文档库 最新最全的文档下载
当前位置:文档库 › 活动轮廓模型之Snake模型简介

活动轮廓模型之Snake模型简介

活动轮廓模型之Snake模型简介
活动轮廓模型之Snake模型简介

图像分割之(五)活动轮廓模型之Snake模型简介

在“图像分割之(一)概述”中咱们简单了解了目前主流的图像分割法。下面咱们主要学习下基于能量泛函的分割法。这里学习下Snake模型简单的知识,Level Set(水平集)模型会在后面的博文中说到。

基于能量泛函的分割法:

该类法主要指的是活动轮廓模型(active contour model)以及在其基础上发展出来的算法,其基本思想是使用连续曲线来表达目标边缘,并定义一个能量泛函使得其自变量包括边缘曲线,因此分割过程就转变为求解能量泛函的最小值的过程,一般可通过求解函数对应的欧拉(Euler.Lagrange)程来实现,能量达到最小时的曲线位置就是目标的轮廓所在。

主动轮廓线模型是一个自顶向下定位图像特征的机制,用户或其他自动处理过程通过事先在感兴趣目标附近放置一个初始轮

廓线,在部能量(力)和外部能量(外力)的作用下变形外部能量吸引活动轮廓朝物体边缘运动,而部能量保持活动轮廓的光滑性和拓扑性,当能量达到最小时,活动轮廓收敛到所要检测的物体边缘。

一、曲线演化理论

曲线演化理论在水平集中运用到,但我感觉在主动轮廓线模型的分割法中,这个知识是公用的,所以这里我们简单了解下。

曲线可以简单的分为几种:

曲线存在曲率,曲率有正有负,于是在法向曲率力的推动下,曲线的运动向之间有所不同:有些部分朝外扩展,而有些部分则朝运动。这种情形如下图所示。图中蓝色箭头处的曲率为负,而绿色箭头处的曲率为正。

简单曲线在曲率力(也就是曲线的二次导数)的驱动下演化所具有的一种非常特殊的数学性质是:一切简单曲线,无论被扭曲得多么重,只要还是一种简单曲线,那么在曲率力的推动下最终将退化成一个圆,然后消逝(可以想象下,圆的所有点的曲率力都向着圆心,所以它将慢慢缩小,以致最后消逝)。

描述曲线几特征的两个重要参数是单位法矢和曲率,单位法矢描述曲线的向,曲率则表述曲线弯曲的程度。曲线演化理论就是仅利用曲线的单位法矢和曲率等几参数来研究曲线随时间的变形。曲线的演变过程可以认为是表示曲线在作用力F 的驱动下,朝法线向N 以速度v 演化。而速度是有正负之分的,所以就有如果速度v 的符号为负,表示活动轮廓演化过程是朝外部向的,如为正,则表示朝部向演化,活动曲线是单向演化的,不可能同时往两个向演化。

所以曲线的演变过程,就是不同力在曲线上的作用过程,力也可以表达为能量。世界万物都趋向于能量最小而存在。因为此时它是最平衡的,消耗最小的(不知理解对不?)。那么在图像分割里面,我们目标是把目标的轮廓找到,那么在目标的轮廓这个地,整个轮廓的

能量是最小的,那么曲线在图像任一个地,都可以因为力朝着这个能量最小的轮廓演变,当演变到目标的轮廓的时候,因为能量最小,力平衡了,速度为0了,也就不动了,这时候目标就被我们分割出来了。

那现在关键就在于:1)这个轮廓我们怎么表示;2)这些力怎么构造,构造哪些力才可以让目标轮廓这个地的能量最小?

这两个问题的描述和解决就衍生出了很多的基于主动轮廓线模型的分割法。第一个问题的回答,就形成了两大流派:如果这个轮廓是参数表示的,那么就是参数活动轮廓模型(parametric active contour model),典型为snake模型,如果这个轮廓是几表示的,那么就是几活动轮廓模型(geometric active contour model),即水平集法(Level Set),它是把二维的轮廓嵌入到三维的曲面的零水平面来表达的(可以理解为一座山峰的等高线,某个等高线把山峰切了,这个高度山峰的水平形状就出来了,也就是轮廓了),所以低维的演化曲线或曲面,表达为高维函数曲面的零水平集的间接表达形式(这个轮廓的变化,直观上我们就可以调整山峰的形状或者调整登高线的高度来得到)。

那对于第二个问题,是两大流派都遇到的问题,是他们都需要解决的最关键的问题。哪些力才可以达到分割的目标呢?这将在后面聊到。

二、Snakes模型

自1987年Kass提出Snakes模型以来,各种基于主动轮廓线的图像分割理解和识别法如雨后春笋般蓬勃发展起来。Snakes模型的基本思想很简单,它以构成一定形状的一些控制点为模板(轮廓线),通过模板自身的弹性形变,与图像局部特征相匹配达到调和,即某种能量函数极小化,完成对图像的分割。再通过对模板的进一步分析而实现图像的理解和识别。

简单的来讲,SNAKE模型就是一条可变形的参数曲线及相应的能量函数,以最小化能量目标函数为目标,控制参数曲线变形,具有最小能量的闭合曲线就是目标轮廓。

构造Snakes模型的目的是为了调和上层知识和底层图像特征这一对矛盾。无论是亮度、梯度、角点、纹理还是光流,所有的图像特征都是局部的。所谓局部性就是指图像上某一点的特征只取决于这一点所在的邻域,而与物体的形状无关。但是人们对物体的认识主要是来自于其外形轮廓。如将两者有效地融合在一起正是Snakes模型的长处。Snakes模型的轮廓线承载了上层知识,而轮廓线与图像的匹配又融合了底层特征。这两项分别表示为Snakes模型中能量函数的部力和图像力。

