文档库 最新最全的文档下载
当前位置:文档库 › 输气管道有限元建模分析

输气管道有限元建模分析

输气管道有限元建模分析
输气管道有限元建模分析

输气管道有限元建模分析

题目描述:

输气管道的有限元建模与分析

计算分析模型如图1所示

管道材料参数:弹性模量 E=200Gpa ;泊松比v=0.26。

图1受均匀内压的输气管道计算分析模型(截面图)

题目分析:

由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为

在其方向上无应变产生。 然后根据结构的对称性,只要分析其中 1/4即可。此外,需注 意分析过程中的单位统一。

操作步骤

1. 定义工作文件名和工作标题

1. 定义工作文件名。执行 Utility Men u-File — Cha ng Job name-3070611062 单击 OK 按

2. 定义工作标题。执行 Utility Menu-File —Change Tile-chentengfei3070611062,单击

OK 按钮

3. 更改目录。执行 Utility Menu-File — change the working directory -D/chen 1.0e8 Pa

承受内压:

2.定义单元类型和材料属性

1.设置计算类型

ANSYS Main Menu: Preferences f select Structural f OK

2.选择单元类型。执行ANSYS Ma in Me nu f Preprocessor f Eleme nt Type f Add/Edit/Delete f Add f select Solid Quad 8node 82 f apply

Add/Edit/Delete f Add f select Solid Brick 8node 185 f OK

Options…f select K3: Plane strain f OK f Close如图2 所示,选择OK 接受单元类型并关闭对话框。

图2

3.设置材料属性。执行Main Menu f Preprocessor f Material Props f Material Models f Structural f Lin ear f Elastic f Isotropic,在EX 框中输入2e11,在PRXY 框中输入0.26,如图3 所示,选择OK 并关闭对话框。

3.创建几何模型

1.选择ANSYS Main Menu: Preprocessor T Modeling T Create T Keypoints T In

Active CS T依次输入四个点的坐标:in put:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) T OK

2.生成管道截面。

ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical t ANSYS Main Menu: Preprocessor T Modeling T Create T Lines T In Active Coord T依次连接1,2,3,4点T OK如图4

图4

Preprocessor T Modeling T Create T Areas T Arbitrary T By Lines T依次拾取四条边T OK T ANSYS 命令菜单栏:Work Plane>Change Active CS to>Global Cartesian 如图5

3.拉伸成3 维实体模型

Preprocessor f Modeling f operate^areas^along normal输入2, 如图6 所示

4.生成有限元网格

Preprocessor—Meshi ng —Mesh Tool—Volumes Mesh—Tet—Free,采用自由网格划分单元。执行Main Menu-Preprocessor-Meshing-Mesh-V?lume-Free,弹出一个拾取框,拾取实体,单击OK 按钮。生成的网格如图7 所示。

图7

5.施加载荷并求解

1.施加约束条件。执行Main Menu-Solution-Apply-Structural-Displacement-On

Areas,

弹出一个拾取框,拾取前平面,单击0K按钮,弹出如图8所示的对话框,选择“U 选项,单击OK 按钮。

同理,执行Main Menu-Solution-Apply-Structural-Displacement-On Areas ,弹出一个拾取框,拾取左平面,单击OK 按钮,弹出如图8 所示的对话框,选择“U X ”选项,单击OK 按钮。

2.施加载荷。执行Ma in Men u-Solutio n-Apply-Structural-Pressure-0 n Areas,弹出一个拾取框,拾取内表面,单击OK 按钮,弹出如图10 所示对话框,如图所示输入数据1e8,单击OK按钮。如图9所示。生成结构如图10

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

有限元网格划分的基本原则

有限元网格划分的基本原则 划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1 位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2 网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减

有限元论文

机械结构有限元分析 作业名称:基于ANSYS的机械结构仿真学生姓名:陆宁 学号: 班级:机械电子工程103班 指导教师:谢占山老师 作业时间: 2013.05.28 二零一二----二零一三第二学习期

