12.4 报送“中心”的可靠性基础数据报告为100kW及以上容量的风电机组。

12.5 记录和报告均应采用可靠性术语。

风力发电设备可靠性评价规程修订稿

风力发电设备可靠性评 价规程 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

风力发电设备可靠性评价规程(试行) 1 范围 本规程规定了风力发电设备可靠性的统计办法和评价指标。适用于我国境内的所有风力发电企业发电能力的可靠性评价。 风力发电设备的可靠性统计评价包括风电机组的可靠性统计评价和风电场的可靠性统计评价两部分。 风电机组的可靠性统计评价范围以风电机组出口主开关为界,包括风轮、传动变速系统、发电机系统、液压系统、偏航系统、控制系统、通讯系统以及相应的辅助系统。 风电场的可靠性统计评价范围包括风电场内的所有发电设备,除了风电机组外,还包括箱变、汇流线路、主变等,及其相应的附属、辅助设备,公用系统和设施。 2 基本要求 本规程中指标评价所要求的各种基础数据报告,必须尊重科学、事实求是、严肃认真、全面而客观地反应风力发电设备的真实情况,做到准确、及时、完整。 与本规程配套使用的“风电设备可靠性管理信息系统”软件及相关代码,由中国电力企业联合会电力可靠性管理中心(以下简称“中心”)组织编制,全国统一使用。 3状态划分 风电机组(以下简称机组)状态划分如下: 运行 (S) 可用(A) 调度停运备用 备用 (DR)

(R) 场内原因受累停运备用 在使用受累停运备用 (PRI) (ACT) (PR) 场外原因受累停运备用 (PRO) 计划停运 不可用(U) (PO) 非计划停运 (UO) 4 状态定义 在使用(ACT)——机组处于要进行统计评价的状态。在使用状态分为可用(A)和不可用(U)。 可用(A)——机组处于能够执行预定功能的状态,而不论其是否在运行,也不论其提供了多少出力。可用状态分为运行(S)和备用(R)。 4.2.1 运行(S)——机组在电气上处于联接到电力系统的状态,或虽未联接到电力系统但在风速条件满足时,可以自动联接到电力系统的状态。机组在运行状态时,可以是带出力运行,也可以是因风速过高或过低没有出力。 4.2.2 备用(R)——机组处于可用,但不在运行状态。备用可分为调度停运备用(DR)和受累停运备用(PR)。 4.2.2.1 调度停运备用(DR)——机组本身可用,但因电力系统需要,执行调度命令的停运状态。 4.2.2.2 受累停运备用(PR)——机组本身可用,因机组以外原因造成的机组被迫退出运行的状态。按引起受累停运的原因,可分为场内原因受累停运备用(PRI)和场外原因受累停运备用(PRO)。 a) 场内原因受累停运备用(PRI)——因机组以外的场内设备停运(如汇流线路、箱变、主变等故障或计划检修)造成机组被迫退出运行的状态。 b) 场外原因受累停运备用(PRO)——因场外原因(如外部输电线路、电力系统故障等)造成机组被迫退出运行的状态。

(整理)安全性可靠性性能评价

3.3 安全性、可靠性和性能评价 3.3.1主要知识点 了解计算机数据安全和保密、计算机故障诊断与容错技术、系统性能评价方面的知识,掌握数据加密的有关算法、系统可靠性指标和可靠性模型以及相关的计算方示。 3.3.1.1数据的安全与保密 (1)数据的安全与保密 数据加密是对明文(未经加密的数据)按照某种加密算法(数据的变换算法)进行处理,而形成难以理解的密文(经加密后的数据)。即使是密文被截获,截获方也无法或难以解码,从而阴谋诡计止泄露信息。数据加密和数据解密是一对可逆的过程。数据加密技术的关键在于密角的管理和加密/解密算法。加密和解密算法的设计通常需要满足3个条件:可逆性、密钥安全和数据安全。 (2)密钥体制 按照加密密钥K1和解密密钥K2的异同,有两种密钥体制。 ①秘密密钥加密体制(K1=K2) 加密和解密采用相同的密钥,因而又称为密码体制。因为其加密速度快,通常用来加密大批量的数据。典型的方法有日本的快速数据加密标准(FEAL)、瑞士的国际数据加密算法(IDEA)和美国的数据加密标准(DES)。 ②公开密钥加密体制(K1≠K2) 又称不对称密码体制,加密和解密使用不同的密钥,其中一个密钥是公开的,另一个密钥是保密的。由于加密速度较慢,所以往往用在少量数据的通信中,典型的公开密钥加密方法有RSA和ESIGN。 一般DES算法的密钥长度为56位,RSA算法的密钥长度为512位。 (3)数据完整性 数据完整性保护是在数据中加入一定的冗余信息,从而能发现对数据的修改、增加或删除。数字签名利用密码技术进行,其安全性取决于密码体制的安全程度。现在已经出现很多使用RSA和ESIGN算法实现的数字签名系统。数字签名的目的是保证在真实的发送方与真实的接收方之间传送真实的信息。 (4)密钥管理 数据加密的安全性在很大程度上取决于密钥的安全性。密钥的管理包括密钥体制的选择、密钥的分发、现场密钥保护以及密钥的销毁。 (5)磁介质上的数据加密

风力发电设备可靠性评价规程(参考Word)

