文档库 最新最全的文档下载
当前位置:文档库 › 鼠李糖脂在生态农业中的应用

鼠李糖脂在生态农业中的应用

鼠李糖脂在生态农业中的应用
鼠李糖脂在生态农业中的应用

鼠李糖脂在生态农业中的应用

一、鼠李糖脂简介

1.1 鼠李糖脂的来源

鼠李糖脂通常是由铜绿假单胞菌在一定培养条件下,通过生物发酵的方法产生的具有表面活性的糖脂类产物[1]。1949年,Jarvis和Johnson最早对使用铜绿假单胞菌(Pseudomonas spp.)生产鼠李糖脂进行了报道[2]。目前,人们通常采用假单胞菌(Pseudomonas spp.)发酵生产鼠李糖脂。发酵法的关键是首先筛选出性能优良的高产菌株,然后再进行培养条件的优化来提高产量、降低成本。培养基中的碳源是决定生物表面活性剂产量和结构的重要因素。鼠李糖脂在菌株培养中生产的限制条件是发酵过程中累积的次级代谢产物,这些限制条件不包括碳源,而氮源和磷则会限制鼠李糖脂的生产[3]。鼠李糖脂发酵的关键首先是能筛选或者构建出鼠李糖脂产量高的菌株,然后再对合适的生产菌株的发酵的各种条件进行优化,从而达到高产量低成本的目标。条件优化主要从碳源、氮源、无机盐离子以及pH、温度等方面来进行[4]。

目前主要通过代谢工程和基因工程方法来提高鼠李糖脂产量,这些策略的主要目的是:(a)不使用化学消泡剂获得高浓度的鼠李糖脂;(b)利用可再生资源生产鼠李糖脂,降低生产底物成本;(c)控制生产过程中的其他产物,获得单一的鼠李糖脂而不是混合物;(d)建立鼠李糖脂的非致病性生产菌株;(e)寻常基础材料生物催化鼠李糖脂的生产[5]。实际工业生产中,鼠李糖脂生产条件的优化主要是通过添加脂肪酸、生产菌株随机突变、控制发酵pH值、控制底物摄取量和运用Tween-80及Triton X-100提高鼠李糖脂的产量。之前有研究者将鼠李糖基转移酶复合物I(Rh1AB)在相对较安全的生产宿主恶臭假单胞菌KT2440中异源表达,但是产量提高的很少[6]。可以通过构建工程菌株提高鼠李糖脂产量,之前有研究证明自转运酯酶参与了细胞膜的形成和运动,也参与了脂类的运输,当敲除自转运酯酶基因,鼠李糖脂产量明显降低,由此可知,自转运酯酶也参与了鼠李糖脂的形成,过量表达自转运酯酶EstA[7]和鼠李糖基转移酶复合物I(Rh1AB)提高鼠李糖脂产量[8]。

1.2 鼠李糖脂的结构

鼠李糖脂结构主要包括两部分,由鼠李糖和具有不同碳链长度的饱和或不饱和脂肪酸构成。鼠李糖脂的分子结构中既有极性基团又有非极性基团,是一类中性两极分子。亲水基团是非离子形式的单或双鼠李糖,疏水基团是由带羟基的脂肪酸组成。在生物合成过程汇总,这些基团之间可能相互衔接而生成多种结构相近的同系物,并且不同的菌株和发酵条件所得到的鼠李糖脂同系物组成不同。研究表明[9],铜绿假单胞菌产生的鼠李糖脂主要有四种结构,如图1所示[10],分别是RL1、RL2、RL3和RL4,其中RL1和RL3 为单鼠李糖脂;RL2和RL4为双鼠李糖脂。随着现代分析手段的应用,发酵产物中大量不同的鼠李糖族同系物被发现,而且它们分别连着不同的脂肪酸链,鼠李糖环也各不相同。

图1 铜绿假单胞菌产生的4种不同结构的鼠李糖脂

1.3鼠李糖脂的理化性质及优点

鼠李糖脂是一种阴离子表面活性剂,是表面活性剂家族中的后起之秀,它是由微生物所产生的一类具有表面活性的生物大分子物质。它不仅溶于甲醇、氯仿和乙醚,在碱性水溶液中也表现出良好的溶解特性,与化学合成的表面活性剂相比,生物表面活性剂除具有降低表面张力、稳定乳化液和增加泡沫等相同作用外,由于生物表面活性剂来自微生物的代谢活动,还具有一般化学合成的表面活性剂无法比拟的特征和优点:

(1)高效性:生物表面活性剂的化学结构要比化学合成的表面活性剂复杂和庞大得多。单个分子要占据更大的空间,因而表面活性要强于化学表面活性剂,具有更多的活性基团,可以更好地吸附于油水界面,改善油水界面性状,因而在

降低水-气及油-水界面张力方面更加有效。

(2)耐温性:有些生物表面活性剂可耐受高温,如由地衣芽孢杆菌产生的脂肽在75℃时至少可耐热140h而保持很好的表面性能。

(3)耐盐性:生物表面活性剂在10%的盐溶液中仍不沉降或析出,而化学合成表面活性剂在2~3%的盐溶液中就会失活。

(4)可生化降解性:生物表面活性剂在水体或土壤中都能很快被微生物100%降解。

(5)环境友好性:生物表面活性剂产品本身低毒或无毒,生产的原料天然,工艺简单,使用中用量少,选择性好,对环境友好。

(6)可原位合成性:因而有可能大大降低其使用成本。另外,通过微生物的生物方法可以在分子中引进化学方法难以合成的复杂基团,使得生物表面活性剂化学结构具有多样性,从而可能使其具有某种特殊功能。

鼠李糖脂是目前生物表面活性剂中最重要、应用最广泛的一类,它属于水溶性阴离子生物表面活性剂,具有降低界面张力、增溶、乳化、渗透、润湿等多种功能,同时它又具有较好的热稳定性和化学稳定性,在90℃时仍具有很好的表面性能,并且能被微生物100%降解,是典型的环保型绿色产品。

1.4 鼠李糖脂生物表面活性剂已获得的绿色认证

(1)急性经口毒性试验LD50>5000mg/kg·Bw,属实际无毒。

(2)2004年,美国环保署即通过了鼠李糖脂作为生物农药的备案(PC Code 110029)。

(3)纽约州环境保护部固体和危险材料农药管理局,新的活性成分鼠李糖脂登记农药新产品的注册文件(EPA注册编号72431-1)。

(4)鼠李糖脂作为一种新的活性成分,申请登记生物杀菌剂的联邦登记公告。2003年5月7日(68 FR 24456)。

(5)美国环保署(EPA),关于鼠李糖脂生物表面活性剂在食品中、农药化学品中的容许量申请及批复。(68 FR 25026和68 FR 16796)

1.5 鼠李糖脂生物表面活性剂在绿色农业上的应用方向

(1)添加于肥料中提高肥料利用率,增强肥效;