模型的形变受到同时作用在模型上的多不同的力所控制,每一种力所产生一部分能量,这部分能量表示为活动轮廓模型的能量函数的一个独立的能量项。

Snake模型首先需要在感兴趣区域的附近给出一条初始曲线,接下来最小化能量泛函,让曲线在图像中发生变形并不断逼近目标轮廓。

Kass等提出的原始Snakes模型由一组控制点:v(s)=[x(s),

y(s)]s∈[0, 1] 组成,这些点首尾以直线相连构成轮廓线。其中x(s)和y(s)分别表示每个控制点在图像中的坐标位置。s 是以傅立叶变换形式描述边界的自变量。在Snakes的控制点上定义能量函数(反映能量与轮廓之间的关系):

其中第1项称为弹性能量是v的一阶导数的模,第2项称为弯曲能量,是v的二阶导数的模,第3项是外部能量(外部力),在基本Snakes模型中一般只取控制点或连线所在位置的图像局部特征例如梯度:

也称图像力。(当轮廓C靠近目标图像边缘,那么C的灰度的梯度将会增大,那么上式的能量最小,由曲线演变公式知道该点的速度将变为0,也就是停止运动了。这样,C就停在图像的边缘位置了,也就完成了分割。那么这个的前提就是目标在图像中的边缘比较明显了,否则很容易就越过边缘了。)

弹性能量和弯曲能量合称部能量(部力),用于控制轮廓线的弹性形变,起到保持轮廓连续性和平滑性的作用。而第三项代表外部能量,也被称为图像能量,表示变形曲线与图像局部特征吻合的情况。部能量仅仅跟snake的形状有关,而跟图像数据无关。而外部能量仅仅跟图像数据有关。在某一点的α和β的值决定曲线可以在这一点伸展和弯曲的程度。

最终对图像的分割转化为求解能量函数E

total(v)极小化(最小化轮廓的能量)。在能量函数极小化过程中,弹性能量迅速把轮廓线压缩成一个光滑的圆,弯曲能量驱使轮廓线成为光滑曲线或直线,而图像力则使轮廓线向图像的高梯度位置靠拢。基本Snakes模型就是在这3个力的联合作用下工作的。

因为图像上的点都是离散的,所以我们用来优化能量函数的算法都必须在离散域里定义。所以求解能量函数E total(v)极小化是一个典型的变分问题(微分运算中,自变量一般是坐标等变量,因变量是函数;变分运算中,自变量是函数,因变量是函数的函数,即数学上所谓的泛函。对泛函求极值的问题,数学上称之为变分法)。

在离散化条件(数字图像)下,由欧拉程可知最终问题的答案等价于求解一组差分程:(欧拉程是泛函极值条件的微分表达式,求解泛函的欧拉程,即可得到使泛函取极值的驻函数,将变分问题转化为微分问题。)

记外部力F = ??P,Kass等将上式离散化后,对x(s)和y(s)分别构造两个五对角阵的线性程组,通过迭代计算进行求解。在实际应用中一般先在物体围手动点出控制点作为Snakes模型的起始位置,然后对能量函数迭代求解。

Snake模型理论以及其算法实现思想

Snake模型是一种可变形模型,可变形模型提供了一种高效的图像分析方法。结合了几何学,物理学,以及近似理论。它通过从样本图像中获得图像的先验知识,比如,大小,形状 等,对待处理图像进行目标的分割与检测。 可变模型分为参数可变形模型和几何可变形模型,参数可变模型以显式的参数描述物体轮廓曲线或曲面,此类可变形模型允许模型进行随时的人机交互,并且表述紧凑,利于算法的实时性的实现。而几何可变形模型则是基于曲线演化理论以及水平集方法实现的,曲线的参数仅在在模型变形之后用于显示。Snake就是一种参数可变形模型,也称为参数活动轮 廓模型(Active Contour Models). Snake模型在ROI(感兴趣区域)中定义了带有能量参量的样条曲线或曲面,在外部能量参量和内部能量参量的共同作用下,初始曲线或曲面会发生形变,逐渐逼近目标轮廓,在能 量最小的时候得到目标轮廓曲线或曲面。 二维情况下,带有能量参量的样条曲线可表示为:C(r)= (x(r),y(r)) r ∈[0,1]; 曲线的能量定义如下: 其中,曲线C的一阶导数项控制着曲线的伸缩,称为弹性能量项;曲线C的二阶导 数项控制着曲线的弯曲,称为刚性能量项。 而一阶导数项和二阶导数项共同组成了曲线的内部能量,α(r)和β(r)决定弹性能量和刚 性能量的大小。曲线的外部能量则是由 图像能量和约束能量构成。一般图像能量是从图像数据中获得的,比如灰度,灰度梯度等。 如图像I(x,y)的图像能量可有如下描述公式: 其中G(σ)是标准差为σ的的二维高斯函数,k(r)是权重系数。σ决定了图像的平滑效果,σ越大,目标的轮廓线会越模糊,轮廓的范围越大,这样会更方便的检测到轮廓。而约束能量则是在和用户交互的时候确定的,使模型根据特征能更有效的检测到目标的轮廓。 由变分原理及欧拉公式可得,使能量E(snake)最小化的曲线应满足下面的式子:

目标跟踪相关研究综述

Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2015, 4(3), 17-22 Published Online August 2015 in Hans. https://www.wendangku.net/doc/b313645798.html,/journal/airr https://www.wendangku.net/doc/b313645798.html,/10.12677/airr.2015.43003 A Survey on Object Tracking Jialong Xu Aviation Military Affairs Deputy Office of PLA Navy in Nanjing Zone, Nanjing Jiangsu Email: pugongying_0532@https://www.wendangku.net/doc/b313645798.html, Received: Aug. 1st, 2015; accepted: Aug. 17th, 2015; published: Aug. 20th, 2015 Copyright ? 2015 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/b313645798.html,/licenses/by/4.0/ Abstract Object tracking is a process to locate an interested object in a series of image, so as to reconstruct the moving object’s track. This paper presents a summary of related works and analyzes the cha-racteristics of the algorithm. At last, some future directions are suggested. Keywords Object Tracking, Track Alignment, Object Detection 目标跟踪相关研究综述 徐佳龙 海军驻南京地区航空军事代表室,江苏南京 Email: pugongying_0532@https://www.wendangku.net/doc/b313645798.html, 收稿日期:2015年8月1日;录用日期:2015年8月17日;发布日期:2015年8月20日 摘要 目标跟踪就是在视频序列的每幅图像中找到所感兴趣的运动目标的位置,建立起运动目标在各幅图像中的联系。本文分类总结了目标跟踪的相关工作,并进行了分析和展望。

一种自动提取目标的主动轮廓法

第31卷第5期 光 子 学 报 V o l.31No.5 2002年5月 ACTA PHOT ONICA SINICA M ay2002  一种自动提取目标的主动轮廓法 李熙莹 倪国强 (北京理工大学光电工程系,北京100081) 摘 要 提出一种新的广泛应用于数字图象分析和计算机视觉的主动轮廓(Snake)模型,引入作用方向可以自适应变化的外加强制力,使控制点能够不依赖于初始轮廓而快速地收敛 到目标的真实轮廓;初始轮廓自动确定;控制点的数目可以自适应地改变;能够在背景比较 复杂的图象中实现对目标轮廓的提取.用该模型对空中目标的红外图象进行的实验结果表 明其具有很好的鲁棒性和实用性. 关键词 主动轮廓法;Snake;红外图象;轮廓提取 0 引言 主动轮廓模型又称为Snake模型,是由Kass 于1987年提出的1,它融合了分割过程的三个阶段,使得检测得到的目标边界就是一光滑连接的曲线.其主要思想是定义一个能量函数,在Snake由初始位置向真实轮廓逐渐靠近时,寻找此能量函数的局部极小值,即通过对能量函数的动态优化来逼近目标的真实轮廓.此能量函数主要由内部能量函数及外部能量函数组成.内部能量函数考虑包络本身的连续性和各点曲率的大小;外部能量函数则主要涉及到图象的一些具体情况,如图象灰度变化的梯度等因素. Kass的Snake模型中,用参量表示轮廓线v(s)=(x(s),y(s))(s为轮廓弧长),其能量函数定义为  E*snake=∫10E snake(v(s))d s  =∫10[E int(v(s))+E image(v(s))+E con(v(s))](1)式中,E int表示主动轮廓线的内部能量,也叫内部力;E image表示图象作用力产生的能量,也叫图象力;E con表示外部限制作用力产生的能量,叫约束力.后两项和称为外部能量E ext=E image+ E con.内部力起到平滑轮廓、保持轮廓连续性的作用;图象力表示轮廓点与图象局部特征吻合的情况;约束力是各种人为定义的约束条件. Kass的算法存在要求外力可微、不稳定、控制参量无法确定、计算量大和时间开销大等缺点. Amini2、William s3等人改进了Kass的算法,引入硬强制力,且大大提高了运行速度(Amini的算法运算量为O(m3n)Williams的Gr eedy算法运算为O(mn),m为迭代的领域大小,n为Snake控制点的数目).不过,它们仍存在一些问题,如迭代效果依赖于初始轮廓点的选取;控制点在迭代中向高曲率边缘堆积;控制点数目固定不变,不能随目标大小变化调节等.有许多研究者针对原始Snake的缺点进行了模型改进或算法改进,如对角点判定的阈值选取方法加以改进、按照一定的规则调节控制点间距、采用不同的图象特征能量模型4,5等,不过对于初始轮廓点依然敏感或运算比较复杂。 本文以William的Greedy算法为参考,提出了一种自动的主动轮廓法(Auto-Snake),引入作用方向可自适应变化的外加强制力,从而使控制点能快速地收敛到目标的真实轮廓,不依赖于初始轮廓;初始轮廓自动确定,无需人工干预;控制点的数目可以自适应地改变;明确了各个参量的选择.该算法不仅继承前人算法的优点,而且保证算法快速收敛,适用于多种场合,在背景比较复杂的图象中也可以实现对目标轮廓的提取. 1 K ass的主动轮廓法能量模型 Kass和Snake模型中,内部能量可表示为轮廓对弧长的一阶导数项v s(s)和二阶导数项v ss(s)