1 范围 1.1 本规程规定了风力发电设备可靠性的统计办法和评价指标。适用于我国境内的所有风力发电企业发电能力的可靠性评价。 1.2 风力发电设备的可靠性统计评价包括风电机组的可靠性统计评价和风电场的可靠性统计评价两部分。 1.3 风电机组的可靠性统计评价范围以风电机组出口主开关为界,包括风轮、传动变速系统、发电机系统、液压系统、偏航系统、控制系统、通讯系统以及相应的辅助系统。 1.4 风电场的可靠性统计评价范围包括风电场内的所有发电设备,除了风电机组外,还包括箱变、汇流线路、主变等,及其相应的附属、辅助设备,公用系统和设施。 2 基本要求 2.1 本规程中指标评价所要求的各种基础数据报告,必须尊重科学、事实求是、严肃认真、全面而客观地反应风力发电设备的真实情况,做到准确、及时、完整。 2.2 与本规程配套使用的“风电设备可靠性管理信息系统”软件及相关代码,由中国电力企业联合会电力可靠性管理中心(以下简称“中心”)组织编制,全国统一使用。 3状态划分 风电机组(以下简称机组)状态划分如下: 运行 (S) 可用(A) 调度停运备用 备用 (DR) (R) 场内原因受累停运备用在使用受累停运备用 (PRI) (ACT) (PR) 场外原因受累停运备用 (PRO) 计划停运 不可用(U) (PO) 非计划停运 (UO)

4 状态定义 4.1 在使用(ACT)——机组处于要进行统计评价的状态。在使用状态分为可用(A)和不可用(U)。 4.2 可用(A)——机组处于能够执行预定功能的状态,而不论其是否在运行,也不论其提供了多少出力。可用状态分为运行(S)和备用(R)。 4.2.1 运行(S)——机组在电气上处于联接到电力系统的状态,或虽未联接到电力系统但在风速条件满足时,可以自动联接到电力系统的状态。机组在运行状态时,可以是带出力运行,也可以是因风速过高或过低没有出力。 4.2.2 备用(R)——机组处于可用,但不在运行状态。备用可分为调度停运备用(DR)和受累停运备用(PR)。 4.2.2.1 调度停运备用(DR)——机组本身可用,但因电力系统需要,执行调度命令的停运状态。 4.2.2.2 受累停运备用(PR)——机组本身可用,因机组以外原因造成的机组被迫退出运行的状态。按引起受累停运的原因,可分为场内原因受累停运备用(PRI)和场外原因受累停运备用(PRO)。 a) 场内原因受累停运备用(PRI)——因机组以外的场内设备停运(如汇流线路、箱变、主变等故障或计划检修)造成机组被迫退出运行的状态。 b) 场外原因受累停运备用(PRO)——因场外原因(如外部输电线路、电力系统故障等)造成机组被迫退出运行的状态。 4.3 不可用(U)——机组不论什么原因处于不能运行或备用的状态。不可用状态分为计划停运(PO)和非计划停运(UO)。 4.3.1计划停运(PO)——机组处于计划检修或维护的状态。计划停运应是事先安排好进度,并有既定期限的定期维护。 4.3.2非计划停运(UO)——机组不可用而又不是计划停运的状态。 5 状态转变时间界线和时间记录的规定 5.1 状态转变时间的界线 5.1.1 运行转为备用或计划停运或非计划停运:以发电机在电气上与电网断开时间为界。

可靠性管理制度

可靠性管理制度

黑泉水力发电厂设备可靠性管理制度 1、总则 1.1本标准规定了黑泉水力发电厂发电设备可靠性管理的管理职能、管理内容与要求、检查与考核。 1.2本标准适用于黑泉水力发电厂发电设备可靠性的管理。 2、管理职能 生产科是电厂发电设备可靠性管理的归口部门,负责电厂发电设备可靠性管理的统计和分析。检修科、运行部门负责本部门所管辖设备的可靠性管理工作。 3、管理内容与要求 3.1 组织机构 3.1.1 电厂可靠性管理网络由可靠性管理领导小组和可靠性管理网络人员组成。领导小组组长由分管生产副厂长担任,领导小组成员由生产科、检修科、运行部门等组成。 3.1.2可靠性管理领导小组名单: 组长:金晨杰 副组长:王宁克 成员:陈顺沛鲍占民马海民陈海英李刚刘芳何雪珂。 3.1.3可靠性管理领导小组的任务,确保电厂发电可靠,努力完成上级下达的可靠性指标,保证发电设备可靠性原始数据的正确、完整、及时,定期进行可靠性分析,提出改进设备可靠性的措施。

3.2 组长职责 3.2.1 在厂长的领导下,指挥、督促职能部门开展发电设备可靠性管理工作,保证完成上级下达的可靠性指标和本电厂提出的可靠性目标。 3.2.2 贯彻执行上级下达的关于可靠性管理的各项规定,经常检查电厂可靠性管理工作,定期听取汇报,及时解决存在的问题。 3.2.3 掌握电厂发电设备健康状况及存在问题、隐患,对可能构成影响机组可靠性指标的问题应及时组织有关人员采取措施加以解决。 3.2.4 掌握电厂可靠性指标的完成情况,对不能完成的预定指标要组织电厂有关部门进行分析,确定处理方案并督促落实。 3.3 生产科职责 3.3.1 生产科负责全厂可靠性管理工作。 3.3.2 随时掌握各部门可靠性指标的状况,如发现不能完成指标,应及时采取措施,制订可行方案,经批准后贯彻执行。 3.3.3 抓好全厂可靠性管理人员的理论和实践培训和技术演练工作,提高可靠性管理人员的管理水平。 3.4 各部门职责 3.4.1 各科室负责本部门发电设备的可靠性管理工作。 3.4.2 认真贯彻执行国家及系统内各项关于发电设备可靠

