文档库 最新最全的文档下载
当前位置:文档库 › 一般形式的柯西不等式 说课稿 教案 教学设计

一般形式的柯西不等式 说课稿 教案 教学设计

一般形式的柯西不等式   说课稿  教案 教学设计
一般形式的柯西不等式   说课稿  教案 教学设计

一般形式的柯西不等式

教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题.

教学重点:会证明一般形式的柯西不等式,并能应用.

教学难点:理解证明中的函数思想.

教学过程:

一、复习准备:

1. 练习:

2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?

答案:;

二、讲授新课:

1. 教学一般形式的柯西不等式:

① 提问:由平面向量的柯西不等式,如果得到空间向量的柯西不等式及代数形式?

② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式?

结论:设,则

讨论:什么时候取等号?(当且仅当时取等号,假设) 联想:设,,,则有

,可联想到一些什么?

③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类)

要点:令 ,则 .

又,从而结合二次函数的图像可知,

22222()()()a b c d ac bd ++≥+2222222()()()a b c d e f ad be cf ++++≥++||||||αβαβ≤1212,,,,,,,n n a a a b b b R ∈222222212121122()()()n n n n a a a b b b a b a b a b ++

+++≥+++1212n n

a a a

b b b ===0i b ≠1122n n B a b a b a b =+++22212n A a a a =++22212n C b b b =+++20B AC -≥2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+(

)(22212()n b b b +++???+2221122()()())0n n f x a x b a x b a x b =++++???+≥+(222120n a a a ++???+>

≤0

即有要证明的结论成立. (注意:分析什么时候等号成立.)

④ 变式:. (讨论如何证明)

2. 教学柯西不等式的应用:

① 出示例1:已知,求的最小值.

分析:如何变形后构造柯西不等式? → 板演 → 变式:

② 练习:若,且,求的最小值.

③ 出示例2:若>>,求证:.

要点:

3. 小结:柯西不等式的一般形式及应用;等号成立的条件;根据结构特点构造证明.

三、巩固练习:

[]22

2

2

1122122()4()n n n a b a b a b a a a ?=+++-++2

2

2

12()n b b b +++222

212121()n n a a a a a a n ++≥++???+321x y z ++=222x y z ++,,x y z R +∈1

1

11x y z ++=23y z

x ++a b c c a c b b a -≥-+-4

1121111

()()[()()]()(11)4a c a b b c a b b c a b b c -+=-+-+≥+=----

一般形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【一般形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α ,β 为平面上的两个向量,则αβαβ? ≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 问题2:你会用柯西不等式证明下面的两个不等式吗? (1)222a b ab +≥ (2)2221()2 a b a b ++≥ 解析: (1)2222222222))()(2),)(2)a b a b ab ab ab a b ab +++=+∵((≥∴(≥

2014年人教A版选修4-5教案 二 一般形式的柯西不等式

二 一般形式的柯西不等式 教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题. 教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习准备: 1. 练习: 2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++ 二、讲授新课: 1. 教学一般形式的柯西不等式: ① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,, ,,,,,n n a a a b b b R ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++ 讨论:什么时候取等号?(当且仅当 12 12 n n a a a b b b === 时取等号,假设0i b ≠) 联想:设1122n n B a b a b a b =+++, 22212n A a a a =++,22212n C b b b =+++,则有20B AC -≥, 可联想到一些什么? ③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类) 要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+( )(222 12()n b b b +++???+ ,则 2221122()()())0n n f x a x b a x b a x b =++++???+≥+(. 又222120n a a a ++???+>,从而结合二次函数的图像可知, []2 2221122122()4()n n n a b a b a b a a a ?=+++-++ 22212()n b b b +++≤0 即有要证明的结论成立. (注意:分析什么时候等号成立.) ④ 变式:222212121 ()n n a a a a a a n ++ ≥++???+. (讨论如何证明)