一种适用于血管图像分割的活动轮廓模型

第27卷 第5期2010年 10月 生物医学工程学杂志 Journal of Biomedical E ngineering V ol.27 N o.5 October 2010 一种适用于血管图像分割的活动轮廓模型3 田 飞 杨 丰Δ 刘国庆 (南方医科大学生物医学工程学院,广州510515) 摘 要:本文提出了一种适用于血管图像分割的活动轮廓模型。根据局部轮廓曲线与血管边界的吻合状况,该模型能够自适应地调节能量方程中全局强度信息和局部强度信息的比重。实验结果表明,此模型能够有效地应用于非均匀、含噪声血管造影图像的分割。与其它方法相比,该方法对轮廓曲线的初始位置不敏感,且无需对引入参数进行人工调节。 关键词:Chan2Vese模型;图像分割;灰度非均匀;LBF模型 中图分类号 TP391.41 文献标识码 A 文章编号 100125515(2010)0520968206 An Active Contour Model Applied to V ascular Image Segmentation Tian Fei Yang Feng Liu G uoqing (Depart ment of B iomedical Engineeri ng,S out hern Medical Universit y,Guangz hou510515,China) Abstract:In this paper is presented an active contour model applied to vascular image segmentation.This model can adaptively adjust the proportion of global and local intensity information in accord with the anastomosis status be2 tween local contour and boundaries.Our method is able to work effectively on segmentation of angiographic image with intensity inhomogeneity and https://www.wendangku.net/doc/b313645798.html,pared with other methods,our method is not sensitive to initialization and it eliminates the need for manual adjustment of new parameter. K ey w ords:Chan2Vese model;Image segmentation;Intensity inhomogeneity;LBF model 引言 血管图像分割是循环系统血管分析的一个重要组成部分,也是血管三维重建、定量分析的基础。由于血管中造影剂的分布不均往往造成血管在血管造影图像中亮度非均匀,加上图像噪声的影响,使得血管很难从造影图像中分割出来。在众多的图像分割方法/算法中,基于曲线演化的活动轮廓模型因其演化过程与处理结果是一条清晰、完整的目标轮廓曲线,而成为当前研究热点对象,大量的活动轮廓模型被提出并应用于图像分割和计算机视觉处理。目前存在的活动轮廓模型主要被分成两类:基于边界的活动轮廓模型[123]和基于区域的活动轮廓模型[429]。基于边界的活动轮廓模型依靠目标边界的图像梯度终止轮廓曲线的演化。因此基于边界的活动轮廓模型容易跨过弱边界发生“泄漏”现象。与基于边界的活动轮廓模型相比,基于区域的活动轮廓模型不依 3国家自然科学基金资助项目(60672115) Δ通讯作者。E2mail:yangf@https://www.wendangku.net/doc/b313645798.html, 赖目标边界的梯度信息,因此对弱目标边界的图像具有较好的分割效果。在众多基于区域的活动轮廓模型中,C2V模型[5]得到较为广泛的应用。C2V模型又被称为分段常量(PC)模型,该模型基于假设图像由一系列的灰度均匀区域构成。但是,对于一些含有非均匀特性的血管造影图像,C2V模型往往很难把非均匀血管准确地从背景中分割出来。 为克服灰度非均匀给医学图像分割带来的困难,Li等[8]提出了一种局部二元拟合(local binary fitting,LBF)能量模型。LB F模型使用了局部图像灰度信息,能够解决灰度非均匀性给图像分割带来的问题。但是,LB F模型的局部特性使得该模型对初始轮廓曲线的位置较为敏感。为了克服这种现象,Wang等[9]提出了一种利用全局和局部强度拟合信息的活动轮廓模型。在该模型中,能量泛函是由一个局部强度拟合能量项和一个辅助的全局强度拟合能量项组成。由于含有全局强度拟合能量,该模型能够在一定程度上降低活动轮廓曲线对初始位置的敏感性,同时增大了活动轮廓曲线收敛到非均

基于主动轮廓模型的图像分割算法

2007年第4期 漳州师范学院学报(自然科学版) No. 4. 2007年 (总第58期) Journal of Zhangzhou Normal University (Nat. Sci.) General No. 58 文章编号:1008-7826(2007)04-0041-06 基于主动轮廓模型的图像分割算法 高 梅1 , 余 轮2 (1. 福建行政学院, 福建 福州 350002; 2. 福州大学 物理与信息工程学院, 福建 福州 350002) 摘 要: 主动轮廓模型算法是目前流行的图像分割算法, 其主要优点是无论图像的质量如何, 总可以抽取得 到光滑、封闭的边界. 本文综述了主动轮廓模型算法的发展概况, 并分类介绍了各算法的特点. 此外, 本文还给出 了算法发展的方向, 以及今后研究所面临的关键问题. 关键词: 图像分割 ; 主动轮廓模型 ; 水平集方法 ; 纹理分割 中图分类号: TP391.41 文献标识码: A 1 引言 图像分割的任务是把图像分成互不交叠的有意义的区域,每个区域内部的像素都具相似性,而在边界处具有非连续性. 它是图像分析和理解的首要一步,分割结果的好坏直接影响对图像的理解. 由于尚无通用的分割模型,现有的分割算法都是针对具体问题的,因此,图像分割的研究多年来仍然受到人们的高度重视[1]. 基于变分的方法是近年来研究颇为活跃的一个分支,它将图像分割问题表达为能量函数的最小化,并由变分原理将其转化为偏微分方程的求解[2]. 相比于传统的区域分割方法,变分方法可以通过定义能量函数,综合考虑几何约束、与图像内容有关的约束条件,获得更加自然的分割效果. 主动轮廓模型是目前流行的基于变分的图像分割算法[3]. 其主要优点是无论图像的质量如何,总可以抽取得到光滑、封闭的边界. 它的基本思想是在图像上定义一个初始轮廓线,通过最小化能量函数,驱使轮廓线形变运动至目标边界. 早期的主动轮廓模型存在一定的限制,它对初始值比较敏感,尤其是不具备自动拓扑变化能力;水平集方法则通过将轮廓线看作演化曲线,能够对其拓扑变化进行很自然地处理,同时也降低对初值的敏感性[4]. 结合水平集方法的主动轮廓模型因而被广泛地应用于图像处理与计算机视觉领域. 2 主动轮廓模型方法概述 上世纪八十年代后期,Kass 等人突破了传统的分层视觉模型,提出称为Snake 的主动轮廓模型,开创了基于形变模型的图像处理的先河[5]. 近二十年来,相关改进和扩展研究已经不仅仅局限于最初的图像分割领域,而被越来越多的研究者成功地运用于计算机视觉的其它领域,如图像复原、运动跟踪、3D 重建等等[6]. Snake 是一条闭合的参数曲线))(),(()(s y s x s =C ,参数]1,0[∈s ,它能主动地调整其形状和位置,使能量函数达到最小[3]: ()∫++=1 0 ))(( ))(( ))(( )(ds s E γs E βs E C E con img int C C C α 其中,Snake 的移动由三项共同控制:内部能量int E 确保曲线的光滑度和规则性;图像能量img E 吸引Snake 移至期望的图像特征,比如边缘;约束能量con E 指定一些求解约束. 式中的内部能量常用曲线弧长和曲率 收稿日期: 2007-06-22 作者简介: 高 梅(1964-), 女, 河北省南和县人, 讲师.