基于ANSYS的机械结构仿真 摘要:介绍了ANSYS优化设计模块,并针对机械结构优化设计给出了具体设计步骤,利用实例分析介绍ANSYS在机械结构优化设计中的应用。证明了ANSYS优化设计模块在机械结构优化设计上的方便性和可行性,为从事机械优化设计人员提供了新的方法和思路。 关键词:机械结构;ANSYS;优化设计;悬臂梁 前言:有现场合,比如,在研究桥梁的受迫振动时,由于激振载荷和和桥梁自重比较接近,所以桥梁自重是必须考虑的因素。激振载荷是正弦载荷,桥梁自重是静载荷,此时桥梁同时受静载荷和正弦载荷的作用。当结构只作用于静载荷时,可以用静力学分析计算其应力、应变等;当结构只作用于正弦载荷时,可以对其进行谐响分析。但是当结构同时作用于静载荷和正弦载荷时,却无法单独用静力学分析或谐响应分析来求解问题,因静力学分析要求载荷恒定,谐响应分析施加的载荷都是正弦载荷。如果用瞬态分析,则载荷就不能是从负无穷时刻到正无穷时刻的周期函数,即施加载荷要对正弦载荷进行加窗处理,势必存在误差,此时就应用有限元法进行分析。

一、基于ANSYS参数化语言的机械结构优化设计概述 机械最优化设计是在现代计算机广泛应用的基础上发展起来的一门新学科,是根据最优化原理和方法综合各方面的因素,以人机配合方式或/自动探索0方式在计算机上进行的半自动或自动设计,以选出在现有工程条件下最佳设计方案的一种现代设计方法.人机连接的传媒是靠一些编程语言来实现,例如C、C十十、VC、FOR-TRAM 等等,这些语言要求用户必须有深厚的理论知识,对于普通用户实现起来就显得很困难。 ANSYS软件是容结构、热、流体、电磁、声学于一体的大型通用有限元分析软件,其内嵌的参数化设计语言(APDL)用建立智能分析的手段为用户提供了自动完成循环的功能,即程序的输入可设定为根据指定的函数、变量以及选出的分析标准作决定.这样的功能扩展完全满足优化设计的要求,而且其强大的前处理建模、可视化界面也是其他优化语言所无法比拟的,更重要的是ANSYSAPDL编程语句简单,更具人性化即使是普通用户也能够掌握。 目前,关于利用ANSYS进行机械优化设计的文献鲜有报道[C17,本文具体剖析了ANSYS优化设计模块,并运用ANSYS12.0的参数化语言求解机械工程设计中的优化问题,给出了在机械优化设计方面的实现方法和具体实例,旨在为从事机械优化设计的人员提供一种新的方法和思路。

《输气管道设计与管理》课程综合复习

《输气管道设计与管理》复习资料 一、填空题 1、天然气是指从地层内开发生产出来的、可燃的、烃和非烃混合气体,这种气体有的是基本上以气态 形式从气井中开采出来的,称为;有的是随液石油一块儿从油井中开采出来的,称为。 2、输气系统从生产到使用各环节紧密相连,天然气从生产到使用大约有五个环节,采气、净气、输气、 储气、供配气。这五个环节有三套管网相连,即:、和城市配气网。这三套管网形成一个统一、连续、密闭的输气系统。 3、天然气是一种混合气体,混合气体的物理性质决定于天然气组成和各组分气体的性质。天然气的组 成有三种表示方法:即、摩尔组成和。 4、在温度不变的条件下,气体的粘度随着压力的增大而。在高压下(大于100atm),气体的粘度 随着温度的增大而。 5、气体被水蒸气所饱和,开始产生水滴时的最高温度称气体在该压力下的,它从另一侧面反映 气体中的。 6、天然气工业中最常用的脱水方法有三种分别是:、固体吸附脱水和。 7、对于长距离输气管线,当Q、D、P1max、P2min一定时,输气管末段的最大长度为: 22 1max2min max2 P P L CQ - =, 此时管末段的储气能力为。储气能力最大的末段长度为L max的倍。 8、北美、西欧有关的管道标准已规定,20英寸以上的气管应加内涂层,长距离输气管内壁一般涂敷有 机树脂涂层的主要优点有:、。 9、工程上用压缩因子来表示真实气体与理想气体PVT特性之间的差别,该值偏离1愈远,表明气体的 PVT性质偏离性质愈远。 10、天然气的相对密度是指同一压力和温度下气体密度与之比,无量纲。 11、“输气管道工程设计规范(GB50251-2003)”中规定:进入输气管道的气体必须清除机械杂质,应 比输送条件下最低环境温度低5℃;烃露点应低于,气体中的不应对于20mg/m3。12、在工程上,一般根据判断管线内的含水量是否达到形成水合物的条件。管线内形成水合物后 采取方法可迅速使水合物分解,管路畅通。 13、对简单输气管路,提高起点压力或降低终点压力都会增加输量,但对输量增加更有利。终点 压力在低压范围内变化对输量的影响。 14、对于长距离输气管线,由于节流效应的影响,输气温度可能低于。 15、在常压下,气体动力粘度随温度升高而,随气体密度的增大而。 16、单位体积干天然气中所含水蒸汽的质量称,它与天然气的、有关。当天然气被水