(2)直接作为生物农药或添加于农药产品中,增强药效;

(3)用于土壤调节,增强土壤活力;

(4)用于果蔬保鲜。

二、鼠李糖脂在生物农药方面的应用

2.1 鼠李糖脂的防治机理

2.1.1鼠李糖脂对于孢子类植物病原菌的生物合成有抑制作用

鼠李糖脂可破坏真菌的细胞膜,使孢子丧失移动性并快速水解,进而抑制真菌孢子萌发和菌丝生长。Stanghellini等[11]研究发现浓度为30μg/mL鼠李糖脂能使辣椒疫霉病和黄瓜腐霉病孢子在1min内全部完全水解。鼠李糖脂瓦解真菌孢子细胞壁,促使植物病菌死亡,在葡萄灰霉病、大豆疫霉菌、辣椒炭疽病上也同样发现鼠李糖脂有溶解真菌细胞壁的作用[12-14]。真菌细胞壁主要由几丁质和β-1,3-葡聚糖组成,几丁质在细胞壁内部,葡聚糖在细胞壁内外部均有。鼠李糖脂处理被真菌病害侵染的植物之后,植物体内几丁质酶和β-1,3-葡聚糖酶增加,病原菌细胞壁被水解酶破坏,菌丝细胞壁变薄,破碎,最终死亡[11,13]。

此外,鼠李糖脂能阻止病菌孢子的移动,降低病菌对植株的侵染率[12,14,15]。鼠李糖脂在土壤中有很好的溶解性和分散性,高浓度的鼠李糖脂在土壤中能有效阻止孢子移动,降低其对植物的侵染,从而达到预防植物病害的目的。

2.1.2诱导抗性

植物与病原体协同进化过程中,逐渐形成了一系列的高效保护机制来抵御病原物的侵害。植物免疫系统分两个层次,第一个层次是由病原相关分子模式(PAMPs)触发的免疫反应(PTI);第二个层次是触发性免疫(ETI);PTI和ETI 都属于免疫信号,但PTI比ETI更加强烈和持久[16-18]。

茉莉酸、水杨酸和乙烯在植物PTI和ETI信息网络中起着关键的作用。鼠李糖脂可促使拟南芥防御基因PR-1(水杨酸标记基因),PDF1.2(茉莉酸/乙烯标记基因)和PR-4(乙烯标记基因)表达,触发拟南芥的防御反应[19]。在西瓜、葡萄、小麦和烟草中,鼠李糖脂诱导植物免疫反应也有报道[13,20,21]。鼠李糖脂能激活PTI,预防葡萄灰霉病的发生,用0.025 mg/mL鼠李糖脂处理灰霉病感染的葡萄叶片,与对照相比几丁质酶基因表达高达320倍[13]。几丁质酶和β-1,3-葡聚糖酶属于水解酶类的病程相关蛋白(PRS)也属于防御产物,与植物系统诱导性抗性(ISR)密切相关。鼠李糖脂能在室温条件下通过诱导植物抗性反应来

预防西瓜枯萎病,与对照相比,喷施1.0 g/L 的鼠李糖脂,可使西瓜叶片几丁质酶和β-1,3-葡聚糖酶分别升高49.95%和63.04%[22]。在酶水解真菌细胞壁过程中,细胞壁可释放出寡糖,可作为植物多种抗病反应的激发因子,诱导植物抗病反应[23]。鼠李糖脂能促使植物抗性基因表达,激活植物自身免疫系统,诱导植物对病原菌产生抗性,从而使植物免受病菌的侵害。

2.1.3 具有优良的乳化性能及渗透性能

鼠李糖脂在农药产品中可作为乳化剂添加,同时由于其优良的表面活性及改善植物细胞通透性的作用,在促进农药有效成分植物吸收上也能发挥很好的作用。

农药普遍存在投放量高、有效利用率低的问题,喷施的药液不能在生物靶向表面形成理想的润湿分布,药液流失严重,有效成分传递率降低,造成农药的大量浪费,此外常用的表面活性剂相对分子质量较低,用在农药水基性剂型上(如水乳剂、悬乳剂等),会导致它们在贮存期间粒子的絮凝和聚集以及粒子间粘连增多的问题,不能使农药达到长期稳定的效果,故需要通过提高药量来达到效果。

鼠李糖脂作为一种相对分子质量较大的表活剂,其自身的结构特点决定其具备较为优良的分散性及吸附粒子能力,使药剂在使用中更好的附着于表面,不易脱落和转移,能够保证农药作用效果的长期稳定性。此外,其表面活性促进药剂对植物的渗透作用,达到增溶增效的目的。

2.1.3 杀蚜机理

蚜虫的角质层膜由烷烃、蜡脂、脂肪酸和磷脂组成,这些物质具有亲脂性,可和含有亲脂和亲水基团的表面活性剂鼠李糖脂作用。鼠李糖脂破坏了蚜虫的角质层膜,从而起到防止蚜虫的目的。

三、鼠李糖脂表面活性剂在农业中的其他应用

3.1 含鼠李糖脂的有机水溶肥

鼠李糖脂生物表面活性剂毒性低、可生物降解、生物相容性好、起泡性更高、在极端温度、pH、盐浓度下的选择性和专一性更好。因此,近年来,鼠李糖脂生物表面活性剂作为生物有机肥的的生产和使用日益受到人们的广泛关注。有研究结果表明鼠李糖脂能够降低植株叶片的表面张力,使得肥料在叶片表面全面溶解散开、气孔张开。这些改变可以促进叶片对肥的吸收,增强叶片的光合作用,从而促进植株生长。此外,由于鼠李糖脂对蚜虫的杀蚜活性及抑菌防病性,其作

为叶面肥使用还可以兼具生物农药的功能,具有促生和杀虫的双重功效,可谓“一举多得”。

鼠李糖脂生物表面活性剂作为有机水溶肥使用,用于提高肥料作用效率表现在:

(1)丰富的营养成分,可为植物生长提供营养

鼠李糖脂生物表面活性剂是以植物油、无机盐、微量元素等为原料,通过微生物代谢产生,产物中含有大量的氮、磷等营养元素,氮、磷等元素是植物生长的必须元素,也是肥料中主要有效成分,通过添加鼠李糖脂生物表活剂,可以减少肥料中对该类元素的添加量,减少生产成本,并且作为一种生物多样物质的混合体,其中的菌体分解的蛋白和核酸等物质亦可被用于激活地层微生物,提高微生物活性,加速植物根系对土壤中营养成分的吸收,促进植物生长。