天津大学研究生数字图像处理作业-Snake模型..

Snake模型简介及其编程实现 Snake模型也称为主动轮廓线模型,最初由Kass等人在1987年第一届计算机国际视觉会议上提出,一经提出就成为计算机视觉领域研究的热点。Snake的基本思想是通过人的识别能力,在图像中目标边界附近确定初始轮廓线,然后对曲线进行能量最小化变形,使其锁定在待分割目标的边界上。Snake模型之所以能得到如此重视,是因为它将图像目标的先验知识(如大小、位置、形状等)与图像特征(灰度、梯度、纹理等)结合起来,克服了传统图像分割方法将二者分离的缺陷。近年来,许多文章从传统Snake模型的能量函数构造和求解算法方面进行改进,在其基础上衍生出了许多新的Snake模型。 1、Snake模型的基本原理 其基本思想是依据图像信息进行曲线(曲面)演化,使其最终找到目标物体的边界。这种方法将分割问题转化为最优化问题,利用闭合曲线(或曲面)形变的特定规律,定义度量闭合曲线(曲面)形变的能量函数,通过最小化能量函数使曲线(曲面)逐渐逼近图像中目标物体的边缘。先提供待分割图像的一个初始轮廓的位置,并对其定义个能量函数,是轮廓沿能量降低的方向靠近。当能量函数达到最小的时候,提供的初始轮廓收敛到图形中目标的真实轮廓。 Snake能量函数是有内部能量函数和外部能量函数组成,内部能量控制轮廓的平滑性和连续性,外部能量由图像能量和约束能量组成,控制轮廓向着实际轮廓收敛,其中约束能量可根据具体的对象形态定义,使得snake具有很大的灵活性。 Snake模型发展10多年来,许多学者对于经典的snake模型做了改进,提出各种改进的snake模型,其中梯度矢量流(Gradient Vector Flow, GVF)模型扩大了经典snake的外力作用范围,加强了对目标凹轮廓边缘的吸引力,提高了传统的snake模型。 2. 基本的Snake模型 数学上,将活动轮廓表示成一条参数曲线V(s,t)=(x(s,t),y(s,t)),其中,V是曲线点的二维坐标,t是时间参数,s是弧长参数。轮廓的总弧长归一化到1。改曲线的能量可以用能量泛函表示为E(V)=E int(V)+E ext(V),E int(V)是内部能量泛函,E ext(V)是外部能量泛函。曲线V在图像的空间域运行使得E(V)最小。 其中内部能量泛函定义为:

图像分割文献综述

文献综述 图像分割就是把图像分成各具特色的区域提取感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤,是一种基本的计算机视觉技术。 图像分割起源于电影行业。伴随着近代科技的发展,图像分割在实际中得3到了广泛应用,如在工业自动化、在线产品检验、生产过程控制、文档图像处理、遥感和生物医学图像分析、以及军事、体育、农业工程等方面。总之,只要是涉及对对象目标进行特征提取和测量,几乎都离不开图像分割。所以,对图像分割的研究一直是图像工程中的重点和热点。 自图像分割的提出至今,已经提出了上千种各种类型的分割算法。由于分割算法非常多,所以对它们的分类方法也不尽相同。我们依据使用知识的特点与层次,将其分为基于数据和基于模型两大类。前者是直接对当前图像的数据进行操作,虽然可以利用相关的先验信息,但是不依赖于知识;后者则是直接建立在先验知识的基础上,这类分割更符合当前图像分割的技术要点,也是当今图像分割的主流。 基于数据的图像分割算法多数为传统算法,常见的包括,基于边缘检测,基于区域以及边缘与区域相结合的分割方法等等。这类分割方法具有以下缺点,○1易受噪声和伪边缘影响导致得到的边界不连续,需要用特定的方法进行连接;○2只能提取图像局部特征,缺乏有效约束机制,难以获得图像的全局信息;○3只利用图像的底层视觉特征,难以将图像的先验信息融合到高层的理解机制中。这是因为传统的图像处理算法都是基于MIT人工智能实验室Marr提出的各层相互独立、严格由低到高的分层视觉框架下进行的。由于各层之间不存在反馈,数据自底向上单向流动,高层的信息无法指导底层特征的提取,从而导致底层的误差

不断积累,且无法修正。 基于模型的分割方法则可以克服以上缺陷。基于模型的分割方法可以将分割目标的先验知识等有用信息融合到高层的理解机制之中,并通过对图像中的特定目标对象建模来完成分割任务。这是一种自上而下的处理过程,可以将图像的底层视觉特征与高层信息有机结合起来,因此更接近人类的视觉处理。基于模型的图像分割方法主要包括:○1基于统计模型的分割方法;○2基于神经网络的分割方法;○3基于形变模型的分割方法。 主动轮廓模型(Active Conlour Model, ACM)(又称活动轮廓模型,变形曲线模型)的研究背景及发展状况。 即Snake模型,最初由Kass等人于1998年提出,并成功应用于图像分割方面。这种模型通过建立与参数化曲线C相关的能量函数,然后优化该能量函数,使轮廓向目标边界演化,并在目标边界处达到最优值。 1987年Kass、Witkin和Terzopoulos首次提出主动轮廓模型,并成功应用于图像分割、视频跟踪等相关应用。这种模型对Marr提出的各自独立分层图像处理模型提出了挑战,它将图像本身的底层视觉属性(如边缘、纹理、灰度、色彩等)与待分割目标的先验信息(如形状、亮度、色彩等)以一种有机的方式——能量函数的形势结合起来,最终得到待分割目标的完整表达。能量函数一般由两部分构成:内部能量函数和外部能量函数。一般说来,内部能量函数嵌入了对目标特征约束的先验性假设,以及保持轮廓本身特性(如光滑性和刚性)的约束条件;而外部能量函数则根据图像的数据特性(如边缘特性、区域特性等)构造