风力发电系统及稳定性

风力发电系统及稳定性 2.1风力发电概述 风能是当今社会中最具竞争力,最有发展前景的一种可再生能源,将风能应用于发电(即风力发电)则是目前能源供应中发挥重要作用的一项新技术。研究风力发电技术对我国大型风力发电机组国产化及推动我国风力发电事业的不断发展有着重要意义。 与火力发电相比,风力发电有其自己的特点,具体表现在一下几个方面:1):可再生的洁净资源。风力发电是一种可再生的洁净能源,不消耗资源,不污染环境,这是风力发电所无法比拟的优点。 2):建设周期短。一个万千瓦级的风力发电场建设期不到一年。 3):装机规模灵活。可根据资金情况决定一次装机规模,有一台的资金就可安装投产一台。 4):可靠性高。把现代科技应用于风力发电机组可使风力发电可靠性大大提高。中大型风力发电机可靠性从20世纪80年代的50%提高到98%,高于火力发电,并且机组寿命可达20年。 5)造价低。从国外建成的风力发电场看,单位千瓦造价和单位千瓦时电价都低于火力发电,和常规能源发电相比具有竞争力。 6)运行维护简单。现在中大型风力机自动化水平很高,由于采用了微机技术,实现了风机自诊断功能,安全保护更加完善,并且实现了单机独立控制,多级群控和遥控,完全可以无人值守,只需定期进行必要的维护,不存在火力发电中的大修问题。 7)实际占地面积小。据统计,机组与监控,变电等建筑仅占火电场1%的土地,其余场地仍可供农,牧,渔使用。 8)发电方式多样化。风力发电既可并网运行,也可与其他能源,如柴油发电,太阳能发电,水力发电机组成互补系统,还可以独立运行,对于解决边远无电地区的用电问题提供了现实可行性。 2.11 国外风电发展现状 20世纪70年代石油危机发生以来,西方发达国家积极地寻求新的能源,风力发电应运而生。风电在国外发达国家相当普及,尤其是德国,西班牙,美国等国家,风电所占的比重很大。2011年全球新增装机容量超过4000万kw,累计装机容量超过2.37亿kw。据2012年世界风电报告,2011年全球风电累计装机容量排名前十位的国家如图2-1所示,2011年各国风电累计装机容量占比2-2所示。

可靠性评估

可靠性概念理解: 可靠性是部件、元件、产品、或系统的完整性的最佳数量的度量。可靠性是指部件、元件、产品或系统在规定的环境下、规定的时间内、规定条件下无故障的完成其规定功能的概率。从广义上讲,“可靠性”是指使用者对产品的满意程度或对企业的信赖程度。 可靠性的技术是建立在多门学科的基础上的,例如:概率论和数理统计,材料、结构物性学,故障物理,基础试验技术,环境技术等。 可靠性技术在生产过程可以分为:可靠性设计、可靠性试验、制造阶段可靠性、使用阶段可靠性、可靠性管理。我们做的可靠性评估应该就属于使用阶段的可靠性。 机床的可靠性评定总则在GB/T23567中有详细的介绍,对故障判定、抽样原则、试验方式、试验条件、试验方法、故障检测、数据的采集、可靠性的评定指标以及结果的判定都有规范的方法。对机床的可靠性评估时,可以在此基础上加上自己即时的方法,做出准确的评估和数据的收集。 可靠性研究的方法大致可以分为以下几种: 1)产品历史经验数据的积累; 2)通过失效分析(Failure Analyze)方法寻找产品失效的机理; 3)建立典型的失效模式; 4)通过可靠性环境和加速试验建立试验数据和真实寿命之间的对应关系;5)用可靠性环境和加速试验标准代替产品的寿命认证; 6)建立数学模型描述产品寿命的变化规律; 7)通过软件仿真在设计阶段预测产品的寿命; 大致可把可靠性评估分为三个阶段:准备阶段、前提工作、重点工作。 准备阶段:数据的采集(《数控机床可靠性试验数据抽样方法研究》北京科技大学张宏斌) 用于收集可靠性数据, 并对其量化的方法是概率数学和统计学。在可靠性工程中要涉及到不确定性问题。我们关心的是分布的极尾部状态和可能未必有的载荷和强度的组合, 在这种情形下, 经常难以对变异性进行量化, 而且数据很昂贵。因此, 把统计学理论应用于可靠性工程会更困难。当前,对于数控机床可靠性研究数据的收集方法却很少有人提及, 甚至可以说是一片空白。目前, 可靠性数据的收集基本上是以简单随机抽样为主, 甚至在某些情况下只采用了某一个厂家在某一个时间段内生产的机床进行统计分析。由此所引发的问题就是: 这样收集的数据不能够很好地反映数控机床可靠性的真实状况, 同时其精度也不能够令人满意。 由于现在数控机床生产厂家众多、生产量庞大、机床型号多以及成产的批次多,这样都对数据的收集带来了很大的困难。因此,在数据采样时: (1)必须采用合理的抽样方法来得到可靠性数据; (2)简单随机抽样是目前普遍应用的抽样方法,但是必须抽取较大的样本量才能够获得较高的精度和信度; 针对以上的特点有三种数据采集的方法可以选择:简单随机抽样、二阶抽样、分层抽样。 (1)简单随机抽样:从总体N个单元中,抽取n个单元,保证抽取每个单元或者几个单元组合的概率相等。