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

输气管道受力分析的ANSYS实现

现代CAE 技术及应用 (ANSY)S

输气管道受力分析的ANSYS实现 一、问题描述 一天然气输送管道的横截面及受力简图如图所示,在其内表面承受气体压力P的作用,求管壁的应力场分布。 图i管道受力简图 管道几何参数:外径 R1=0.6m ;内径R2=0.4m ;壁厚t=0.2m。 管道材料参数:弹性模量E=200Gpa ;泊松比v =0.26。 载荷:P=1Mpa。 二、问题分析 由于管道沿长度方向的尺寸远大于管道的直径,在计算过程中忽略管道的端面效应,认为在其长度方向无应变产生,即可将该问题简化为平面应变问题,选取管道横截面建立几何模型进行求解。 三、求解步骤 1.定义单元类型 定义单元类型为 Structural Solid , Quad 8node 82。设置选项为 Plane strain。 图2定义单元类型

WP 丼 0 UP ¥ tl Rnadi-l The

图6划分网格结果显示 4、加载求解 1)选择分析类型为 Static,对线段2和9施加X方向的位移约束,对线段4和7施加Y方向的位移约束。对管道内环面施加压力。 图7选择分析类型

图8施加位移约束对话框 图9施加位移约束、压力之后的模型保存之后求解,出现图所示的提示。 图10求解结果提示

有限元分析课程论文2011

《ANSYS10.0基础及工程应用》考查要求 一、课程考核方式 撰写课程结课论文。 二、论文撰写范围 在掌握有限元基本理论及方法的基础上,运用《ANSYS10.0基础及工程应用》课程所学的建模,分网,加载,求解及后处理知识,针对某一你所熟悉的产品、设备或零件进行有限元计算分析。 三、论文撰写要求 1.论文按科技论文的标准格式撰写,包括有题目、作者、单位(班级、学号、联系方式)、摘要(200字左右)、关键词(3—4个)、正文及参考文献(包括作者姓名、文献名、出版社所在地、出版社名、出版时间等),正文引用文献要标出,严禁抄袭。2.全文字数不少于3000字。 3.参考文献至少5篇。 4.统一以武汉理工大学华夏学院论文纸。

有限元分析课程要求 要求:1)个人至少分析3种方案并独立完成(可选择一个模型三种不同方案或三个不同模型的有限元分析;题目可从上机指南,有限元分析大作业试题中选择或自行选择算例),并将计算 结果分析在论文中较详细分析说明(包括几何模型视图、单元模型视图、结果云图,矢量 分布图,列表,命令流等及结果分析说明。) 2)课程论文应包括以下部分:(正文5号字体) A、引言; B、问题描述及几何建模; C、有限元建模(单元选择、节点布置及规模、网格划分方案、载荷及边界条件 处理、求解控制) D、计算结果及结果分析(位移分析、应力分析、正确性分析评判,如同一模型 则必须进行多方案计算比较,需讨论节点规模增减对精度的影响分析、单元 改变对精度的影响分析、不同网格划分方案、不同结构对结果的影响分析等) E、结论 F、参考文献 3)12月1日前必须完成,并递交课程论文报告(报告要求打印)。 4)学生的课程总评成绩由平时成绩(占30%)和期末考查成绩(占70%)两部分构成。平时成绩中包括出勤、作业、上机操作、学习主动性等。