人教版数学高二(人教A版选修4-5)1.1.1不等式的基本性质 素材

打印版 打印版 第01课时 不等式的基本性质 一、引入: 不等关系是自然界中存在着的基本数学关系。《列子?汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。而且,不等式在数学研究中也起着相当重要的作用。 本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。还可从引言中实际问题出发,说明本章知识的地位和作用。 生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>a b 即可。怎么证呢? 二、不等式的基本性质: 1.实数的运算性质与大小顺序的关系: 数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知: 0>-?>b a b a 0=-?=b a b a 0<-?b ,那么bb 。(对称性) ②如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ?a>c 。 ③如果a>b ,那么a+c>b+c ,即a>b ?a+c>b+c 。 推论:如果a>b ,且c>d ,那么a+c>b+d .即a>b , c>d ?a+c>b+d . ④如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么acb >0,那么n n b a > (n ∈N ,且n>1) ⑥如果a> b >0,那么n n b a > (n ∈N ,且n>1)。 三、典型例题: 例1 已知a>b ,cb-d . 例2 已知a>b>0,c<0,求证:b c a c >。

拉格朗日中值定理教学设计

教学设计 第六章微分中值定理及其应用 §1 拉格朗日定理和函数的单调性 题目:罗尔定理与拉格朗日定理 一、教学目的: 1.知识目标:分别掌握罗尔定理和拉格朗日定理及对应的几何意义,掌握三个推 论。 2.能力目标:首先让同学们知道微分中值定理包括四大定理(罗尔定理、拉格朗 日定理、柯西定理、泰勒定理),然后通过学习罗尔定理,类比学习理解拉格 朗日定理,培养学生分析、抽象、概括和迁移的学习能力。 3.情感目标:在教学过程中,让学生发现数学知识的融会贯通,培养数形结合的 思想,以及严密的思维方法,从而亲近数学,爱上数学。 二、教学重点与难点: 1.重点:罗尔定理和拉格朗日定理,定理是基石,只有基石牢固,大厦才能建的 高。 2.难点:罗尔定理和拉格朗日定理的应用与推广,以及这两个定理之间的区别 与联系。 三、教学方法:教师启发讲授和学生探究学习的教学方法 四、教学手段:板书与课件相结合 五、教学基本流程:

六、教学 情境设计(1学时): 1、知识回顾 费马定理:设函数)(x f 在0x 的某领域内有定义,且在0x 可导。若0x 为f 的极值点,则必有0)(0='x f 。它的几何意义在于:若函数)('x f 在=x 0x 可导,那么在该点的切线平行于x 轴。 2、引出定理,探究案例 微分中值定理是微分学的重要组成部分,在导数的应用中起着桥梁作用,它包括 四大定理,分别是罗尔定理、拉格朗日定理、柯西定理和泰勒定理,先学习拉格朗日定理的预备定理——罗尔定理。 定理 6.1 (罗尔(Rolle )中值定理) 若函数f 满足如下条件: (i)f 在闭区间[]b a ,上连续; (ii)f 在开区间()b a ,内可导; (iii)()()b f a f =, 则在()b a ,内至少存在一点ξ,使得 ()0='ξf . ()1 罗尔定理的几何意义是说:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线(图6—1).

2018-2019学年高中数学人教A版选修4-5创新应用教学案:第三讲第1节二维形式的柯西不等式

[核心必知] 1.二维形式的柯西不等式 (1)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立. (2)二维形式的柯西不等式的推论: (a +b )(c +d )(a ,b ,c ,d 为非负实数); a 2+b 2·c 2+d 2≥|ac +bd |(a ,b ,c ,d ∈R ); a 2+b 2·c 2+d 2≥|ac |+|bd |(a ,b ,c ,d ∈R ). 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 3.二维形式的三角不等式 (1)x 21+y 21+x 22+y 22x 1,y 1,x 2,y 2∈R ). (2)推论: (x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥ (x 1,x 2,x 3,y 1,y 2,y 3∈R ). [问题思考] 1.在二维形式的柯西不等式的代数形式中,取等号的条件可以写成a b =c d 吗? 提示:不可以.当b ·d =0时,柯西不等式成立,但a b =c d 不成立.