活动轮廓模型之Snake模型简介

图像分割之(五)活动轮廓模型之Snake模型简介 在“图像分割之(一)概述”中咱们简单了解了目前主流的图像分割法。下面咱们主要学习下基于能量泛函的分割法。这里学习下Snake模型简单的知识,Level Set(水平集)模型会在后面的博文中说到。 基于能量泛函的分割法: 该类法主要指的是活动轮廓模型(active contour model)以及在其基础上发展出来的算法,其基本思想是使用连续曲线来表达目标边缘,并定义一个能量泛函使得其自变量包括边缘曲线,因此分割过程就转变为求解能量泛函的最小值的过程,一般可通过求解函数对应的欧拉(Euler.Lagrange)程来实现,能量达到最小时的曲线位置就是目标的轮廓所在。 主动轮廓线模型是一个自顶向下定位图像特征的机制,用户或其他自动处理过程通过事先在感兴趣目标附近放置一个初始轮 廓线,在部能量(力)和外部能量(外力)的作用下变形外部能量吸引活动轮廓朝物体边缘运动,而部能量保持活动轮廓的光滑性和拓扑性,当能量达到最小时,活动轮廓收敛到所要检测的物体边缘。

一、曲线演化理论 曲线演化理论在水平集中运用到,但我感觉在主动轮廓线模型的分割法中,这个知识是公用的,所以这里我们简单了解下。 曲线可以简单的分为几种: 曲线存在曲率,曲率有正有负,于是在法向曲率力的推动下,曲线的运动向之间有所不同:有些部分朝外扩展,而有些部分则朝运动。这种情形如下图所示。图中蓝色箭头处的曲率为负,而绿色箭头处的曲率为正。 简单曲线在曲率力(也就是曲线的二次导数)的驱动下演化所具有的一种非常特殊的数学性质是:一切简单曲线,无论被扭曲得多么重,只要还是一种简单曲线,那么在曲率力的推动下最终将退化成一个圆,然后消逝(可以想象下,圆的所有点的曲率力都向着圆心,所以它将慢慢缩小,以致最后消逝)。

基于动态规划法的B样条主动轮廓模型

收稿日期:2004-09-07 基金项目:国家自然科学基金资助项目(10272033);广东省自然科学基金资助项目(04105186,5300090)作者简介:张海舰(1976-),男,硕士研究生,主要研究方向为基于数字图像序列的图像处理技术.基于动态规划法的B 样条主动轮廓模型 张海舰,成思源,骆少明,丁 炜 (广东工业大学机电工程学院,广东广州510090) 摘要:对基于主动轮廓模型的图像分割方法进行了研究,提出了一种基于动态规划法的B 样条主动轮廓模型.该模型结合了动态规划法与B 样条曲线的优点,不仅保留了动态规划法收敛过程稳定, 能保证全局最优的优点,而且还进一步改善了其计算复杂度.实验结果验证了该方法的有效性. 关键词:图像分割;主动轮廓模型;动态规划;B 样条 中图分类号:TP391 文献标识码:A 文章编号:1007-7162(2005)04-0026-05 图像分割指在图像中检测并勾画出感兴趣物体的处理,是图像处理领域中的重要内容之一,也是计算机视觉领域低层次视觉的主要问题.由于图像噪声及采样误差等原因通常造成目标边缘具有模糊、不连贯等特点,图像分割至今还不存在一个通用的解决方法.主动轮廓模型,又称为snake 模型,是目前研究最多、应用最广的分割方法[1] .它结合了几何、物理和近似理论,通过利用从图像数据中获得的约束信息(自底向上)和目标的位置、大小、形状等先验知识(自顶向下),可有效地对目标进行分割、识别、匹配和跟踪. 本文针对传统主动轮廓模型的不足,提出了一种新的基于动态规划法的B 样条主动轮廓模型,并通过图像分割的实验来验证该模型的有效性.1 主动轮廓模型 主动轮廓模型或snake 模型可表示为定义在s I [01]上的参数曲线v (s )=(x (s ),y (s )), 其能量函数表示为 [2]E snake =Q snake E (v (s ))d s =Q snake E in t (v (s ))+E ext (v (s ))d s , (1)其中内能E in t 代表对snake 模型的形状约束,定义为E int (s )=12 A (s )9v (s )9s 2+ B (s )92v (s )9t 22,(2)系数A 和B 分别控制对snake 的拉伸和弯曲.外能E ext 的极小值与图像特征相对应,对于一给定图像I (x ,y ),通常可定义为 E ext =-|¨I (x ,y )|2. (3)为使能量泛函(1)极小,snake 必须满足Euler 方程: -A v d (s )+B v d d (s )+¨E ext =0, (4) 式(4)可改写为力平衡方程 第22卷第4期 2005年12月广东工业大学学报Journal o f Guangdong University of Technology Vol.22No.4December 2005