ANSYS有限元分析与实体建模

第五章实体建模 5.1实体建模操作概述 用直接生成的方法构造复杂的有限元模型费时费力,使用实体建模的方法就是要减轻这部分工作量。我们先简要地讨论一下使用实体建模和网格划分操作的功能是怎样加速有限元分析的建模过 程。 自下向上地模造有限元模型:定义有限元模型顶点的关键点是实体模型中最低级的图元。在构造实体模型时,首先定义关键点,再利用这些关键点定义较高级的实体图元(即线、面和体)。这就是所谓的自下向上的建模方法。一定要牢记的是自下向上构造的有限元模型是在当前激活的坐标系内 定义的。 图5-1自下向上构造模型 自上向下构造有限元模型:ANSYS程序允许通过汇集线、面、体等几何体素的方法构造模型。当生成一种体素时,ANSYS程序会自动生成所有从属于该体素的较低级图元。这种一开始就从较高级的实体图元构造模型的方法就是所谓的自上向下的建模方法。用户可以根据需要自由地组合自下向上和自上向下的建模技术。注意几何体素是在工作平面内创建的,而自下向上的建模技术是在激活的坐标系上定义的。如果用户混合使用这两种技术,那么应该考虑使用CSYS,WP或CSYS,4命令强迫坐标 系跟随工作平面变化。 图5-2自上向下构造模型(几何体素) 注意:建议不要在环坐标系中进行实体建模操作,因为会生成用户不想要的面或体。

运用布尔运算:可以使用求交、相减或其它的布尔运算雕塑实体模型。通过布尔运算用户可直接用较高级的图元生成复杂的形体。布尔运算对于通过自下向上或自上向下方法生成的图元均有效。 图5-3使用布尔运算生成复杂形体。 拖拉或旋转:布尔运算尽管很方便,但一般需耗费较多的计算时间。故在构造模型时,如果用拖拉或旋转的方法建模,往往可以节省计算时间,提高效率。 图5-4拖拉一个面生成一个体〔VDRAG〕 移动和拷贝实体模型图元:一个复杂的面或体在模型中重复出现时仅需要构造一次。之后可以移动、旋转或拷贝到所需的地方。用户会发现在方便之处生成几何体素再将其移动到所需之处,这样 往往比直接改变工作平面生成所需体素更方便。 图5-5拷贝一个面 网格划分:实体建模的最终目的是为了划分网格以生成节点和单元。在完成了实体建模和建立了单元属性,网格划分控制之后,ANSYS程序可以轻松地生成有限元网格。考虑到要满足特定的要求,用户可以请求映射网格划分生成全部都是四边形、三角形或块单元。

输气管道有限元分析带图

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory。 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→

Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close,选择OK接受单元类型并关闭对话框。 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,选择OK并关闭对话框。 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK 2. 生成管道截面。 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical →ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In Active Coord →依次连接1,2,3,4点→OK 如图2 图2 Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条边→OK →ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 如图3

有限元分析过程

有限元分析过程可以分为以下三个阶段: 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。 2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。 原始数据的计算模型,模型中一般包括以下三类数据: 1.节点数据: 包括每个节点的编号、坐标值等; 2.单元数据: a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据 3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据. 建立有限元模型的一般过程: 1.分析问题定义 在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。总的来说,要定义一个有限元分析问题时,应明确以下几点: a.结构类型; b.分析类型; c.分析内容; d.计算精度要求; e.模型规模; f.计算数据的大致规律 2.几何模型建立 几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点。 3.单元类型选择 划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。

有限元分析论文

用有限元分析Hyperworks结构 机制1091 19号何志强 论文关键词:拓扑优化形状优化精密铸造后悬置支架有限元分析 论文摘要: 本文主要阐述借助于Alatir公司的Hyperworks结构优化软件,对精密铸造产品进行结构优化设计,且以对某汽车驾驶室后悬置支架的结构优化为例,着重介绍了拓扑优化和形状优化在精密铸造产品结构设计上的应用方法及功能。事实表明拓扑优化和形状优化的联合应用,对精密铸造产品的结构设计起到非常关键的帮助作用,最后通过此软件对优化后的产品结构进行有限元分析,验证优化后产品结构的强度和刚度。 HyperWorks在精密铸造产品优化设计中的应用 一、引言 在当前的汽车工业中,减轻设计重量和缩短设计周期是两个突出的问题,在传统的设计中,由于机械产品机构的复杂性,长期以来主要应用经验类比设计,对产品结构作定性分析和经验类比估算,在决定实际结构时,一般都取较大的安全系数,结果使得产品都是“傻”、“大”、“粗”,使材料的潜力得不到充分发挥,产品的性能也得不到充分的把握。所以传统的汽车设计思路已经不能满足当前设计的需要。汽车轻量化设计开始占据了汽车发展中的主要地位,它既可以提高车辆的动力性,降低成本,减少能源消耗又能减少污染。但是,简单的汽车轻量化设计却是一把双刃剑,它在减轻汽车重量的同时,也牺牲了车辆的强度和刚度,甚至对产品的结构寿命也产生影响,在此情况下,有限元分析方法在汽车设计中的合理应用就得到了充分体现,经过近几年的实践证明,Altair公司的有限元分析技术以及拓扑优化技术在汽车行业获得了非常成功的应用。特别是对于一些结构复杂的汽车铸造结构件,Hyperworks 的有限元分析技术、拓扑优化和形状优化技术的推广使得材料的潜能及铸造的优势得到了充分的发挥。 本文将详细介绍利用Hyperworks的拓扑优化和形状优化技术对东风商用车驾驶室后悬置支架进行减重优化设计的应用过程。以及如何应用Hyperworks验证改进结构后的应力和应变情况,使该后悬置支架减重优化后的结构能够满足产品的使用性能和铸造工艺性要求。 二、有限元法的概念和优化设计流程确立 2.1有限元法和有限单元的概念 有限元法又称有限单元法,是结构分析的一种数值计算方法,它随着计算机的发展而应运而生,并得到了广泛应用,目前已成为工程数值分析的有力工具。在实际工程应用中,我们首先把CAD模型分割成有限个实体或者壳单元。一般作为实体单元所适合的结构,是具有三维形状变化的物体,不太适合棒状、平板状的物体。实体单元是利用3D-CAD所作