2.不等式x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2 (x1,x2,y1,y2∈R)中,等号成立的条件是什么? 提示:当且仅当P1(x1,y1),P2(x2,y2),O(0,0)三点共线, 且P1,P2在原点两旁时,等号成立.2·a2+c2≥a+c, 设a,b,c为正数,求证:a2+b2+b2+c2+a2+c2≥2(a+b+c).[精讲详析]本题考查柯西不等式的应用.解答本题需要根据不等式的结构,分别使用柯西不等式,然后将各组不等式相加即可.由柯西不等式:a2+b2·12+12≥a+b,即2·a2+b2≥a+b, 同理:2·b2+c2≥b+c,2·a2+c2≥a+c, 将上面三个同向不等式相加得: 2(a2+b2+b2+c2+a2+c2)≥2(a+b+c), ∴a2+b2+b2+c2+a2+c2≥2·(a+b+c). 利用二维柯西不等式的代数形式证题时,要抓住不等式的基本特征: (a2+b2)(c2+d2)≥(ac+bd)2,其中a,b,c,d∈R或(a+b)·(c+d)≥(ac+bd)2,其中a,b,c,d∈R+. 1.设a1,a2,a3为正数,求证:a31+a21a2+a1a22+a32+a32+a22a3+a2a23+a33+a33+a23a1+a3a21+a31≥2(a31+a32+a33). 证明:因为a31+a21a2+a1a22+a32=(a1+a2)·(a21+a22),

如何进行柯西不等式的教学(含答案)

如何进行柯西不等式的教学 柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用,教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用. 在介绍了二维形式的柯西不等式的基础上,教科书引导学生在平面直角坐标系中,根据两点间的距离公式以及三角形的边长关系,从几何意义上发现二维形式的三角不等式接着借助二维形式的柯西不等式证明了三角不等式,在一般形式的柯西不等式的基础上,教科书安排了—个探究栏目,让学生通过探究得出一般形式的三角不等式. 由上可见,教材编写者对这部分内容的要求以便让学生在大学学习打下坚实的基础,但这部分教与学的难度是显而易见的. 柯西不等式∑∑∑===≥n i i i n i i n i i b a b a 1 21 2 1 2 )(是柯西在1931年研究数学分析中的“留数” 问题时得到的.表面上看,这一不等式并不难理解,也很容易验证它的正确性,特别是它的二阶形式22222)())((bd ac d c b a +≥++,几乎是不证自明的.但是,我们能看出这一平凡无奇的不等式成立,是因为事先已经知道两边是什么式子,而最先发现这样的不等关系,则是一个创造的过程,并不是那么容易的.柯西不等式不失为至善至美的重要不等式,以它的对称和谐的结构,简洁明快的解题方法等特点,深受人们的喜爱.而且和物理学中的矢量、高等数学中的内积空间等内在地联系在一起.柯西不等式的几种形式都有较为深刻的背景和广泛的应用,向量形式αβαβ≥?不仅直观地反映了这一不等式的本质,一般形式