(2)优良的表面活性,促进肥料的渗透吸收

鼠李糖脂生物表面活性剂可作为润湿剂应用于叶面喷施。将营养物质喷施到叶片表面,通过叶片细胞的外质连丝和气孔被作物吸收。然而自然界中,许多植物叶片都覆有一层蜡质层,使叶片表面成为一种低能表面,鼠李糖脂生物表活剂可作为润湿剂,添加于叶面肥料中,以疏水基通过色散力吸附在蜡质层的表面,亲水基则伸入肥液中形成定向吸附膜取代了疏水的蜡质层,改善肥料在蜡质层的润湿状况,使肥料充分铺展,促进肥料营养物质最大限度的被吸收利用。

(3)螯合微量金属离子,促进植物对微量元素的吸收利用

微量元素是植物正常生长所必需的,其在植物内部的作用有很强的专一性,缺乏微量元素,农作物产量降低,质量下降,严重时可能绝产,因此微量元素是植物肥料中不可缺少的成分,然而对于施与土壤中的肥料,微量元素易散失,有效作用率低的情况经常出现,鼠李糖脂生物表活剂具备将部分微量元素螯合的功能,在弱碱性环境下电离出的羧基可固定根系周围的微量元素,降低微量元素在土壤中快速散失的可能性,保证了肥料的长效性。

3.2含鼠李糖脂种衣剂

鼠李糖脂开发成种子包衣剂涂于种子表面,在种子表皮形成一层糖脂化的复合物颗粒层,进入土壤后能吸附和保持大量的水分,提高种子萌发能力,抵抗干旱的外部环境,促进根部发育,促进营养物质的运输,导致较早的和更好的发芽。

幼苗生长较快并带出更大的根源。

3.3 含鼠李糖脂的动物饲料

通过将鼠李糖脂混合到饲料中,可以预防或治疗由革兰氏阳性细菌引起的各种动物感染症,包括金黄色葡萄球菌(牛、羊乳腺炎、皮下肿瘤、皮肤炎、败血症等的致病菌)、表皮葡萄球菌、猪链球菌(猪脑膜炎、败血症、心内膜炎、关节炎的致病菌)、牛链球菌(牛鼓胀症的致病菌)等。反刍动物摄取后能改善反刍动物的瘤胃发酵,抑制甲烷生成并促进丙酸生成,促进反刍动物的生长,改进养分吸收、改善肉质,大大减少饲料中抗生素的使用。

含鼠李糖脂的动物饲料可用于鸟类或哺乳类动物的饲料、宠物食品、宠物用营养补充剂等,如犬、猫等宠物、家畜中鸡、猪、牛、羊的饲养。而对生物体及环境安全性高。

参考文献

[1]Guo Y, Hu Y, Gu RR, et a1.Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MlG-N146[J]. Journal of Colloid and Interface Seience,2009,331(2):356-363.

[2] Jarvis FG Johnson MJ.A. glycolipid produced by Pseudomonas aeruginosa[J]. Am. Chem. Soc.1949,71:4124-4126.

[3] Manresa JM, Caballol R, Grau A. et al. Association of mixed connective tissue disease and erythema nodosum. Medicina Clinica, 1991,97(19):757.

[4]孙超,郭斐.培养基组成对铜绿假单胞菌NY3产鼠李糖脂性能和结构的影响.环保科技, 2012,18(3): 31-34.

[5] Q Wang, X Fang, B Bai,. et al. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnology & Bioengineering, 2007,98(4): 842-854.

[6] P Setoodeh, A Jahanmiri, R Eslamloueyan. et al. Statistical Screening of Medium Components for Recombinant Production of Pseudomonas aeruginosa, ATCC 9027 Rhamnolipids by Nonpathogenic Cell Factory Pseudomonas putida, KT2440. Molecular Biotechnology, 2014,56: 175-191.

[7] L Han, P Liu, Y Peng, J Lin. et al. Engineering the biosynthesis of novel rhamnolipids in

Escherichia coli for enhanced oil recovery. Journal ofApplied Microbiology,2014,117(1):139-150.

[8] RS Reis, AG Pereira, BC Neves. et al. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa, - A review. Bioresource Technology, 2011,102(11): 6377-6384.

[9] Champion JT, Gilkey JC, Lamparski H, et a1.Electron microscopy of Rhamnoli pid(Biosurfactant) morphology:Effects of pH,cadmium,and octadecane[J]. Colloid Interface Sci.1995,170:569-574.

[10]杨道茂,阳永荣等.铜绿假单胞杆菌发酵生产鼠李糖脂的研究[D].浙江大学.2002.

[11] Stanghellini M E, Kim D H, Rasmussen S L, et al. Control of root rot of peppers caused by Phytophthora capsici with a nonionic surfactant[J]. Plant disease,1996,80(10):1113-1116. [12] Soltani Dashtbozorg S, Miao S, J u L .R hamnolipids as environmentally fr iendly biopesticide against plant pathogen Phytophthorasojae[J]. Environmental Progress & Sustainable Energy,2016,35(1):169-173.

[13] Varnier A L, Sanchez L, Vatsa P, et al. Bacterial rhamnolipids are novel MAMPs confer ring resistance to Botrytis cinerea in grapevine[J].Plant,Cell & Environment,2009,32(2):178-193. [14] Lahkar J, Goswami D, Deka S, et al. Novel approaches for application of biosur factant produced by Pseudomonas aeruginosa,for biocontrol of Colletotrichum capsici,responsible for anthracnose disease in chilli[J]. European Journal of Plant Pathology,2017:1-15.

[15] Araujo L V D, Guimar?es C R, Marquita R L D S, et al. Rhamnolipid and surfactin:Antiadhesion/antibiofilm and antimicrobial effects[J]. Food Control,2016,63:171-178.

[16] Boller T, Felix G. A renaissance of elicitors:perception of microbe-associated molecular pat ter n s a nd d a n ger sig n a l s by pat ter nrecognition receptors[J]. Annual Review of Plant Biology,2009,60:379-406.

[17] Dodds P N, Rathjen J P. Plant immunity:towards an integrated view of plant–pathogen interactions[J]. Nature Reviews Genetics,2010,11(8):539-548.

[18] Katagiri F, Tsuda K. Understanding the plant immune system[J]. Molecular Plant-microbe Interactions,2010,23(12):1531-1536.

[19] Sa nchez L, Cour teau x B, Huber t J, et a l. Rhamnolipids Elicit Defense Responses and Induce Disease Resistance against Biotrophic, Hemibiotrophic,and Necrotrophic Pathogens That Require Different Signaling Pathways in Arabidopsis and Highlight a Central Role for Salicylic Acid[J]. Plant Physiology,2012,160(3):1630-1641.

[20] Stanghellini M E, Miller R M. Biosurfactants: Their identity and potential efficacy in the biological control of zoosporic plant pathogens[J]. Plant disease,1997,81(1):4-12.

[21] VatsaP, SanchezL, ClementC, et al. Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes[J].International Journal of Molecular Sciences,2010,11(12):5095-5108.