工程数值方法与有限元分析

工程数值方法与有限元分析 (机械工程学院机械类专业) 课程号: 周学时:4 学分:3 课程类别: 预修课程:高等数学,线性代数,力学基础课 面向对象:机械类专业学生 教学方式:多媒体教学 教学目的和教学要求: 在科学研究与工程技术中,经常遇到数学模型的求解问题。然而在许多情况下,要获得模型问题的准确解往往是十分困难的,甚至是不可能的。因此,研究各种数学问题的近似解法非常必要。计算方法是一门与计算机应用密切结合的实用性很强的课程,它专门研究各种数学问题的一类近似解法,从一组原始数据出发,按照确定的运算规则进行有限步运算,最终获得问题的数值形式且满足精度要求的近似解。 通过对《计算方法》的学习,掌握数值计算的基本概念和基本理论,深入理解方法的设计原理与处理问题的技巧,重视误差分析与收敛性、数值稳定性,注重利用计算机进行科学计算能力的培养,并熟练掌握Matlab 软件,会用Matlab实现各种计算方法。 在此基础上进一步学习数值计算的集大成者-有限元方法, 了解有限元方法的基础知识及其在机械、机械电子领域中的应用,掌握有限元方法的基本原理与分析过程,包括静力学、动力学、非线性力学、热场、电磁场等的建模及分析。学生可使用有限元软件进行机械零件及系统的实例分析,并对分析结果进行评价,指导和优化机械零件及系统的设计。本课程面向机械电子专业及机械类相关专业的高年级本科生 课程简介: 内容主要包括:计算机上常用的数值计算方法以及有关的基本概念与理论,主要有误差、非线性方程求根、线性代数方程组的解法、插值与拟合、数值微分与数值积分、常微分方程初值问题的数值解法。并且算法面向计算机,注重培养学生运用计算机进行科学计算解决工程问题的能力。并熟练掌握Matlab 软件,会用Matlab实现各种计算方法。 有限元的分析与建模是一个机械工程师必须掌握的方法和技能。本课程为机械类专业的高年级学生核心课,使学生了解有限元方法的基本概念和基本理论,掌握有限元分析的基本处理方法,熟悉常用有限元分析软件在实际工程中的应用,最终培养学生在机械设计、机电系统设计中能有效的应用有限元方法。 主要内容及学时分配: 每周4学时,共16周 主要内容: ( O ) 绪论1学时 (一)误差2学时

基于abaqus的ujoint有限元分析有限元分析论文大学论文

有限元分析课程论文 课程名称:有限元分析 论文题目:ujoint有限元分析学生班级; 学生姓名: 任课教师: 学位类别: 评分标准及分值选题与参阅资料 (分值) 论文内容 (分值) 论文表述 (分值) 创新性 (分值) 评分 论文评语: 总评分评阅教师: 评阅时间 年月日 注:此表为每个学生的论文封面,请任课教师填写分项分值