柯西不等式教学设计

3.1 二维形式的柯西不等式(一)教学设计 一、设计思想: 本节乃至本讲的编写意图不是仅仅介绍经典不等式及其证明方法,而是更希 望能通过分析和解决问题,讨论经典不等式的简单应用,提高学生运用重要数学 结论进行推理论证的能力,即在理解重要数学结论的基础上,能够发现面临的具 体问题与重要数学结论之间的内在联系,并善于利用这样的联系,应用重要数学 结论及其所反映的数学思想方法解决具体问题。 二、教材分析: 二维形式的柯西不等式是人教A 版教材选修4-5第三讲第一节的内容,是学生 继学习均值不等式之后学习的又一个经典不等式,它在教材中起着承前启后的作 用,一方面巩固了前面证明不等式及求最值的基本方法,另一方面与后面学习的 三维形式的柯西不等式及一般形式的柯西不等式有着相通的研究方法,是从特殊 到一般的研究过程。本节教学的核心是二维形式的柯西不等式、几何意义以及它 的简单应用。 三、学情分析: 学生不仅掌握了不等式的基本证明方法,还具备了一定的观察、分析、逻辑推 理能力,学生对柯西不等式的向量形式也有了一定的认识,这是学生知识的“最 近发展区”。另外授课班级是高二年级(4)班,学生基础较好,学习积极性较高。 四、教学目标 1、知识与技能目标 (1)认识二维柯西不等式的几种不同形式,理解其几何意义。 (2)能用二维柯西不等式解决简单的证明问题及求最值问题。 2、过程与方法目标 通过创设情境提出问题,然后探索解决问题的方法,培养学生 独立思考能力和逻辑推理能力及数形结合能力。 3、情感态度与价值观 简单介绍法国数学家柯西,渗透数学史和数学文化。 五、教学重难点 (1)教学重点 二维形式的柯西不等式 ; 二维形式的柯西不等式的向量形式 (2)教学难点 数形结合的认识两种形式的等价关系;应用柯西不等式求最值 六、教学过程 (一)定理探究 设α ,β 为平面上以原点O 为起点的两个非零向量,它们的坐标α =(b a ,) β =(d c ,)那么它们的数量积为ac bd αβ→→?=+而22||a b α→=+,22||c d β=+ ||||cos αβαβθ?=?? ,cos 1θ≤ ||||||αβαβ∴ ?≤? ,其中等号当且仅当两个向量共线时成立。 定理:(二维柯西不等式的向量形式)设α ,β 为平面上的两个向量,则 ||||||αβαβ?≤? ,当且仅当β 是零向量或存在实数k ,使k αβ= 时等号成立。 用向量坐标表示不等式||||||αβαβ?≤? ,得2222||d c b a bd ac +?+≤+

一般形式的柯西不等式优秀教学设计

一般形式的柯西不等式 【教学目标】 认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式。 【教学重点】 会证明二维柯西不等式及三角不等式。 【教学难点】 理解几何意义。 【教学过程】 一、复习准备: 1.提问: 二元均值不等式有哪几种形式? 答案: (0,0)2a b a b +>>及几种变式。 2.练习:已知A .B .C .d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=…=2()0ad bc -≥ 二、讲授新课: 1. 柯西不等式: ① 提出定理1:若A .B .C .d 为实数,则22222()()()a b c d ac bd ++≥+。 → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+。 (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a =+2||n c d =+ ∵ m n ac bd ?=+,且||||cos ,m n m n m n ?=<>,则||||||m n m n ?≤。 ∴ …。。 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立。 ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即…。。

《二 一般形式的柯西不等式》教案

《二 一般形式的柯西不等式》教案 教学目标 1.认识柯西不等式的几种不同形式,理解其几何意义; 2.通过运用这种不等式分析解决一些问题,体会运用经典不等式的一般方法 教学重、难点 重点:一般形式柯西不等式的证明思路,运用这个不等式证明不等式. 难点:应用一般形式柯西不等式证明不等式. 教学过程 一、复习引入: 定理1:(柯西不等式的代数形式)设d c b a ,,,均为实数,则 22222)())((bd ac d c b a +≥++,其中等号当且仅当bc ad =时成立. 定理2:(柯西不等式的向量形式)设α,β为平面上的两个向量,则||||||βαβα?≥?,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 二、讲授新课: 类似的,从空间向量的几何背景业能得到?αβαβ≤将空间向量的坐标代入,可得到 2222222123123112233()()()a a a b b b a b a b a b ++++≥++ 当且仅当,αβ共线时,即0,β=或存在一个数k ,使得(1,2,3)i i a kb i ==时,等号成立. 这就是三维形式的柯西不等式. 对比二维形式和三维形式的柯西不等式,你能猜想出一般形式的柯西不等式吗? 定理(一般形式的柯西不等式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任 意实数,则:22222212121122()()()n n n n a a a b b b a b a b a b ++++≥++L L L 即 2 11212)(∑∑∑===≥n i i i n i i n i i b a b a ,其中等号当且仅当1212n n b b b k a a a ====L 时成立(当0=i a 时,约定0=i b ,=i 1,2,…,n ). 证明:构造二次函数:2222211)()()()(n n b x a b x a b x a x f -++-+-=Λ