[22]刘菊. 鼠李糖脂对西瓜枯萎病防治作用的研究[D].杭州:浙江大学,2012.

[23] Klarzynski O, Plesse B, Joubert J M, et al. Linear β-1,3 Glucans Are Elicitors of Defense Responses in Tobacco[J]. Plant Physiology,2000,124(3):1027-1037.

物理在农业上的应用

龙源期刊网 https://www.wendangku.net/doc/b314325361.html, 物理在农业上的应用 作者:金仲辉 来源:《中学生数理化·八年级物理人教版》2020年第02期 读者小马问:“金老师好,我是一名来自农村的学生,父母均在家中务农,我想向您请教一下,物理知识在农业上都有哪些应用?” 农业是第一产业.是我国国民经济的基础,而科学技术是第一生产力.物理学作为自然科学中的基础性学科,在农业生产中有着广泛的作用.其中核技术在农业上可以说是最为完善和成熟的应用之一.并且已获得了巨大的经济效益. 核技术的核心在于放射性元素的应用.自然界中存在着稳定和不稳定两类元素,那些不稳定的元素就是放射性元素.它们可以自发放射出某些高能量的粒子,然后转变成某种稳定的元素,这种现象称为衰变.(本部分内容可以参阅本刊2017年11月号-2018年7-8月号《聚焦核电》栏目系列文章) 50余年来,我国的核农技术已有了一套比较成熟的方法.这些方法都建立在核衰变时放射出具有一定能量粒子的基础上.现在通过以下几个方面简要说明核技术在农业上的应用. 1.植物辐射育种 利用放射性元素衰变时放射出来的射线照射作物种子,可诱导作物种子产生基因突变.可通过实验选择产生突变的最佳放射性强度和照射时间.从而育成一种具有良好性能和高产的新品种作物,联合国粮农组织和国际原子能机构联合处1995年的统计显示,利用辐射,全世界在158种植物基础上,育成和推广了l932个品种,其中我国育成品种为459个,约占24%.辐射诱变育种为我国农业增产作出了重要贡献. 2.食品輻射储藏保鲜 利用放射性元素放射出的γ射线照射农产品可以抑制农产品发芽,延迟农产品成熟,还可以杀虫、杀菌,防止农产品霉变,从而达到保鲜或长期储存的目的,由于利用辐射储藏保鲜具有节能、方法简便、效率高和安全可靠等优点,在国内外已被广泛应用,形成了一项新兴的辐射加工产业.我国已对200余种食品进行辐射保鲜、改善品质等方面的研究,并成立了中国农 产品辐射加工联合开发集团,以推进食品辐射储藏保鲜的商业化进程. 3.昆虫辐射不育技术

鼠李糖脂资料

表面活性剂综述 皂素(saponin) 烷基多苷(Alkyl polyglucosides) 表面活性剂: 表面活性剂是一类集亲水基和憎水基于一体,可显著降低溶剂的表面张力或液一液界面张力的一类化合物。其分子结构一般包括长链疏水基团和亲水性离子基团或极性基团两个部分。通常,表面活性剂分子的两个部分的基团是不对称的。此种结构上的两亲特点,决定了表面活性剂的许多物理化学性质,是产生表面活性的内在原因。 不仅具有很高的活性,即在水中加入很少量就能使水的表面张力大幅度地降低,而且还具有独特的渗透;润湿和反润湿(防水、防油);乳化和破乳:发泡和消泡;洗涤、分散与絮凝,抗静电,润滑和加溶等应用性能。从广义上讲,可将表面活性剂称为这样一类物质即在加入很少量时就能明显改变体系的界面性质和状态的物质。 表面活性剂的化学结构特点: 表面活性剂是由性质不同的两部份组成。一部份是由疏水亲油的碳氢链组成的非极性基团,另一部份为亲水疏油的极性基。这两部份分别处于表面活性剂分子的两端,为不对称结构。因此表面活性剂分子结构的特性是一种既亲油又亲水的两亲分子。它不仅能防止油水相排斥,而且具有把两相连接起来的功能。 表面活性剂的分类:

按表面活性剂有水溶液中能否解离,分为离子型与非离子型表面活性剂。而离子型表面活性剂又按产生电荷的性质分为阴离子、阳离子型和两性离子型; 按表面活性剂在水和油中的溶解性可分为水溶性和油溶性表面活性剂;前者占多数,但后者日益重要,只是其品种不多。 按分子量分类,可将分子量大于104者称为高分子表面活性剂,在103一104称为中分子量表面活性剂及分子量大于102一103者称为低分子量表面活性剂。 还有按表面活性剂的功能来进行分类的。有表面张力降低剂、渗透剂、润湿剂、乳化剂、增溶剂、消泡剂等。 表面活性剂的性质: 表面活性剂的两亲特性使其能定向地吸附于两相界面上,亲水基一端朝向水相,疏水基一端朝向油相,从而降低了水溶液的表面张力或油水界面张力。表面活性剂在界面上吸附越多,界面张力降低得越多。表面活性剂在溶液表面的吸附量随溶液浓度增大而增多,当表面活性剂浓度达到或超过某一数值后,表面吸附量不再增加。此时溶液中的表面活性剂分子会从单体缔合为胶态聚集物,即形成胶束。胶束内部是由表面活性剂憎水基形成的疏水性内核;胶束外部是由亲水基组成的外壳。表面活性剂在溶液中形成胶束时的浓度称为临界胶束浓度(Critical micellar concenrtation,CMC)。CMC可作为表面活性剂的表面活性的一个量度。CMC越小,则表示此种表面活性剂形成胶团所需浓度越低,因而,改变表/界面性质,起到乳化、增溶等作用所需的浓度也就越低。表面活性剂在固一液界面上的吸附作用,如土壤一水或故态有机物一水界面,同样可降低固一液界面张力,促进有机污染物分子脱离固体表面。 当表面活性剂达到一定浓度后,活性剂分子形成球状、层状或棒状的聚集体,它们的亲油基团彼此靠在一起,而亲水基团向外伸向水相,这样的聚集体叫做胶束。能够形成胶束的最低表面活性剂浓度叫做临界胶束浓度,简称cMc。 表面活性剂的水溶液当表面活性剂浓度超过临界胶束浓度(CMC)时,能使不溶或微溶于水的有机化合物的溶解度显著提高的现象称之为表面活性剂的增溶作用。 水溶液中表面活性剂的存在能使不溶或微溶于水的有机化合物的溶解度显著增加,此即表面活性剂的增溶作用。 增溶作用为一胶团现象,与表面活性剂在溶液中形成胶团有密切关系。胶束具有疏水性的微环境,对有机物的增溶作用显著,可大大提高憎水性有机物在水相的表观溶解度。表面活性剂的增溶作用与表面活性剂的结构、被增溶物的结构密切相关。另外,溶液中所存在的有机添加物和无机盐以及温度等环境因素也会对增溶作用具有明显影响。表面活性剂对难溶性有机污染物的增溶作用受表面活性剂的种类和浓度、胶束的结构、有机物的性质、表面活性剂的HLB值、无机电解质、环境温度、共存有机物等因素的影响。 增溶作用的特点: 1)只有在表面活性剂浓度高于CMC时增溶作用才明显表现出来,也就是微溶物溶解度的增加是由于胶团的形成,表面活性剂浓度越大(>CMC),胶团形成的越多,微溶物也就溶解得越多。 2)增溶作用不同于水溶助长作用。水溶助长作用是使用混合溶剂来增大溶解度,以苯为例,大量乙醇(或乙酸)的加入会使苯在水中的溶解度大大增加,这称之为水溶助长作用。其原因在于:相当大量的乙醇(或乙酸)的加入大大改变了溶剂的性质,而在增溶作用中,表面活性剂的用量相当少,溶剂性质也无明显变化。