基于abaqus的ujoint有限元分析 摘要:万向传动装置在汽车中起到了传递扭矩的关键作用,在abaqus中导入ujoint实体模型,之后对其进行坐标系建立,wire 建立,以及各部件之间的连接关系的建立,最后对该模型施加边界条件,令其运动。 关键词:abaqus、有限元、ujoint 一问题的描述 对导入的ujoint在所有步骤完成后,施加力:在step initial:均设为0;step SPIN:doundary1:限制除 UR2的所有,且把UR2值设为:pi。在boundary2 中,限制UR1和UR3自由度。 二在abaqus中导入ujoint实体模型 启动abaqus CAE,在文件下拉菜单中选择:import , 选择最终文件位置or 输入ws_connector_ujoint.py.inp 打开文件ujoint。(如下图所示)

2.1 创建坐标系 单机操作界面中的tool,从下拉菜单中选择datum,再出来的窗口中选择coordinate,3points。首先选择origin,在选择x正方向,Y正方向、z正方向。创建完成。 2.2创建VERT和CROSS之间的2坐标系。 根据 2.1所述操作步骤创建坐标系V-C 和V-G (VERT和GROUND)。 Notice:1、创建过程中为了清晰分辨,可将IN的suppress,创建完成后再将其resume。其他同样 2、在V-C和I-C中,x轴与cross转动所绕轴平行。

天然气输气压力对管道的影响分析

天然气输气压力对管道的影响分析 【摘要】天然气是一种相当清洁的新型能源,现在它已进入大众生活,与传统的能源相比天然气有其特定的优越性,而天然气的运输管道是一种新型的运输方式,它与水运,空运等方式被作为现代的一种不可缺少的另一种运输。目前用于管道来运输的不只是天然气,石油也可以通过管道运输进行。但是,天然气运输的唯一方式就是通过天然气管道来进行的,世界上的所有管道总长,天然气的管道约占一半的比例。我国的西气东输的这个浩大的工程就是通过管道来进行的,就此可以说明管道对运输行业的重大意义。 【关键词】天然气压力管道 现在运用管道来进行天然气的运输已经变得越来越重要,那么用管道进行天然气的运输有什么问题存在呢?天然气的输气压力对管道又有什么样的影响呢?对于这个问题“天然气输气气压”是不是只有危害呢?本文就天然气输气压力对管道的影响进行简单的分析。 1 管道的来源 管道最早是出现在中国,是利用木管进行天然气运输的,但是随着科技的发展后来又改为铸铁管,钢管。目前钢管是管道所用的组要材料。天然气的输送所使用的钢管是经过精加工才形成的一种特殊的冶金产品。管道钢的组织有较多的形态,由于不同的制作者和不同的加工技术,各厂家的管道钢有一定的差异。对于天然气的管道材料来说,有三个质量的控制标准分别是强度、韧性和可焊性。 2 管道的定义和特点2.1 管道的定义 管道是由它的组成件、隔热层、管道的支吊架和防腐层组成的,它们的用途是分配、分离、计量、输送、分配、排放或控制流体流动。 2.2 管道的特点 管道相互之间互相影响,并且长细比大,很容易失稳,受力情况相当的复杂。 管道的组成部分很多,它们各自有自己的特点和不同的技术要求,所以在选材和总成上很困难。 管道内的流体流动状态不稳定,流动起伏的速度差异大,缓冲小。 管道上可能分布着很多的泄露点,它与压力容器相比差异明显。 从输送直到用户使用,管道运输的天然气都是大有一定压力的。

ANSYS有限元分析课程论文

题目: 如图所示是一飞轮的截面图。飞轮材料的弹性模量210GPa,泊松比0.27,密度7800kg/m3。飞轮的角速度为62.8rad/s,飞轮边缘受到压力作用,压力p为1MPa,飞轮轴孔固定。试对 飞轮进行静力分析并绘制飞轮在柱坐标系下径向、环向的应力和变形云图。 主要步骤: 1.用户自定义文件夹,以为文件名xiti开始一个新的分析。 2.定义单元类型 (1)选择Main Menu>Preprocessor> Element Type>Add/Edit/Delete>Add >select:select Solid Quad 8node 82 >OK (back to Element Types window) (2)设置Solid Quad 8node 82 的Options选项,Options… >selelt K3: Axisymmetric>Close (the Element Type window),如图1所示。