教学设计:选修4-5+第三讲+柯西不等式与排序不等式(4课时)

第一课时 3.1 二维形式的柯西不等式(一) 教学要求:1、认识二维柯西不等式的几种形式,理解它们的几何意义; 2、并会证明二维柯西不等式及向量形式. 教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义. 教学过程: 一、复习准备: 1. 提问: 二元均值不等式有哪几种形式? 答案: (0,0)2 a b a b +≥>>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 二、讲授新课: 1. 教学柯西不等式: ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则22||m a b =+,2||n c d =+∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? 22||c d ac bd +≥+ 或 22||||c d ac bd +≥+ 2 22c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 三、巩固练习:

北师大版数学高二柯西不等式教案 选修4-5

高中数学 柯西不等式教案 选修4-5 教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式. 教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义. 教学过程: 一、复习准备: 1. 提问: 二元均值不等式有哪几种形式? 答案:(0,0)2 a b a b +>>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 二、讲授新课: 1. 教学柯西不等式: ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? 222||c d ac bd +≥+ 或222||||c d ac bd +≥+ 2 22c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d ≥. 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈≥分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 三、巩固练习:

一般形式的柯西不等式精品教案

一般形式的柯西不等式 【教学目标】 认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式。 【教学重点】 会证明二维柯西不等式及三角不等式。 【教学难点】 理解几何意义。 【教学过程】 一、复习准备: 1.提问: 二元均值不等式有哪几种形式? 答案:及几种变式。 (0,0)2a b a b +≥>>2.练习:已知A .B .C .d 为实数,求证 22222()()()a b c d ac bd ++≥+ 证法:(比较法)=…= 22222()()()a b c d ac bd ++-+2()0ad bc -≥二、讲授新课: 1. 柯西不等式: ① 提出定理1:若A .B .C .d 为实数,则。 22222()()()a b c d ac bd ++≥+ → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法) 222222222222()()a b c d a c a d b c b d ++=+++ 。 (要点:展开→配方) 222()()()ac bd ad bc ac bd =++-≥+ 证法三:(向量法)设向量,,则,(,)m a b =u r (,)n c d =r ||m =u r ||n =r ∵ ,且,则。 ∴ …。。 m n ac bd ?=+u r r ||||cos ,m n m n m n ?=<>u r r u r r u r r ||||||m n m n ?≤u r r u r r 证法四:(函数法)设,则 22222()()2()f x a b x ac bd x c d =+-+++≥0恒成立。 22()()()f x ax c bx d =-+-

高中数学人教A版选修4-5教学案第三讲 一 二维形式的柯西不等式

一二维形式的柯西不等式 对应学生用书 .二维形式的柯西不等式()定理:若,,,都是实数,则(+)(+) ≥ (+) ,当且仅当=时,等号成立. ()二维形式的柯西不等式的推论: (+)(+)≥(+)(,,,为非负实数); ≥ + · (,,, ); ∈ ≥ · + ∈ ). (,,, .柯西不等式的向量形式 α·β ≤ α β· 是两个向量,则 α , β 定理:设 零向量 ,当且仅当 β 时 α = β 是 ,或存在实数,使 ,等号成立.[注意]柯西不等式的向量形式中α·β≤αβ,取等号“=”的条件是β=或存在实数,使α=β. .二维形式的三角不等式 ()定理:+≥(,,,∈). 当且仅当三点,与共线,并且,点在原点异侧时,等号成立. ()推论:对于任意的,,,,,∈,有 + ≥. 事实上,在平面直角坐标系中,设点,,的坐标分别为(,),(,),(,),根据△的边长关系有+≥,当且仅当三点,,共线,并且点,在点的异侧时,等号成立. 对应学生用书 [例]已知θ为锐角,,∈ ,求证:+≥(+). +