风力发电系统可靠性评估体系

风力发电系统可靠性评估体系 摘要:近年来,我国的用电量不断增加,风力发电系统有了很大进展。由于风电具有随机性、间歇性和波动性等特点,风力发电系统的可靠性对大规模并网电力系统安全性造成较大影响,如何准确评估风力发电系统可靠性,这提出了全新的挑战。首先分析了风力发电系统的结构特点,提出了一种基于期望故障受阻电能相等的方法,用相同容量的发电机等效替代风电机“组串”,并根据元件状态特性对系统可靠性状态进行划分,最后建立时间、出力、系统等指标体系。 关键词:风力发电系统;等效替代;可靠性评估;指标体系 引言 随着风力发电技术迅猛发展,装机容量大幅增加,已成为可再生能源中技术最成熟、应用最广泛的发电技术之一。由于风电具有间歇性、波动性和随机性等特点,使得大规模风电接入电力系统后带来了不确定的因素,因此如何准确评估风力发电系统的可靠性显得非常重要。 1风力发电系统的特点 1.1风机输出功率影响因素分析

1)季节与时间的影响 中国“三北”地区风资源较为丰富。一般来说,一年中春季和冬季风资源较丰富,夏季风资源较贫乏;在一天中来说,白天风资源较贫乏,而夜晚风资源较丰富。 2)风速大小的影响 风电机组的运行状态和输出功率都与风速息息相关。图1给出了风电机组输出功率与风速的曲线。 2可靠性状态的划分 1)全额运行状态:当风速较快时,即风力发电系统输出功率能够达到总装机容量的70%以上。2)资源限制减额运行状态:当风速较慢时,即风力发电系统输出功率低于总装机容量的70%。3)故障减额运行状态:风力发电系统部分元件故障导致输出功率减少的状态。 3可靠性指标体系 3.1时间指标 1)全额运行时间FRH:风力发电系统处于全额运行状态(即输出功率达到总装机容量70%)的累计运行时间。2)资源限制减额运行时间RDH:风力发电系统由于风速的限制,输出功率小于总装机容量的70%的累积运行时间。3)故障减额运行时间FDH:风力发电系统中部分元件故障,导致输出功率减小的累积运行时间。4)故障停运时间FOH:风力系统由于元件故障发生全站停运的累计时间。由

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

可靠性软件评估报告

可靠性软件评估报告 目前,关于可靠性分析方面的软件产品在市场上出现的越来越多,其中比较著名的有以下3种产品:英国的ISOGRAPH、广五所的CARMES和美国Relex。总体上来说,这些可靠性软件都是基于相同的标准,因此它们的基本功能也都十分类似,那么如何才能分辨出它们之间谁优谁劣呢?根据可靠性软件的特点和我厂的实际情况,我认为应主要从软件的稳定性、易用性和工程实用性三个方面进行考虑,现从这几个方面对上述软件进行一个简单的论证,具体内容如下。 稳定性 要衡量一个可靠性软件的好坏,首先是要看该软件的运行是否稳定。对一个可靠性软件来说,产品的稳定性十分重要。一个没有经过充分测试、自身的兼容性不好、软件BUG很多、经常死机的软件,用户肯定是不能接受的。当然,评价一个可靠性分析软件是否具有良好的稳定性,其最好的证明就是该产品的用户量和发展历史。 ISOGRAPH可靠性分析软件已将近有20年的发展历史,目前全球已有7000多个用户,遍布航空、航天、铁路、电子、国防、能源、通讯、石油化工、汽车等众多行业以及多所大学,其产品的每一个模块都已经过了isograph的工程师和广大用户的充分测试,因而其产品的稳定性是毋庸置疑的。而广五所的CARMES和美国Relex软件相对来说,其用户量比较少,而且其产品的每一个模块的发布时间都比isograph软件的相应模块晚得多,特别是一些十分重要的模块。 例如,isograph的故障树和事件树分析模块FaultTree+是一个非常成熟的产品,它的发展历史已经有15年了。Markov模块和Weibull模块也具有多年的发展历史,这些模块目前已经拥有一个十分广泛的用户群,它们已经被Isograph的工程师和大量的客户广泛的测试过,产品的稳定性值得用户信赖。而Relex的故障树和事件树相对比较新,它大约在2000年被发布,而Markov模块和Weibull模块2002年才刚刚发布,这些模块还没有经过大量用户的实际使用测试,其功能的稳定性和工程实用性还有待于时间的考验。广五所的CARMES软件的相应模块的发布时间就更晚了,有些甚至还没有开发出来,而且其用户主要集中在国内,并没有经过国际社会的广泛认可。 易用性 对一个可靠性分析软件产品来说,其界面是否友好,使用是否方便也十分重要,这关系到工程师能否在短时间内熟悉该软件并马上投入实际工作使用,能否充分发挥其作用等一系列问题。一个学习十分困难、使用很不方便的软件,即使其功能十分强大,用户也不愿使用。 ISOGRAPH软件可以独立运行在Microsoft Windows 95/98/Me/2000/NT/XP平台及其网络环境,软件采用大家非常熟悉的Microsoft产品的特点,界面友好,十分容易学习和使用。该软件提供了多种编辑工具和图形交互工具,便于用户在不同的模块间随时察看数据和进行分析。你可以使用剪切、复制、粘贴等工具,或者直接用鼠标“托放”来快速的创建各种分析项目,你还可以将标准数据库文件,如Microsoft Access数据库、Excel电子表格以及各种格式的文本文件作为输入直接导入到isograph软件中,使项目的建立变得非常简单。另外,Isograph 各软件工具都提供了功能强大的图形、图表和报告生成器,可以用来生成符合专业设计要求的报告、图形和表格,并可直接应用到设计分析报告结果中。 ISOGRAPH软件的一个显著特性就是将各软件工具的功能、设计分析信息、分析流程等有机地集成在一起,其全部的分析模块可以在同一个集成界面下运行,这既可以保证用户分析项目的完整性,还可以使用户在不同的模块间共享所有的信息,不同模块间的数据可以实时链接,而且还可以相互转化。例如,你可以在预计模块和FMECA模块之间建立数据链接,当你修改预计模块中的数据时,FMECA模块中对应的数据会自动修改,这既可以节省