鼠李糖脂的提取与纯化

鼠李糖脂的提取与纯化:用1mol/LNaOH调培养48h发酵液(发酵时间待定)的pH值至8.0后8000r/min离心10min除菌体,上清液用36%HCl调pH值至2.0,然后以V(上清液):V(氯仿):V(甲醇)=3:2:1萃取15min,静置分层,收集下层液用旋转蒸发仪(50℃)浓缩至50ml,溶剂自然挥发干后即得纯鼠李糖脂。将鼠李糖脂溶于0.05mol/LNaHCO3溶液中得鼠李糖脂溶液[1]。 之前的这种提取方法可以得到纯的鼠李糖脂。 关于发酵液中鼠李糖脂的含量检测。有文献提到用电喷雾质谱ESI-MS来检测鼠李糖脂的含量。还有一种主要用分光光度计和标准曲线的方法来做。如下:一、材料、仪器及方法 鼠李糖、苯酚、浓硫酸、尿素、Na2HPO4、KI~P04、Mgs04·7H20、CaC12·2H20均为国产分析纯。紫外可见分光光度仪。 鼠李糖标准母液的配制:取鼠李糖于105℃烘干至衡重,精确称取25 mg 溶于250 mL容量瓶中,蒸馏水定容,摇匀即得0.10 g/L鼠李糖标准母液。 苯酚溶液的配制:苯酚用水浴加热后溶解,称取100 g,加铝片0.10 g,氢氧化钠0.05 g,蒸馏收集182 ℃的馏分。取馏出液6.00 g,加水100 mL,置于棕色瓶中,备用。 样品的测定:种子培养基接种生物表面活性剂产生菌L Y4,发酵16 h,此时菌株处于对数生长中后期,以此时的发酵液作为种子液。接种量5%,200 r/min~240 r/min,发酵周期为2 d。将发酵液过滤除去过量的植物油(与他用的培养基有关,其中添加了植物油),准确移取滤液0.5 mL稀释至100.0 mL,取2.0 mL 稀释液(按鼠李糖标准曲线绘制中的方法显色)于482 nln处测其吸光度值,同时以蒸馏水作对照,由回归方程得鼠李糖的含量,鼠李糖的含量乘以相关系数3即为鼠李糖脂的产量。 二、鼠李糖标准曲线的绘制 分别移取鼠李糖标准母液2.5 mL、5.0 mL、7.5 mL、10.0 mL、12.5 mL、15.0 mL、17.5 mL、20.0 mL于50 mL容量瓶中,蒸馏水稀释定容。取2.0 mL标准溶液,以蒸馏水作对照,分别加入1.0 mL苯酚溶液,摇匀,迅速加入5.0 mL 浓硫酸,振摇5 min后于100℃水浴中加热15 min,而后置于冰水中迅速冷却10

海藻糖的应用研究

海藻糖的应用研究 摘要研究发现,海藻糖具有良好的辅助动植物增强其抗逆性的功能。海藻糖独特的性能使其在在食品、生物医药及农业生产领域的有着非常广泛的应用价值。 关键词海藻糖;食品;生物;农业;应用价值 研究表明,某些物种对外界恶劣环境所表现出的较强的抗逆耐性与其体内存在海藻糖有关系。海藻糖能够有效的保护细胞膜和蛋白质的空间构象,因此许多含有海藻糖的动植物干燥失水后仍维持活性,一旦遇水就立刻复活,从而可保存其固有的风味、色泽和纹理。 研究表明,外源性的海藻糖对生物体和生物大分子亦具有良好的非特异性保护作用。在海藻糖存在的条件下,各种保存条件要求苛刻的基因工程酶类疫苗和抗体等干燥复水后的仍具有良好的功能性。由于海藻糖具有这种奇妙的特性,使其在医药、食品、化妆品、农业等方面具有广泛的应用价值,成为一项极有开发和应用前景的产品。 1 海藻糖在食品方面的应用 在食品加工方面,海藻糖作为一种天然食品添加剂具有改善干燥加工食品质量和风味的作用。此外,海藻糖也可广泛应用于奶类、果汁饮料、蔬菜汁、风味调料等的防腐保鲜。海藻糖属于一种非特异性保护剂,几乎对所有的生物分子都具有一定的保护功能,而且它的化学性质非常稳定,具有不易焦糖化,甜度低,在人体内可被分解为葡萄糖等特点,可以作为一种新型的天然防腐剂来使用。目前,己有将其用于奶类、禽蛋及番茄酱等食品的保存。 海藻糖还是一种能改善干燥食品质量和风味的天然食品添加剂。海藻糖可与食盐共存,能增强食品优良口味,改善口感。而在蔗糖中加入一定量的海藻糖,使其甜味优良,可广泛用于调味料、点心、面包、口香糖、火腿、乳制品等产品种来使用。 无水海藻糖有很强的吸湿性,是一种天然脱水剂。通过无水海藻糖吸收水分后变为结晶海藻糖,可以有效地防止粉末状食品粘着结块。因此,无水海藻糖可广泛用于糖衣食品、各种点心、颗粒佐料、酥脆饼 干等。 此外,海藻糖还具有抗干燥,化学稳定性强和甜度低等特点。海藻糖能阻止还原糖和游离氨基发生反应,从而抑制美拉德反应的发生。在加热条件下,含蛋白质的食品要保持其原有质量和风味,一般的防腐剂往往很难达到这一要求,而在海藻糖存在时则能保持食品的结构、色泽、风味和烹调特性。高能量的食品也