[思路点拨]可结合柯西不等式,将左侧构造成乘积形式,利用“=θ+θ.”然后用柯西不等式证明. [证明]∵+ =(θ+θ) ≥θ)· θ+( θ)· θ)) =(+), ∴(+)≤+. 利用柯西不等式证明不等式的关键在于利用已知条件和所证不等式,把已知条件利用 添项、拆项、分解、组合、配方、变量代换等,将条件构造柯西不等式的基本形式,从而 利用柯西不等式证明,但应注意等号成立的条件. .已知+=,+=,求证:+≤. 证明:由柯西不等式得 (+)≤(+)(+)=, ∴+≤. .已知,,,为正实数. 求证:(+)≥(+). 证明:(+)=[()+()]≥ =(+). .设,,为正数, 求证:++≥(++). 证明:由柯西不等式: ·≥+, 即·≥+. 同理:·≥+, ·≥+, 将上面三个同向不等式相加得: (+)+(+)))≥(++) ∴++≥·(++).

教案对“柯西不等式”展开的联想

1 对“柯西不等式”展开的联想 我追求的教学境界: 与其说数学教师教学生学习数学,不如说数学教师引领学生一同走进数学殿堂来欣赏数学更为合适。 我展示的主题用义: 其用义在于呼唤更多的教师与学生走出题海,回归课本。 1.思想方法研究 例3:已知bc ad ≠,求证:2 2222)())((bd ac d c b a +>++; 体现的载体简单,饱含的方法经典,反映的思想深刻。 2.数学背景联想 例4:已知R b a ∈,,求证:222)()(2b a b a +≥+; 华罗庚:“数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉, 形少数时难入微。” 3.文化渊源概述 柯西是法国数学家.1789年8月21日生于巴黎;1857年5月23日卒于巴黎附近的索镇. 柯西的父亲是一位精通古典文学的律师,曾任法国参议院秘书长,和拉格朗日、拉普拉斯等人交往甚密,因此柯西从小就认识了一些著名的科学家. 柯西自幼聪敏好学,在中学时就是学校里的明星,曾获得希腊文、拉 丁文作文和拉丁文诗奖.在中学毕业时赢得全国大奖赛和一项古典文学特别奖.拉格郎日曾预言他日后必成大器.1805年他年仅16岁就以第二名的成绩考入巴黎综合工科学校,1807年又以第一名的成绩考入道路桥梁工程学校.1810年3月柯西完成了学业离开了巴黎,从1810年12月,柯西就把数学的各个分支从头到尾再温习一遍,从算术开始到天文学为止,把模糊的地方弄清楚,应用他自己的方法去简化证明和发现新定理,柯西于1813年回到巴黎综合工科学校任教,1816年晋升为该校教授.以后又担任了巴黎理学院及法兰西学院教授. 数学中以他的姓名命名的有:柯西积分、柯西公式、柯西不等式、柯西定 理、柯西函数、柯西矩阵、柯西分布、柯西变换、柯西准则、柯西算子、柯西序列、柯西系统、柯西主值、柯西条件、柯西形式、柯西问题、柯西数据、柯西积、柯西核、柯西网……等等。

高中数学第三讲柯西不等式与排序不等式3.3排序不等式教案新人教A版选修4_5

3.3排序不等式 一、教学目标 1.了解排序不等式的数学思想和背景. 2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题. 二、课时安排 1课时 三、教学重点 1.了解排序不等式的数学思想和背景. 2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题. 四、教学难点 1.了解排序不等式的数学思想和背景. 2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题. 五、教学过程 (一)导入新课 某班学生要开联欢会,需要买价格不同的礼品4件,5件和2件.现在选择商店中单价分别为3元,2元和1元的礼品,则至少要花________元,最多要花________元.【解析】取两组实数(2,4,5)和(1,2,3),则顺序和为2×1+4×2+5×3=25,反序和为2×3+4×2+5×1=19. 所以最少花费为19元,最多花费为25元. 【答案】19 25 (二)讲授新课 教材整理1 顺序和、乱序和、反序和的概念 设a1≤a2≤a3≤…≤a n,b1≤b2≤b3≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则称a i与b i(i=1,2,…,n)的相同顺序相乘所得积的和为顺序和,和为乱序和,相反顺序相乘所得积的和称为反序和. 教材整理2 排序不等式 设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则≤≤,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和,此不等式简记为≤≤顺序和. (三)重难点精讲