一种新的几何活动轮廓模型

基金项目:国家自然科学基金资助项目(81000639); 中国博士后科学基金(20100470791)。 收稿日期: 2012-08改回日期: 第一作者简介:张萍1972~),女, 模式识别与智能系统,博士研究生。主要研究方向为模式识别与智能系统。E-mail:dongdazp@https://www.wendangku.net/doc/b313645798.html, 。 中图法分类号:TP391.4 文献标识码:A 文章编号:1006-8961(2012) - - 文章索引信息: 一种新的几何活动轮廓模型 张萍1,2,高立群1,薛哈乐 1 1.东北大学信息科学与工程学院, 沈阳市 110819 2.鞍山师范学院,鞍山市 114005 摘 要:提出了改进的LBF 模型(ILBF) 及其图像分割算法。利用两种不同尺度参数的LBF 模型分别描述局部和全局信息,并构造了新的能量函数。将局部熵引入到ILBF 模型中,同时给出自动求取能量函数中权重参数ω的有效方法,构造了:(1)用尺度参数σ较大的LBF 模型替代LGIF 模型中的C-V 模型,较大σ值的LBF 模型不仅具有全局特性而且具有局部特性;(2)将进行数据处理后的局部熵引入到LGIF 模型中,进而自动求取权重参数ω,克服了LGIF 模型权重参数值的选取全程都需要人工参与的缺点;(3)为了有利于计算机的自动求解和避免过多无用的循环迭代,本文提出了一种新的终止准则。 关键词 :图像分割;几何活动轮廓模型;LGIF 模型;局部熵;改进的LBF 模型 Active contour model driven by local entropy energy Zhang Ping 1,2, Gao Liqun 1,Xue Hale 1 1. College of Information Science and Engineering, Northeastern University, Shenyang, 110819 2. Anshan Normal University, Anshan , 114005 Abstract: A improved LBF (ILBF) model applied to image segmentation is proposed in this paper, which construct a new energy function. It has two scale parameters to descript the local and global information, respectively. At the same time, local entropy notion has applied in ILBF model and weight parameter ωin energy function can also get by automation: (1) In LGIF model, it uses the LBF model which has lager scale parameter s instead of C-V model, because this kind of LBF model with lager scale parameter s has not only global characteristics but also local characteristics; (2) It firstly introduces local entropy which is gotten after data processing into LGIF model, then it calculates weight parameter w automatically. This method overcomes the shortcoming that the calculation of weight parameter in LGIF model by artificial participation; (3) In order to be beneficial to automatic computer calculations and avoid too much useless cyclic iterations, it presents a new stop criterion. Keywords: image segmentation; geometric active contour model; LGIF model; local entropy; improved LBF model 0 引 言 人Kass 于1987年提出活动轮廓模型( ACM), 该提供了一种高效的图像分析方法,可以更有效地对目标进行分割、匹配和跟踪分析[1] 。Chan 和Vese 在2001年进一步提出了C-V 模型得到了最广泛的应用和研究[2] 。Li 在2007年提出了一种基于区域信息的几何活动轮廓模型——LBF 模型[3] 。LBF 模型 通过引入图像的局部信息,能较好的克服C-V 模型 不能分割灰度不均图像的缺陷,得到了广泛的研究。但同时也正是由于LBF 模型仅利用了图像的局部信息,使得LBF 模型的分割结果强烈的依赖于初始轮廓曲线位置且模型对高阶噪声较为敏感。 针对LBF 模型图像分割结果强烈依赖于初始活动轮廓曲线位置(即LBF 模型的能量函数最小化时易陷入局部极小值)的缺点,近几年来,许多专家和学者从不同角度对LBF 模型进行了改进。L.Wang

改进的B-Snake模型肝脏CT图像分割算法

Computer Engineering and Applications 计算机工程与应用 2015,51(9)1引言随着计算机图形学技术以及虚拟仿真技术的不断发展,虚拟手术技术特别是虚拟肝技术已经有了很大的发展[1]。三维肝脏模型跟肝脏的二维数字断层图像相比,更直观,更能展现人体器官的三维结构和形态,因此肝脏三维重建技术已广泛运用于虚拟手术中。由于每个病人的肝脏器官外形都不一样,病灶也不一样,如何构造出个性化的肝脏模型是肝脏虚拟手术中重要的研究方向之一,而肝脏模型的个性化又是以肝脏CT 图像 的三维分割为前提的,因此,肝脏CT 图像的三维分割算法的研究具有很重要的意义[2]。但是由于肝脏及其周围组织结构的复杂性,肝脏CT 图像的三维分割一直都是一项挑战性的任务,很多科研工作者已经在这方面进行了研究[3]。 传统的图像分割方法一般可以分为三类:基于阈值的分割、基于边缘检测的分割和基于区域的分割[4]。改进的B-Snake 模型肝脏CT 图像分割算法 王杰雄,陈国栋,陈怡 WANG Jiexiong,CHEN Guodong,CHEN Yi 福州大学物理与信息工程学院,福州350002 College of Physics and Information Engineering,Fuzhou University,Fuzhou 350002,China WANG Jiexiong,CHEN Guodong,CHEN Yi.Improved B-Snake segmentation method for liver CT https://www.wendangku.net/doc/b313645798.html,puter Engineering and Applications,2015,51(9):152-157. Abstract :The personalization of liver models,which is premised on the 3d segmentation of liver CT images,is a key technology in the virtual surgery of liver.Considering the features of B-Snake model,this paper presents an improved B-Snake segmentation algorithm combined with Region Filling.The contour of the adjacent and processed section is mapped on the current section.Based on the contour,it gets a connected region according to Region Filling algorithm and compares the region with the liver region of the adjacent and processed section according to certain algorithm in order to obtain a more accurate contour.The resulting contour is close to the liver boundary,and large amount of the control points are on the right boundary.Then,the contour is served as the initial contour of the improved B-Snake algorithm for further processing,resulting in the final segmentation result after the evolution of part of the initial contour.The algorithm will not end untill all sections are processed.Experimental results show that the algorithm can obtain segmentaion result of liver CT images efficiently and accurately. Key words :liver;image segmentation;region filling;active contour model 摘要:肝脏模型的个性化是肝脏虚拟手术系统中的一个关键技术,而肝脏模型的个性化又是以肝脏CT 图像的三维分割为前提的。针对B-Snake 模型的特点,提出一种结合区域填充的改进B-Snake 模型图像分割算法。将相邻的上一张切片的分割结果映射到当前切片上,根据一定的规则进行区域填充,并将填充后的结果与前一张切片的分割结果按一定的算法进行比较,进一步优化。得到的初始轮廓很接近肝脏的真实边界,而且大部分曲线已在边界上,将其作为改进的B-Snake 模型算法的初始轮廓,只需对其进行部分控制点的优化调整,就可得到准确的分割结果。以此类推,直到处理完所有切片图。实验表明,该算法能有效提高分割的准确度,获得较满意的分割结果。关键词:肝脏;图像分割;区域填充;活动轮廓模型 文献标志码:A 中图分类号:TP317.4doi :10.3778/j.issn.1002-8331.1306-0111 基金项目:福建省科技计划重点项目(No.2011H0027)。 作者简介:王杰雄(1989—),男,硕士研究生,研究领域为图像处理与通信;陈国栋(1979—),男,博士研究生,助理研究员,研究领域 为计算机图形学;陈怡(1990—),男,硕士研究生,研究领域为图像处理与通信。E-mail :wangjiexiong_1989@https://www.wendangku.net/doc/b313645798.html, 收稿日期:2013-06-13修回日期:2013-09-04文章编号:1002-8331(2015)09-0152-06 CNKI 网络优先出版:2013-11-12,https://www.wendangku.net/doc/b313645798.html,/kcms/detail/11.2127.TP.20131112.1119.011.html 152