风力发电设备可靠性评价规程

风力发电设备可靠性评价规程(试行) 1 范围 本规程规定了风力发电设备可靠性的统计办法和评价指标。适用于我国境内的所有风力发电企业发电能力的可靠性评价。 风力发电设备的可靠性统计评价包括风电机组的可靠性统计评价和风电场的可靠性统计评价两部分。 风电机组的可靠性统计评价范围以风电机组出口主开关为界,包括风轮、传动变速系统、发电机系统、液压系统、偏航系统、控制系统、通讯系统以及相应的辅助系统。 风电场的可靠性统计评价范围包括风电场内的所有发电设备,除了风电机组外,还包括箱变、汇流线路、主变等,及其相应的附属、辅助设备,公用系统和设施。 2 基本要求 本规程中指标评价所要求的各种基础数据报告,必须尊重科学、事实求是、严肃认真、全面而客观地反应风力发电设备的真实情况,做到准确、及时、完整。 与本规程配套使用的“风电设备可靠性管理信息系统”软件及相关代码,由中国电力企业联合会电力可靠性管理中心(以下简称“中心”)组织编制,全国统一使用。 3状态划分 风电机组(以下简称机组)状态划分如下: 运行 (S) 可用(A) 调度停运备用

备用 (DR) (R) 场内原因受累停运备用 在使用受累停运备用 (PRI) (ACT) (PR) 场外原因受累停运备用 (PRO) 计划停运 不可用(U) (PO) 非计划停运 (UO) 4 状态定义 在使用(ACT)——机组处于要进行统计评价的状态。在使用状态分为可用(A)和不可用(U)。 可用(A)——机组处于能够执行预定功能的状态,而不论其是否在运行,也不论其提供了多少出力。可用状态分为运行(S)和备用(R)。 4.2.1 运行(S)——机组在电气上处于联接到电力系统的状态,或虽未联接到电力系统但在风速条件满足时,可以自动联接到电力系统的状态。机组在运行状态时,可以是带出力运行,也可以是因风速过高或过低没有出力。 4.2.2 备用(R)——机组处于可用,但不在运行状态。备用可分为调度停运备用(DR)和受累停运备用(PR)。

供电系统用户供电可靠性评价规程

供电系统用户供电可靠性评价规程(暂行) 1 范围 本标准规定了供电系统用户供电可靠性的统计办法和评价指标,适用于对用户供电可靠性进行统计、计算、分析和评价。 2 基本要求 2.1电力可靠性管理是电力系统和设备的全面质量管理和全过程的安全管理,是适合现代化电力行业特点的科学管理方法之一,是电力工业现代化管理的一个重要的组成部分。 供电系统用户供电可靠性,是电力可靠性管理的一项重要内容,直接体现供电系统对用户的供电能力,反映了电力工业对国民经济电能需求的满足程度,是供电系统的规划、设计、基建、施工、设备选型、生产运行、供电服务等方面的质量和管理水平的综合体现。为了使供电可靠性评价具有完整性、科学性、客观性和可比性,特制定本规程。 2.2本规程以供电系统是否对用户停电为统计评价标准,统一了用户供电可靠性的统计方法与评价指标。 按照本规程统计计算的数据和指标,应成为供电企业下列诸方面工作的决策依据: ——城市电网的规划、设计和改造; ——编制供电系统运行方式、检修计划和制定有关生产管理措施; ——制定供电可靠性标准和准则; ——选择提高供电可靠性的可行途径。 2.3供电企业应对其全部管辖范围内的供电系统用户供电可靠性进行统计、计算、分析和评价。 管辖范围内的供电系统是指本企业产权范围的全部以及产权属于用户而委托供电部门运行、维护、管理的电网及设施。 2.4与本规程配套使用的管理信息系统及相关代码,由电力可靠性管理中心组织编制,统一使用。 2.5 本规程自公布之日起实行,原《供电系统用户供电可靠性统计办法》终止执行。 2.6 本规程由电力可靠性管理中心负责解释和统一修订。 3定义及分类 3.1供电系统用户供电可靠性 供电系统用户供电可靠性--供电系统对用户持续供电的能力。 3.2供电系统及供电系统设施 3.2.1低压用户供电系统及其设施--由公用配电变压器二次侧出线套管外引线开始至低压用户的计量收费点为止范围内所构成的供电网络,其设施为连接至接户线为止的中间设施。 3.2.2中压用户供电系统及其设施--由各变电站(发电厂)10(20、6)千伏出线母线侧刀闸开始至公用配电变压器二次侧出线套管为止,及10(20、6)千伏用户的电气设备与供电企业的管界点为止范围内所构成的供电网络及其连接的中间设施。 3.2.3高压用户供电系统及其设施--由各变电站(发电厂)35千伏及以上电压出线母线侧刀闸开始至35千伏及以上电压用户变电站与供电部门的管界点为止范围内所构成的供电