题型一、用排序不等式证明不等式(字母大小已定) 例1已知a ,b ,c 为正数,a ≥b ≥c ,求证: (1)1bc ≥1ca ≥1ab ; (2)a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥1a 2+1b 2+1c 2. 【精彩点拨】 由于题目条件中已明确a ≥b ≥c ,故可以直接构造两个数组. 【自主解答】 (1)∵a ≥b >0,于是1a ≤1 b . 又c >0,∴1c >0,从而1bc ≥1 ca , 同理,∵b ≥c >0,于是1b ≤1 c , ∴a >0,∴1a >0,于是得1ca ≥1 ab , 从而1bc ≥1ca ≥1ab . (2)由(1)知1bc ≥1ca ≥1 ab >0且a ≥b ≥c >0, ∴ 1 b 2c 2 ≥ 1 c 2a 2 ≥ 1 a 2b 2 ,a 2 ≥b 2≥c 2 . 由排序不等式,顺序和≥乱序和得 a 2 b 2 c 2+b 2c 2a 2+c 2a 2b 2≥b 2b 2c 2+c 2c 2a 2+a 2a 2b 2=1c 2+1a 2+1b 2=1a 2+1b 2+1c 2, 故a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥1a 2+1b 2+1c 2. 规律总结:利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组. [再练一题] 1.本例题中条件不变,求证:a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥c 2a 3+a 2b 3+b 2 c 3. 【证明】 ∵a ≥b ≥c ≥0, ∴a 5 ≥b 5 ≥c 5 , 1 c ≥1b ≥1 a >0. ∴1bc ≥1ac ≥1ba ,

2017-2018学年人教A版高中数学选修4-5全册教学案

2017-2018学年高中数学人教A版选修4-5全册教学案 目录 第一讲一 1.不等式的基本性质 第一讲一 2.基本不等式 第一讲一 3.三个正数的算术—几何平均不等式 第一讲二 1.绝对值三角不等式 第一讲二 2.绝对值不等式的解法 第一讲本讲知识归纳与达标验收 第二讲一比较法 第二讲二综合法与分析法 第二讲三反证法与放缩法 第二讲本讲知识归纳与达标验收 第三讲一二维形式的柯西不等式 第三讲二一般形式的柯西不等式 第三讲三排序不等式 第三讲本讲知识归纳与达标验收 第四讲一数学归纳法 第四讲二用数学归纳法证明不等式 第四讲本讲知识归纳与达标验收

1.不等式的基本性质 对应学生用书P1 1.实数大小的比较 (1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的大小.在数轴上,右边的数总比左边的数大. (2)如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b. (3)比较两个实数a与b的大小,归结为判断它们的差a-b的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号.2.不等式的基本性质 由两数大小关系的基本事实,可以得到不等式的一些基本性质: (1)如果a>b,那么b<a;如果b<a,那么a>b.即a>b?b<a. (2)如果a>b,b>c,那么a>c.即a>b,b>c?a>c. (3)如果a>b,那么a+c>b+c. (4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb>0,那么a n>b n(n∈N,n≥2). (6)如果a>b>0n∈N,n≥2). 3.对上述不等式的理解 使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如: (1)等式两边同乘以一个数仍为等式,但不等式两边同乘以同一个数c(或代数式)结果有三种:①c>0时得同向不等式;②c=0时得等式;③c<0时得异向不等式. (2)a>b,c>d?a+c>b+d,即两个同向不等式可以相加,但不可以相减;而a>b>0, c>d>0?ac>bd,即已知的两个不等式同向且两边为正值时,可以相乘,但不可以相除. (3)性质(5)、(6)成立的条件是已知不等式两边均为正值,并且n∈N,n≥2,否则结论不 成立.而当n取正奇数时可放宽条件,a>b?a n>b n(n=2k+1,k∈N),a>b?n a> n b(n=2k +1,k∈N+). (4)在不等式的基本性质中,条件和结论的逻辑关系有两种:“?”与“?”,即推出关系和等价关系,或者说“不可逆关系”与“可逆关系”.这要求必须熟记与区别不同性质 的条件.如a>b,ab>0?1 a< 1 b,而反之不成立.