海藻糖在血细胞冻干保存中的应用

海藻糖在血细胞冻干保存中的应用 石 釧1,韩俊领1,2 (1.协和干细胞基因工程有限公司,天津300384; 2.中国医学科学院、北京协和医学院,血液学研究所,血液病医院,天津300020) 中图分类号:R457.1 文献标识码:A 文章编号:100622084(2008)1922908204 摘要:海藻糖是目前血细胞冻干保存中最常用的保护剂,作为一种稳定的非还原性双糖,它在细胞冷冻、干燥、冻干过程中对细胞活性有着良好的保护作用并显露出在血细胞冻干保存中的广阔应用前景。本文主要就冻干对血细胞损伤机理,海藻糖对血细胞冻干过程中的保护机制及海藻糖在血细胞冻干保存中的研究现状进行综述。 关键词:海藻糖;冻干保存;血细胞 Appli ca ti on of Treha lose i n L yoph ili za ti on of Blood Cells SH I Chuan1,HAN Jun2L ing1,2.(1.U2 nion S te m Cell&Gene Engineering L i m ited Co m pany,Tianjin300384,China;2.Institute of He m atolo2 gy and B lood D isease Hospital,Peking U nion M edical College,Chinese A cade m y of M edical Sciences, Tianjin300020,China) Abstract:Trehal ose is regarded t o be a p referred p r otectant for lyophilizati on of bl ood cells.Treha2 l ose,as a nonreducing disaccharide,p lays a r ole in p r otecti on of the cyt oactivity when the cells is freez2 ing,drying or lyop ilizati on,and shows br oad app licati on p r os pect on lyophilizati on of bl ood cells.This paper revie wed the da maged effect of lyophilizati on on bl ood cells,the mechanis m of trehal ose p r otec2 ti on and the experi m ental studies on trehal ose. Key words:Trehal ose;Lyophilizati on;B l ood cells 目前,红细胞、血小板和造血干细胞的保存仍主 要采用常温下短期保存和深低温下长期保存两种方 法。均存在需要笨重存储设备、保存费用昂贵、运输 不便等限制,远远不能满足临床应用。由于冻干血 细胞能在常温下保存,保存时间长,性能比较稳定, 输注方便,保存费用低廉,便于运输等优点,尤其能 够满足战时需要,血细胞的冻干保存已成研究热点。 血细胞的冷冻干燥过程一般包含预冻、初级干燥、次 级干燥3个步骤。在此过程中,细胞的生存条件、物 理状态均发生变化,构成细胞的膜蛋白及磷脂存在 一定程度的变性,影响细胞器的功能活动,细胞的生 活力下降。如何最大限度的抑制细胞成分的变性, 保持细胞原有的活力,一直是血细胞冻干保存研究 的重点。海藻糖是一种非还原性双糖,在自然界广 泛存在,由于其具有在脱水、干旱、高温、冷冻及高渗 透压等严酷环境条件下保护生物体的组织和大分子 的功能,引起了人们的广泛关注[1,2]。近年研究显 示,海藻糖是低温生物领域最佳的保护剂。现就海 藻糖在血细胞冻干保存中的作用机制及应用现状综 述如下。 1 冷冻干燥对血细胞的损伤机制 在液体冷冻保存中时,血细胞冷冻过程的损伤 主要是由机械效应和溶质效应引起。血细胞在预冻 过程中,当细胞外溶液的温度降到其平衡冻结点以 下并达到一定的过冷度后,细胞外溶液首先结晶,水 的冻结使细胞间隙内的液体逐渐浓缩,电解质浓度显著增加,渗透压增高,pH值改变。如果冷却速度较慢,细胞会因为长时间暴露于高浓度的溶液中而产生蛋白质变性和脱水性死亡,这就是所谓的溶质效应;当细胞内的水分结冰时,体积膨大,细胞内冰晶对细胞膜和细胞器膜就产生机械剪切破坏,谓之机械效应。一般认为,冷却速率越快,机械损伤就越大。 血细胞干燥过程的损伤主要是膜的融合以及脂质的相转 变。在正常的生理环境下,细胞膜中磷脂的极性基团通过与水分子的结合而在空间上相互隔开,当水分子被除去后,极性基团的聚合密度增大,产生分子间的强相互作用,它们用极性基团间的氢键结合来弥补损失的与水分子的氢键结合,导致细胞膜大片融合、破损,内容物外溢[3];其次,血细胞在冻干过程中,细胞膜、细胞器膜经历液相向固相的相变过程,即膜脂质的物理状态的改变,磷脂双层除去氢键键合的水,将使丙烯酰基拉近,增加范德华力,结果脂类可以从液晶态转变成凝胶态[4]。当再水化时,在室温为凝胶态的干膜又转变成液晶态,造成膜通透性增加[5]。 2 海藻糖的生物学特性及其在冻干保存中的作用机制 2.1 海藻糖的生物学特性 海藻糖具有特有的物理和化学性质,这些特有的性质包括:①特强水合能力。Kawai等[6]研究显示,以每个葡萄糖单位周围的不冻水分子数计算,海藻糖的不冻水分子是糖类最多的。Magazù等[7]比较了海藻糖/水和蔗糖/水在玻璃化相转变附近的振动性质,认为海藻糖抗冷冻脱水的能力更强。②独特的玻璃化转变及晶型转变特性。海藻糖的玻璃化相变温度(Tg)是120℃,远高于其他双糖体系。高的Tg可使样本在干燥时及以后的保存中有更高的稳定性[8]。此外,高浓度的海藻糖溶液比其他糖类更不容易形成冰晶。Sussich等[9]研究发现,细菌脱水时获得的休眠状态不仅与海藻

核技术在工业、农业、环境、医学中的应用

核技术在工业、农业、环境、医学中的应用 年级姓名: 2015级郜苏徽 学院专业:经管经济类 学号: 2015014481 课程名称:核技术安全与应用 任课教师:吕金印 日期: 2015/11/28

核技术在工业、农业、环境、医学中的应用 经济管理学院经济类郜苏徽 2015014481 核技术是现代科学技术的重要组成部分,是当今世界重要的高科技领域之一,许多发达国家都把核技术视为科技制高点,并进行大力开发应用。通常人们将核技术划分为核武器技术、核能技术和民用非动力核技术。 自1895年伦琴发现了X射线,1896年贝克勒尔发现铀的天然放射性,随后居里夫妇发现“钋”和“镭”两种天然放射性核素,以及1899年至1900年α、β和γ射线的发现以来,人类对辐射进行了大量的研究并建立了核科学。核技术在医学、生物学、农业、材料科学等各个领域得到广泛的应用,核技术成为当今世界重要的高科技领域之一。在此就核技术在工业、农业、环境和医学中的应用作一简要介绍。 1、核技术在工业中的应用 核技术在工业上主要有三方面的运用:工业辐照、核子仪与放射性测量、工业射线探伤。 1.1工业辐照 又称辐射加工,是指利用电离辐射与物质相互作用产生的物理效应、化学效应和生物效应,对物质和材料进行加工处理的一种核技术。辐射加工通常包括γ辐射加工(钴60和铯137为辐射源)和电子加速器辐射加工(电子束和X射线)。我们常用辐照装置进行物质的消毒,例如说医院对医疗器械、血液样品、药物产品等的消毒,食品加工产对食品保鲜等等。 1.2核子仪与放射性测量 核子仪是一种测量装置,由一个带屏蔽的辐射源(具有放射性或能放出X射线)和一个辐射探测器组成。射线未穿过物质或者与需要分析的物质相互作用,为连续分析或过程控制提供实时数据。因此核子仪在工业中运用十分广泛,例如说过程控制和产品质量的控制。我们常用的几种核子仪如:①核子密度计,它的用源一般采用铯137(其活度范围一般在1.85GBq,50mCi左右),对大直径的管子的测量用钴60较多,而对几厘米直径的细管用镅241源。在烟草行业中,用β射线源测量连续卷烟机中烟草的密度。②测厚仪,利用γ射线对金属、非金属材料的厚度进行测量(其测量范围为:镅241放射源,0.15~4mm;铯137放射源,2.5~60mm;钴60放射源,4~90mm)。在工业制造过程中,经常采用表面保护和表面精加工技术。③料位计,它的作用的对物料位置高度进行测量,主要采用γ射线源。对堆积密度小的物料(如泡沫塑料)或少量物料(如管中牙膏)的测量,用β射线源。