风力发电控制系统

贝加莱风力发电控制系统 2009-05-18 09:24 1、蓬勃发展的风电技术 风力发电正在中国蓬勃发展,即使在金融危机的大形势下,风力发电行业仍然不断的加大投资。在2008年,风力发电仍然保持着30%以上的强劲增长势头,包括Vestas、Gemsa、GE、国内的金风科技、华锐、运达工程等其订单交付已经到2011年后。 国内的风力发电控制技术起步较晚,目前的控制系统均是由欧洲专用控制方案提供商提供的专用系统,价格高昂且交货周期较长。开发自主知识产权的控制系统必须要提上日程,一方面,由于缺乏差异化而使得未来竞争中的透明度过高,而造成陷入激烈的价格竞争,另一方面,寻找合适的平台开发自主的风电控制系统将使得制造商在未来激烈竞争中获得先手。 然而,风电控制系统必须满足风电行业特殊的需求和苛刻的指标要求,这一切都对风力发电的控制系统平台提出了要求,而B&R的控制系统,在软硬件上均提供了适应于风力发电行业需求的设计,在本文我们将介绍因何这些控制器能够满足风力发电的苛刻要求。 2、风力发电对控制系统的需求 2.1高级语言编程能力 由于功率控制涉及到风速变化、最佳叶尖速比的获取、机组输出功率、相位和功率因素,发电机组的转速等诸多因素的影响,因此,它包含了复杂的控制算法设计需求,而这些,对于控制器的高级语言编程能力有较高的要求,而B&R PCC产品提供了高级语言编程能力,不仅仅是这些,还包括了以下一些关键技术: 2.1.1复杂控制算法设计能力 传统的机器控制多为顺序逻辑控制,而随着传感器技术、数字技术和通信技术的发展,复杂控制将越来越多的应用于机器,而机器控制本身即是融合了逻辑、运动、传感器、高速计数、安全、液压等一系列复杂控制的应用,PCC的设计者们很早就注意到这个发展方向而设计了PCC 产品来满足这一未来的需求。 为了满足这种需求,PCC设计为基于Automation Runtime的实时操作系统(OS)上,支持高级语言编程,对于风力发电而言,变桨、主控逻辑、功率控制单元等的算法非常复杂,这需要一个强大的控制器来实现对其高效的程序设计,并且,代码安全必须事先考虑,以维护在研发领域的投资安全。 2.1.2功能块调用 PCC支持PLCopen Motion、PLCopen Safety和PLCopenHydraulic库

含风电的发电系统可靠性评估(MC法)matlab程序

%% 3.计算含风电场的发电系统可靠性指标(非序贯MC) clc clear loadresult_WindFarmOutput %文件“result_WindFarmOutput.mat”构成了风电场出力的状态模型【风力状态状态概率】相关状态计算查看百度文库“风电场出力模型matlab程序” % 3.1 求出常规机组的出力模型,按类构成多状态模型 % RBTS发电系统中共有6类常规机组,%11台常规机组数据 % %2台5MW水电机组%% %1台10MW热电机组%% %4台20MW水电机组%% %1台20MW 热电机组%% %1台40MW水电机组%% %2台40MW热电机组% Generator.Norm=[5 0.01 5 0.01 10 0.02 20 0.015 20 0.015 20 0.015 20 0.015 20 0.025 40 0.02 40 0.03 40 0.03]; save('process.mat'); % 3.2MC抽样机组确定机组状态 % 3.2.1计算含风电场的RBTS可靠性 % 共有7类机组,常规机组状态在StateNorm【出力概率】元胞数组中,风电状态在StateFORWeibull6【出力概率】 I=0 %I用来记录发生却负荷的次数 sumDNS=0; DNS=zeros(200000,1); K=rand(200000,12);%1-11常规12风电 pwind=zeros(200000,1); for k=1:200000 Pout=zeros(12,1); %得到一次抽样常规机组状态 fori=1:11 if K(k,i)>Generator.Norm(i,2) Pout(i)=Generator.Norm(i,1); else Pout(i)=0; end end