水平集

《基于活动轮廓模型的图像分割》朱国普哈工大活动轮廓的经典博士学位论文 水平集算法简介(Level Set) 一、水平集的定义 与实数c对应的可微函数f:R^n—>R的水平集是实点集{(x1, x2, ...,xn) | f(x1, x2,...,xn) = c} ,称可微函数f为水平集函数。 [举例] 函数f(x,y,z)=x^2+y^2+z^2对应于常数c的水平集是以(0,0,0)为球心,sqrt(c) 为半径的球面。 当 n=2, 称水平集为水平曲线(LEVEL CURVE)。 当 n=3, 称水平集为水平曲面(LEVEL SURFACE)。 二、水平集的核心思想 Level Set方法是由Sethian和Osher于1988年提出,最近十几年得到广泛的推广与应用。简单的说来,Level Set方法把低维的一些计算上升到更高一维,把N维的描述看成是N+1维的一个水平。举个例子来说,一个二维平面的圆,如x^2+y^2=1可以看成是二元函数f(x,y)=x^2+y^2的1水平,因此,计算这个圆的变化时就可以先求f(x,y)的变化,再求其1水平集。这样做的好 处是,第一,低维时的拓扑变化在高维中不再是一个难题;第二,低维需要不时的重新参数化,高维中不需要;第三,高维的计算更精确,更鲁棒;第四,Level Set方法可以非常容易的向更高维推广;最后,也是非常重要的一点就是,上升到高维空间中后,许多已经成熟的算法可以拿过了直接用,并且在这方面有非常成熟的分析工具,譬如偏微分方程的理论及其数值化等。当然,这种方法最为诟病的就是他增加了计算量,但新的快速算法不断出现,使得这也不是个大问题。 考虑两个分离的圆形火焰,都以一个恒定的速度向外燃烧(见图(a)),其界面的演化是可以预测的,当这两个分离的界面燃烧到一起时,演化界面合并为一个单独的转播前沿(见图(b)),这种拓扑结构的变化使得离散参数化遇到真正的困难,因为要得到扩展火焰的真正边界,就必须从燃烧的区域中去除原属于两个界面的边界点。要想系统地确定这些点是一个困难的问题,然而一个窍门就是采用一个更高一维的空间,这就是水平集方法的基本思想。 (https://www.wendangku.net/doc/b313645798.html,/caogenxueyuan/yingyongfangxiang/rengongzhineng/1489.html)

snake图像分割

计算机视觉实验二 ——图像分割:snake轮廓模型 简介 Snake是Active Contour Model的一种,它以构成一定形状的一些控制点为模版(轮廓线),通过模版自身的弹性形变,与图像局部特征相匹配达到调和,即某种能量函数极小化,完成对图像的分割。每一个Snake都是能量最小曲线,受外部限制力引导及图像力的影响使它向着线和边缘等特征移动。Snakes是活动轮廓模型:他们自动跟踪附近边缘,准确地使曲线集中。尺度空间(scale-space)的连续性用来去扩大对特征周围区域的捕获。Snakes提供一种许多视觉问题的统一的解决方法,包括检测边,线及主观轮廓;移动跟踪;及立体匹配。我们成功使用Snakes用于交互解释(interactive interpretation),即用户提出一种限制力引导Snake靠近感兴趣的特征。 基本snake性能 我们的基本snake模型是一条被控制的连续曲线,其曲线受图像力和外部限制力的影响。内部样条(splint)力用来加以分段平滑限制。图像力把snake推向显著图像特征,如线,边,主观轮廓等等。外部限制力负责推动snakes靠近理想的局部最小值。例如这些力,可以来自使用者接口,自动注意机制(automatic attentional mechanisms),或者高层解释(high-level interpretations)。 实验关键步骤代码 1.获取手动取点坐标,该部分代码如下 14 % ========================================================================= 15 %获取手动取点坐标 16 % ========================================================================= 17 %读取显示图像 18 %I = imread('Coronary_MPR.jpg'); 19 I = imread('plane.png'); 20 %转化为双精度型 21 %I = im2double(I); 22 %若为彩色,转化为灰度 23 i f(size(I,3)==3), I=rgb2gray(I); end 24 f igure(1),imshow(I); 25 %---------------------------

相关文档