海藻的简述、海藻糖的功能及应用

海藻的简述、海藻糖的功能及应用 食品科学与工程专业 指导教师雷敏 摘要:本文简述了海藻的分类,营养价值及日常生活中常见的海藻食品种类,还介绍了一种新兴的海藻活性物质海藻糖在食品方面独特的功能以及在食品中广泛的应用。 关键词:海藻;海藻糖;功能特性;食品;应用 引言随着人们营养观念的改变,肉类已不再是饭桌上唯一具有高营养价值的食品。伴随着鱼虾蟹类等食品逐渐地增多,一种新兴的海洋食品——海藻,正越来越受到人们的喜爱。它没有肉类食品的脂肪、胆固醇过高的缺点,又不像鱼虾食品的价格那么昂贵,且具有特殊的生理配比物质所以已越来越受人欢迎,进人家庭餐桌,并将成为人类食品发展的一个新方向。近年来,日本人开始把海藻作为一种原料,生产出了很多海藻食品,如果酱、奶酪、葡萄酒、茶、汤和面条等;西方国家主要将其作为多糖类而食用和药用。其中海藻活性物质海藻糖便成为了最炙手可热的原料。 1 海藻的简述 1.1海藻的定义及其营养价值 海藻,是指生长在海洋里的含叶绿素或含其它辅助色素的低等植物,即通常所说的海洋蔬菜。按其所含色素的不同分为褐藻、红藻、绿藻、蓝藻、黄藻、全藻等。 与一些肉类食品相比,海藻类食品具有高蛋白质、低脂肪的优点。又据分析,海藻含有多种微量元素和20多种维生素,其中所含的维生素B,,则是瘦猪肉中所没有的,亦为一般蔬菜中所罕见。有人测算过,若每天食用100克海藻,除可提供一定量的蛋白质外,还可供一个成人每天所需维生素C量的67%,维生素A、维生素B、钙、钾、钠、镁的提供量也都多于成人每天的需要量,还可提供磷等其它的矿物质。特别值得一提的是,海藻是含钙质极为丰富的碱性物质。3.5克海藻中所含的钙相当于160克菠菜或者250克柑桔中所含的钙质。现代医学研究证实,经常食用含钙的海藻食物,可有效地调节血液的酸碱度。另外,海藻中所含的碘也极丰富,尤其是海带,而碘却是蔬菜中所没有的,所以海藻中的营养价值很高。 1.2海藻食品的功能性 海藻具有一定的保健功能。日本专家总结海藻食疗的功效大致有以下几种:防治甲状腺肿大,预防动脉硬化,降低血压,预防便秘,抗癌防癌,维持体内酸碱平衡等。研究认为,在海藻中很可能含有抗癌的物质以及对某些物质的解毒成分,同时还含有人体健康必需的矿物质,如果将这些物质提出来添加到人们的食

鼠李糖脂农业应用介绍

鼠李糖脂在绿色农业中的应用 一、鼠李糖脂简介 1.1 来源及结构 鼠李糖脂是由铜绿假单胞菌在一定培养条件下,通过生物合成的方法产生出的具有表面活性的糖脂类产物,它由鼠李糖元和脂肪酸组成,其分子结构通式为: R1: R1=α-L吡喃鼠李糖基R2: R1=H R2=β羟基癸 酸R2=β羟基癸酸 鼠李糖脂的分子结构中既有极性基团又有非极性基团,是一类中性两极分子。亲水基团是非离子形式的单糖、二糖、多糖、羧基、氨基或肽链,疏水基团由带羟基的脂肪酸组成。 1.2鼠李糖脂粗提纯品组分构成 鼠李糖脂生物表面活性剂是生物发酵制品,粗提纯的产品中还含

有一些如糖脂、多糖、甘油、有机脂肪酸等代谢物,另外还包括少量的蛋白类物质,如菌体细胞蛋白、核酸蛋白、多糖类蛋白等。 1.3鼠李糖脂主要功能特点 鼠李糖脂是目前生物表面活性剂中最重要、应用最广泛的一类,它属于水溶性阴离子生物表面活性剂,具有降低界面张力、增溶、乳化、渗透、润湿等多种功能,同时它又具有较好的热稳定性和化学稳定性,在90℃时仍具有很好的表面性能,并且能被微生物100%降解,是典型的环保型绿色产品。 1.4鼠李糖脂已获得的绿色认证 (1)急性经口毒性试验LD50>5000mg/kg·Bw,属实际无毒。 (2)2004年,美国环保署即通过了鼠李糖脂作为生物农药的备案(PC Code 110029)。 (3)纽约州环境保护部固体和危险材料农药管理局,新的活性成分鼠李糖脂登记农药新产品的注册文件(EPA注册编号72431-1)。 (4)鼠李糖脂作为一种新的活性成分,申请登记生物杀菌剂的联帮登记公告。2003年5月7日(68 FR 24456)。 (5)美国环保署(EPA),关于鼠李糖脂生物表面活性剂在食品中、农药化学品中的容许量申请及批复。(68 FR 25026和68 FR 16796) 1.5 鼠李糖脂农业应用方向 (1)添加于肥料中提高肥料利用率,增强肥效; (2)直接作为生物农药或添加于农药产品中,增强药效; (3)用于土壤调节,增强土壤活力;