发电设备可靠性评价规程

发电设备可靠性评价规程 1、范围 本规程规定了发电设备可靠性得统计及评价办法,适用于我国境内得所有发电企业(火电厂、水电厂(站)、蓄能水电厂、核电站、燃气轮电站)发电能力得可靠性评估。 2基本要求 2、1发电设备(以下如无特指,机组、辅助设备统称设备)可靠性,就是指设备在规定条件下、规定时间内,完成规定功能得能力。 2、2 本标准指标评价所要求得各种基础数据报告,必须准确、及时、完整地反映设备得真实情况。 2、3 “发电设备可靠性信息管理系统”程序、事件编码、单位代码,由“电力可靠性管理中心”(以下简称“中心”)组织编制,全国统一使用。 2、4 发电厂(站)或机组,不论其产权所属,均应纳入全国电力可靠性信息管理系统,实施行业管理。 3 状态划分 3、1发电机组(以下简称“机组")状态划分 ?全出力运行 ∣(FS) ∣ ?运行—∣?计划降低出力运行(IPD) ∣(S)∣∣?第1类非计划降低出力运行(IUD1) ∣∣降低出力运行-∣∣第2类非计划降低出力运行(IUD2) ∣?(IUND) ?非计划降低出力运行—∣第3类非计划降低出力运行(IUD3) ?可用-∣ (IUD)?第4类非计划降低出力运行(IUD4) ∣(A) ∣ ∣∣ ∣∣?全出力备用(FR) ∣?备用-∣ ∣(R) ∣?计划降低出力备用(RPD) ∣?降低出力备用—∣?第1类非计划降低出力备用(RUD1) ∣(RUND)?非计划降低出力备用—∣第2类非计划降低出力备用(RUD2) ∣ (RUD)∣第3类非计划降低出力备用(RUD3) ∣?第4类非计划降低出力备用(RUD4) ∣ ?在使用—∣ ∣(ACT)∣ ∣∣ ∣∣?大修停运(PO1) ∣∣?计划停运—∣小修停运(PO2) 机∣∣∣(PO) ?节日检修与公用系统计划检修停运(PO3) 组∣∣∣ —-∣?不可用-∣ 状∣ (U)∣ 态∣∣?第1类非计划停运(UO1)? ∣∣∣第2类非计划停运(UO2)∣—强迫停运(FO)

安全性可靠性性能评价

如对你有帮助,请购买下载打赏,谢谢! 3.3 安全性、可靠性和性能评价 3.3.1主要知识点 了解计算机数据安全和保密、计算机故障诊断与容错技术、系统性能评价方面的知识,掌握数据加密的有关算法、系统可靠性指标和可靠性模型以及相关的计算方示。 3.3.1.1数据的安全与保密 (1)数据的安全与保密 数据加密是对明文(未经加密的数据)按照某种加密算法(数据的变换算法)进行处理,而形成难以理解的密文(经加密后的数据)。即使是密文被截获,截获方也无法或难以解码,从而阴谋诡计止泄露信息。数据加密和数据解密是一对可逆的过程。数据加密技术的关键在于密角的管理和加密/解密算法。加密和解密算法的设计通常需要满足3个条件:可逆性、密钥安全和数据安全。 (2)密钥体制 按照加密密钥K1和解密密钥K2的异同,有两种密钥体制。 ①秘密密钥加密体制(K1=K2) 加密和解密采用相同的密钥,因而又称为密码体制。因为其加密速度快,通常用来加密大批量的数据。典型的方法有日本的快速数据加密标准(FEAL)、瑞士的国际数据加密算法(IDEA)和美国的数据加密标准(DES)。 ②公开密钥加密体制(K1≠K2) 又称不对称密码体制,加密和解密使用不同的密钥,其中一个密钥是公开的,另一个密钥是保密的。由于加密速度较慢,所以往往用在少量数据的通信中,典型的公开密钥加密方法有RSA和ESIGN。 一般DES算法的密钥长度为56位,RSA算法的密钥长度为512位。 (3)数据完整性 数据完整性保护是在数据中加入一定的冗余信息,从而能发现对数据的修改、增加或删除。数字签名利用密码技术进行,其安全性取决于密码体制的安全程度。现在已经出现很多使用RSA和ESIGN算法实现的数字签名系统。数字签名的目的是保证在真实的发送方与真实的接收方之间传送真实的信息。 (4)密钥管理 数据加密的安全性在很大程度上取决于密钥的安全性。密钥的管理包括密钥体制的选择、密钥的分发、现场密钥保护以及密钥的销毁。 (5)磁介质上的数据加密

风力发电系统电气控制设计风电-毕设论文

毕业论文 风力发电系统电气控制设计 摘要 风力发电系统电气控制技术是风力发电在控制领域的关键技术。风力发电机组控制系统工作的安全可靠性已成为风力发电系统能否发挥作用,甚至成为风电场长期安全可靠运行的重大问题。在实际应用过程中,尤其是一般风力发电机组控制与检测系统中,控制系统满足用户提出的功能上的要求是不困难的。往往不是控制系统功能而是它的可靠性直接影响风力发电机组的声誉。有的风力发电机组控制系统的功能很强,但由于工作不可靠,经常出故障,而出现故障后对一般用户来说维修又十分困难,于是这样一套控制系统可能发挥不了它应有的作用。因此对于一个风力发电机组控制系统的设计和使用者来说,系统的安全可靠性必须认真加以考虑,必须引起足够的重视。 我们的目的是希望通过控制系统的设计,采取必要的手段使我们的系统在规定的时间内不出故障或少出故障,并且在出故障之后能够以最快的速度修复系统,使之恢复正常工作。 关键词:风力发电的基本原理;风力发电机的基础理论;风力发电控制系统;风轮机的气动特性;变桨距控制系统。