2.1.2 柯西不等式的一般形式及其参数配方法的证明 教学案 3

2.1.2 柯西不等式的一般形式及其参数配方法的证明 教学案 3 教学目标: 1.认识柯西不等式的几种不同形式,理解其几何意义; 2.通过运用这种不等式分析解决一些问题,体会运用经典不等式的一般方法. 教学重点: 一般形式柯西不等式的证明思路,运用这个不等式证明不等式. 教学难点: 应用一般形式柯西不等式证明不等式. 教学过程: 一、课前回顾(知识链接) 定理1:(柯西不等式的代数形式)设d c b a ,,,均为实数,则 22222)())((bd ac d c b a +≥++,其中等号当且仅当bc ad =时成立. 定理2:(柯西不等式的向量形式)设α,β为平面上的两个向量,则||||||βαβα?≥?,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立. 二、新课学习 1、问题探究 类似的,从空间向量的几何背景业能得到|α.β|≤|α|| β|.将空间向量的坐标代入,可得到什么样的不等关系? 2、发现定理 定理4:一般形式的柯西不等式(教师引导学生推导) 学生齐读记忆定理 记清楚简写形式:211212)(∑∑∑===≥n i i i n i i n i i b a b a 其中等号当且仅当n n a b a b a b === 2211时成立(当0=i a 时,约定0=i b ,=i 1,2,…,n ). 三、应用举例: 例3 已知a 1,a 2,…, a n 都是实数, 求证:22221221)(1n n a a a a a a n +++≤+++ 分析:用n 乘要证的式子两边,能使式子变成明显符合柯西不等式的形式. 例4已知a ,b ,c ,d 是不全相等的实数,

选修4-5 《不等式选讲》全册教案

选修4--5 不等式选讲 一、课程目标解读 选修系列4-5专题不等式选讲,内容包括:不等式的基本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大(小)值、数学归纳法与不等式。通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。 二、教材内容分析 作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示: 第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。 对于绝对值不等式,借助几何意义,从“运算”角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。 第二讲是“证明不等式的基本方法”,教材通过一些简单问题,回顾介绍了证明不等式的比较法、综合法、分析法,反证法、放缩法。其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。这些方法大多在选修2-2“推理与证明”已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比如舍掉或加进一些项,在分式中放大或缩小分子或分母,应用基本不等式进行放缩等(见分节教学设计)。本讲内容也是本专题的一个基础内容。 第三讲是“柯西不等式和排序不等式”。这两个不等式也是本专题实质上的新增内容,教材主要介绍柯西不等式的几种形式、几何背景和实际应用。其中柯西不等式及其在证明不等式和求某些特殊类型函数极值中的应用是教材编写和我们教学的重点。事实上,柯西不等

三 排序不等式(优秀经典公开课教案及练习解答)

排序不等式 教学要求:了解排序不等式的基本形式,会运用排序不等式分析解决一些简单问题,体会运用经典不等式的一般方法. 教学重点:应用排序不等式证明不等式. 教学难点:排序不等式的证明思路. 教学过程: 一、复习准备: 1. 提问: 前面所学习的一些经典不等式? (柯西不等式、三角不等式) 2. 举例:说说两类经典不等式的应用实例. 二、讲授新课: 1. 教学排序不等式: ① 探究 如图, 设AOB α∠=,自点O 沿OA 边依次取n 个点12,,,n A A A L , OB 边依次取取n 个点12,,,n B B B L ,在OA 边取某个点i A 与OB 边 某个点j B 连接,得到i j AOB ?,这样一一搭配,一共可得到 n 个三角形。显然,不同的搭配方法,得到的i j AOB ? 不同,问:OA 边上的点与OB 边上的点 如何搭配,才能使n 个三角形的 面积和最大(或最小)??? 设,(,1,2,,)i i j j OA a OB b i j n ===L ,由已知条件,得 123123,n n a a a a b b b b <<<<<<<

相关文档
相关文档 最新文档