图1 单元属性设置对话框 3.定义材料性能参数 (1)定义材料的弹性模量和泊松比 Main Menu: Preprocessor >Material Props >Material Models >Structural >Linear >Elastic >Isotropic >input EX:2.10e5, PRXY:0.27 > OK (2)定义材料的密度 Main Menu: Preprocessor >Material Props >Material Models>Favorite>Linear Static>Density >input DENS:0.0078 > OK 4.建立几何模型、划分网格 (1)生成特征点 Main Menu>Preprocessor>Modeling>Create>Keypoints>In Active CS>依次输入点的坐标:input:1(50,0),2(55,0),3(55,16), 4(75,16), 5(75,5),6(80,5),7(80,40),8(75,40), 9(75,24),10(55,24),11(55,50),12(50,50) (2)连接各特征点 Main Menu>Preprocessor>Modeling>Create>Lines> Lines>Straight Line>依次连接各特征点:1(50,0),2(55,0),3(55,16), 4(75,16), 5(75,5),6(80,5),7(80,40),8(75,40), 9(75,24),10(55,24),11(55,50),12(50,50) (3)生成过度圆弧 Main Menu>Preprocessor>Modeling>Create>Lines>Line Fillet>选择需要产生过度圆弧的两边,输入过度圆弧的半径>OK 如图2所示。

输气管道课设

((北京) 西气东输管道总体工艺方案设计 计算说明书 专业:油气储运工程 班级:XX级X班 姓名:XX 学号:XXXXXXXX 同组同学:X 指导教师:X 2011 年3 月3 日

目录 1. 设计任务书......................................................... 错误!未定义书签。 2. 设计方法和步骤 (6) 3. 源程序 (12) 4. 输出结果 (21) 5. 分析与讨论 (23) 6. 压气站工艺流程图 (24)

《长输管道工艺课程设计》任务书 一、基本设计条件 1)年工作天数:350天 2)气体标准状态:压力101325 Pa,温度20℃ 3)设计输量:(100+k×5)×108Nm3/a,其中k为每位学生所在小组的组号4)管道长度:3894 km 5)设计压力10MPa(绝) 6)管材等级:X70 7)管外径:1016mm 8)管内壁粗糙度:采用内涂层,管内壁粗糙度取10μm。 9)设计地温 由于线路距离比较长,沿线气象及地温情况变化大,以沿路线线走向近处的气象站点提供的-1.6m处土壤年平均地温作为设计地温,根据变化幅度将全线共分为六段,详见表1。 表1 西气东输管道沿线设计地温(℃) 地名里程 (km) 间距 (km) 夏季 平均地温 夏季最热月 平均地温 年 平均地温 冬季 平均地温 轮南首站0 503 24.5 25.2 17.0 8.8 鄯哈界503 170 20.4 21.1 12.5 4.6 湖东工区673 1352 17.1 17.6 10.7 3.9 甘塘镇2025 185 15.4 15.9 10.4 4.7 大水坑2210 674 19.9 20.5 13.9 7.7 山西河南界2884 1010 21.9 22.6 15.8 9.6 上海末站3894 10)沿线总传热系数K值 将全线大致分为四段,分别取不同的总传热系数。 轮南—红柳段(0-1055 km),取1.27 W/(m2·℃); 红柳—武威段(1055-1839 km),取1.53 W/(m2·℃); 武威—淮阳段(1839-3274 km),取1.18 W/(m2·℃);

ANSYS有限元网格划分的基本原则

ANSYS有限元网格划分的基本原则 引言 ANSYS中有两种建立有限元模型的方法:实体建模和直接生成。使用实体建模,首先生成能描述模型的几何形状的几何模型,然后由ANSYS程序按照指定的单元大小和形状对几何体进行网格划分产生节点和单元。对于直接生成法,需要手工定义每个节点的位置和单元的连接关系。 一般来说对于规模较小的问题才适于采用直接生成法,常见的问题都需要先通过实体建模生成几何模型,然后再对其划分网格生成有限元模型。随着计算机性能的提高,分析模型的复杂性和规模都越来越大,而直接生成法也因其自身的局限性逐渐的被淘汰,所以正确的理解划分网格的目的和掌握划分网格的方法不论是对ANSYS的学习还是对二次开发都有重要的作用,尤其是当模型复杂度大,对模型的某些部分网格需要特殊处理时,这种对划分网格深度的理解作用更加明显。 2 常用高级网格划分方法 随着ANSYS功能的越来越强大和计算机性能的飞速提高,有限元分析向着大型化、复杂化的方向发展,而划分网格的观念也需要逐渐从二维模型向三维模型上上转变。这里主要描述三种常见的高级划分网格的方法,正确的理解和掌握这些划分网格的思想对于二次开发者来说非常的重要。 1)延伸网格划分 延伸网格划分是指将一个二维网格延伸生成一个三维网格;三维网格生成后去掉二维网格,延伸网格划分的步骤大体包括:先生成横截面、指定网格密度并对面进行网格划分、拖拉面网格生成体网格、指定单元属性、拖拉、完成体网格划分、释放已选的平面单元。 这里通过一个延伸网格划分的简单例子来加深对这种网格划分的理解。 图1 延伸网格划分举例 建立如图1所示的三维模型并划分网格,我们可以先建立z方向的端面,然后划分网格,通过拖拉的方法在z方向按照图中所示尺寸要求的三维模型,只需