1绪论 1.1国内外风力发电的现状与发展趋势 风能属于可再生能源,具有取之不尽、用之不竭、无污染的特点。人类面临的能源、环境两大紧迫问题使风能的利用日益受到重视。我国的风能资源丰富,可利用的潜能很大,大力发展风、水电是我国长期的能源政策。而其中风电是可再生能源中最具发展潜力和商业开发价值的能源方式。从20世纪80年代问世的现代并网风力发电机组,只经过30多年的发展,世界上已有近50个国家开发建设了风电场(是前期总数的3倍),2002年底,风电场总装机容量约31128兆瓦(是前期总数的300倍)。 2005年以来,全球风电累计装机容量年平均增长率为27.3%,新增装机容量年平均增长率为36.1%,保持着世界增长最快能源的地位。2010年全球装机容量达196630MW,新装机容量37642MW,比去年同期增长23.6%。 目前,德国、西班牙和意大利三国的风电机组的装机容量约占到欧洲总量的65%。近年来,在欧洲大力发展风电产业的国家还有法国、英国、葡萄牙、丹麦、荷兰、奥地利、瑞典、爱尔兰。欧洲之外,发展风电的主要国家有美国、中国、印度、加拿大和日本。迄今为止,世界上已有82个国家在积极开发和应用风能资源。 海上风力资源条件优于陆地,将风电场从陆地向近海发展在欧洲已经成为一种新的趋势。有人把风电的发展规划为3步曲,陆上风电技术(当前技术)一近海风电技术(正研发技术)一海上风电技术(未来发展方向)。 2010年北美的装机容量有显著下降,美国年度装机容量首度不及中国;多数西欧国家风能发展处于饱和阶段,但风能产业在东欧国家得到显著发展;非洲风能发展主要集中在北非。 随着海上风电的迅速发展,单机容量为3 -6MW的风电机组已经开始进行商业化运行。美国7MW风电机组已经研制成功,正在研制10MW机组;英国10MW机组也正在进行设计,挪威正在研制14MW的机组,欧盟正在考虑研制20MW的风电机组,全球各主要风电机组制造厂家都在为未来更大规模的海上风电场建设做前期开发。 1.1.1世界上风力发电的现状 近年来,世界风电发展持续升温,速度加快。现主要以德国、西班牙、丹麦和美国的一些公司为代表,大规模地促进了风电产业化和风机设备制造业的发展。经过四、五年时间的整合,国际上风机制造业大约有十几家比较好的大企业。2003年底,全世界风电是3800万千瓦左右,而2003年一年就增加了400多万千瓦,仅德国到2003年底的装机容量就有1600万千瓦,其次是西班牙、美国、丹麦等国。国外风电的发展趋势,一是发展速度加快,二是风机机组从小型化向大型化发展,海上风电厂是下一步发展的主流。

风力发电设备可靠性评价规程(试行)

风力发电设备可靠性评价规程(试行) 1 范围 1.1 本规程规定了风力发电设备可靠性的统计办法和评价指标。适用于我国境内的所有风力发电企业发电能力的可靠性评价。 1.2 风力发电设备的可靠性统计评价包括风电机组的可靠性统计评价和风电场的可靠性统计评价两部分。 1.3 风电机组的可靠性统计评价范围以风电机组出口主开关为界,包括风轮、传动变速系统、发电机系统、液压系统、偏航系统、控制系统、通讯系统以及相应的辅助系统。 1.4 风电场的可靠性统计评价范围包括风电场内的所有发电设备,除了风电机组外,还包括箱变、汇流线路、主变等,及其相应的附属、辅助设备,公用系统和设施。 2 基本要求 2.1 本规程中指标评价所要求的各种基础数据报告,必须尊重科学、事实求是、严肃认真、全面而客观地反应风力发电设备的真实情况,做到准确、及时、完整。 2.2 与本规程配套使用的“风电设备可靠性管理信息系统”软件及相关代码,由中国电力企业联合会电力可靠性管理中心(以下简称“中心”)组织编制,全国统一使用。 3状态划分 风电机组(以下简称机组)状态划分如下: 运行 (S) 可用(A) 调度停运备用 备用(DR) (R) 场内原因受累停运备用在使用受累停运备用(PRI) (ACT)(PR) 场外原因受累停运备用 (PRO) 计划停运 不可用(U) (PO)

非计划停运 (UO) 4 状态定义 4.1 在使用(ACT)——机组处于要进行统计评价的状态。在使用状态分为可用(A)和不可用(U)。 4.2 可用(A)——机组处于能够执行预定功能的状态,而不论其是否在运行,也不论其提供了多少出力。可用状态分为运行(S)和备用(R)。 4.2.1 运行(S)——机组在电气上处于联接到电力系统的状态,或虽未联接到电力系统但在风速条件满足时,可以自动联接到电力系统的状态。机组在运行状态时,可以是带出力运行,也可以是因风速过高或过低没有出力。 4.2.2 备用(R)——机组处于可用,但不在运行状态。备用可分为调度停运备用(DR)和受累停运备用(PR)。 4.2.2.1 调度停运备用(DR)——机组本身可用,但因电力系统需要,执行调度命令的停运状态。 4.2.2.2 受累停运备用(PR)——机组本身可用,因机组以外原因造成的机组被迫退出运行的状态。按引起受累停运的原因,可分为场内原因受累停运备用(PRI)和场外原因受累停运备用(PRO)。 a) 场内原因受累停运备用(PRI)——因机组以外的场内设备停运(如汇流线路、箱变、主变等故障或计划检修)造成机组被迫退出运行的状态。 b) 场外原因受累停运备用(PRO)——因场外原因(如外部输电线路、电力系统故障等)造成机组被迫退出运行的状态。 4.3 不可用(U)——机组不论什么原因处于不能运行或备用的状态。不可用状态分为计划停运(PO)和非计划停运(UO)。 4.3.1计划停运(PO)——机组处于计划检修或维护的状态。计划停运应是事先安排好进度,并有既定期限的定期维护。 4.3.2非计划停运(UO)——机组不可用而又不是计划停运的状态。 5 状态转变时间界线和时间记录的规定 5.1 状态转变时间的界线

相关文档
相关文档 最新文档