有限元建模基本原则

?确保精度 ?控制规模 ?确保精 度: 表格1:误差分析及处理 即使采用较少的单元和较低的差值函数阶次,也能获得较满意的离散精度。例如,假设场函数在整个结构内的分布是二次函数,则用一个二次单元离散就能得到场函数的精确解。如果场函数是线性或接近于线性分布,则用线性单元离散也能得到很好的离散精度。但实际问题的场函数往往很复杂(如存在应力集中),在整个结构内很难遵循某一种函数规律,某些部位可能按高阶函数规律分布,某些部位又可能接近低阶函数的性质。故,在划网格时,结构内的不同部位可能采用不同密度和阶次的网格形式。 综上所述:提高精度的措施: 1?提高单元阶次(单元插值函数完全多项式的最高次数) 阶次越高,插值函数越能逼近复杂的真实场函数,物理离散精度越高。 其次,高阶单元的边界可以是曲线或曲面,因此在离散具有曲线或曲面边界 的结构时,几何离散误差也较线性单元小。所以当结构的场函数和形状较复杂时,可以采用这种方法来提高精度。 单元的阶次越高,收敛速度越快。 2?增加单元数量 等同于减小单元尺寸,尺寸减小时,单元的插值函数和边界能够逼近结构的 实际的场函数和实际边界,物理和几何离散误差都将减小。当模型规模不太大时, 可以采用这种方法提高精度。 但是值得注意的是:精度随着单元数量增加是有限的,当数量增加到一定程

度后,继续增加单元数量,精度却提高甚微,再采用这种方法就不经济了。实际操作时可以比较两种单元数量的计算结果,如果两次计算的差别较大,可以继续增加单元数量,否则停止增加。 3.划分规则的单元形状 单元形状的好坏将影响模型的局部精度,如果模型中存在较多的形状较差的单元,则会影响整个模型的精度。 直观上看,单元各条棱边或各个内角相差不大的形状是较好的形状。 4.建立与实际相符的边界条件 如果模型边界条件与实际工况相差较大,计算结果就会出现较大的误差,这 种误差有时甚至会超过有限元法本身带来的原理性误差。 可采用组合结构模型法,这种方法可以较好地考虑影响较大的结构间的相互作用,避免人为设置边界条件带来的误差。或采用一些测试结果,将计算值与测试值进行比较,以逐步将边界条件调整合理。 5.减少模型规模 计算误差与运算次数有关,运算次数越多,误差累计就可能越大,所以采取适当的措施降低模型规模,减少运算次数,也可能提高计算精度。 模型规模直观上可以用节点数和单元数来衡量,一般讲,节点数和单元数越多,模型规模越大,反之则越小。 在估计模型规模时,除考虑节点的多少外,还应考虑节点的自由度数,总刚度矩阵的阶次等于节点数与其自由度数的乘积,即结构的总自由度数。 减小模型规模的方法: (1)对模型进行处理:建立几何模型时,并不总是照搬结构的原有形状和尺寸,有时要做适当的简化和变换处理。合理的近似和变换可以降低模型规模,而仍然保持一定的工程精度要求。几何模型的处理方法有:降维处理、细节简化、等效变化、对称性利用和划分局部结构等。 此处很重要,参考《有限元法-原理、建模及应用》第二版.杜平安编著154 页.左下角 (2)采用子结构法:将一个复杂的结构从几何上分割为一定数量的相对简单的子结构,首先对每个子结构进行分析,然后将每个子结构的计算结果组集成整体结构的有限元模型。这种模型比直接离散结构所得到的模型要相对简单的多,从而使模型规模得到控制。这种方法适用于静力分析和动力分析。还有三种方法,不适合初级学者,待续… 看abaqus视频时了解到,对于三角形单元,一般要用二阶单元来提高精度,二阶单元会增加自由度数;但对于四边形或六面体单元,一般一阶单元已有很好的精度,不必使用二阶单元。

相关文档