海藻糖生物合成及应用研究进展_何名芳_陈卫平

海藻糖生物合成及应用研究进展 曲茂华 张凤英 何名芳 陈卫平* (江西农业大学食品科学与工程学院 南昌 330045) 摘 要:海藻糖是一种非还原性二糖,是生物细胞抵抗不良环境的应激代谢产物,它可广泛用于食品、化妆品、生物医药和农业等领域。本文对最近几年海藻糖在生物细胞中的合成途经及酶调控机制、海藻糖生产合成方法及生产菌种、海藻糖对生物细胞保护作用机理及海藻糖在相关领域中的应用等研究进展进行了综述。 关键词:海藻糖,酶,合成,调控机制,应用 Research progress of trehalose biosynthesis and applications QU Mao-hua ZHANG Fengying HE Mingfang CHEN Weiping * (Institute of food science and engineering, Jiangxi Agricultural University, Nanchang 330045, China) Abstract: Trehalose, a disaccharide with non-reducing as metabolite of cell in hostile environment, was used in domains of food, cosmetic, biological medicine and agricultural. The newest research progress of trehalose including synthesis pathways with enzyme regulatory mechanism, synthesis methods with producing strains, mechanism of protection for cell and applications in relative domains was reviewed in this paper. Key words: trehalose; enzyme; synthesis; regulatory mechanism; application 中图分类号:TS245.9 文献标识码:A 文章编号:2013120023 作者简介:曲茂华(1989-),硕士研究生,研究方向为食品微生物。 *通讯作者 海藻糖是一种非还原性二糖,分子式是C 12H 22O 11?2H 2O ,广泛分布于自然界中许多生物细胞中。海藻糖是一种生物应激代谢产物,一些在极端环境生长的古生菌、真菌,以及一些生长在不良环境中的动植物细胞中海藻糖含量较高。甚至在可以用于清理核污染的抗辐射型细菌如耐辐射球菌(Deinococcus radiodurans )[1]中也发现了海藻糖的存在。海藻糖在生物细胞中的作用是保护细胞抵抗不良环境的影响,其功能是保护细胞质膜,蛋白质、核酸等生物大分子空间结构和功能活性,维持渗透压和防止细胞内营养成分流失。由于海藻糖具有以上功能,它可用于医学生物制品中起到保护剂的作用[2];增强农作物抗逆性[3],通过转基因手段来培育耐盐碱型农作物[4],培育抗冻果蔬等;同时,海藻糖不具有还原性,不会发生美拉德反应,可以作为稳定的添加剂应用于食品工业。因此,对海藻糖进行研究具有重要意义,本文针对海藻糖生物合成、作用机理、应用方面的最新研究进展进行综述。 1海藻糖合成的相关酶以及调控途径 1.1海藻糖合成途径 目前对海藻糖合成代谢途径的研究文献较丰富。研究发现在生物体内的海藻糖合成途径主要有以下几条:一是 OtsAB 途径,通过TPS (Trehalose-6-phosphate synthase ,6-磷酸海藻糖合成酶)和 TPP (Trehalose-6-phosphate phosphatase ,6-磷酸海藻糖磷酸酯酶)酶来形成海藻糖[5]。在酵 网络出版时间:2014-02-20 16:01 网络出版地址:https://www.wendangku.net/doc/b314325361.html,/kcms/detail/11.1759.TS.20140220.1601.030.html

核技术在农业中的应用

西北农林科技大学和技术选修课作业 核技术的应用对农业科技进步的影响 摘要: 作为核技术和平利用的重要组成部分核技术农业应用已被公认为农业科技领域的高新技术。从20世纪50年代后期开始农业核技术广泛应用于诱变育种、农产品辐照加工、农业资源与环境、动物保健以及病虫害防治等领域取得了巨大的成就。核技术的应用加快了农业科技进步,显著地促进了农业生产的可持续发展。 关键词:核农学;展望 一、核农学进展 1.诱变育种与作物改良 经过40余年的研究与实践.诱变育种已成为核农学中最成熟的领域。全国有50多个研究所一直从事诱变育种研究.并形成了完善的(全国性)研究协作与学术交流网络。 20世纪60年代初期.育成并推广了第一批突变品种。截至2001年.通过辐射或辐射与其它技术相结合.中国已在42种植物上育成了625个突变品种约占世界突变品种(系)总数的四分之一。所涉及的植物包括粮食作物、纤维作物、油料作物、蔬菜、果树、花卉以及其他经济作物。诱变育种为中国的农业生产,特别是粮食、棉花和油料的生产做出了重要贡献。种植突变品种年增产粮棉油36-40亿公斤年经济效益约33亿元口在过去的十年中,主要农作物的诱变育种取得了重要成就而且无性繁殖植物、经济作物以及微生物的诱变育种工作日益受到重视。同时.育种目标也由突出高产转向品质产量并重。为了获得更高的突变频率、扩大突变谱及提高突变体的选择效率.还对诱变方法技术进行了大量的研究。相关研究包括辐射敏感性、原始材料、不同诱变剂的效果及复合诱变处理的效果评价等方面。 随着核技术与空间技术的发展,越来越多的新诱变剂(如离子束、电子束、磁化处理以及空间处理)被用于诱变育种实践。运用离子束注入技术已在水稻、小麦、蔬菜、油料作物以及微生物上获得60多个突变体,其中20多个在生产上推广应用。利用可返回式卫星和高空气球,深入研究了空间环境对植物和微生物的影响。利用该技术已在水稻、油菜、红小豆、甜椒、黄瓜、马铃薯、蘑菇上获得了20多个突变体其中包括小麦和水稻不育系.大果甜椒和大粒红小豆等。 2.食品和农产品辐照 经过40多年的实践.我国已经建立了超过50个装源量在10万居里以上的辐照设施,分布在24个省的36个城市,全国有200多个单位从事相关的食品辐照研究。主要辐照产品包括:大蒜、脱水蔬菜、调味品、香料中草药以及保健食品。近年来,辐照食品发展迅速2002年辐照食品量达到10万吨。官方的调查结果显示.公众对辐照食品的接受程度高达70%。中国已经成为世界上最大的辐照食品生产者之一。 近年来,为了达到辐照食品相关国际法规的要求中国加强了对辐照食品的管理。1996年颁布了经过修订的辐照食品卫生管理办法。迄今为止.中国卫生部已颁布了6大类辐照食品的国家卫生标准.共计有18种辐照食品获得批准.包括马铃薯、洋葱、大蒜、米、花生、蘑菇、香肠、苹果、包装鸡、花粉、杏仁、番茄、猪肉、荔枝、柑橘、马铃薯酒和熟肉制品。此外.也已颁布了有关设施和剂量的一系列

核技术应用

核技术的应用 ——工业、农业、医学

作为核专业的学生,我们简称自己的专业为核工,而总是忽略后半部分——核技术,我们在关注核电站等工程的同时似乎对核技术有些忽视。鉴于这种现象,我们组的主题是核技术在工业、农业、医学等三方面的应用,希望以点带面,以此提高大家对核技术科学方面的重视,也希望对大家有所帮助。 1995年,美国核技术应用GDP贡献4.7%,是核电的3.67倍,而我国2003年核技术对国民经济的贡献才仅为可怜的0.4%。95年来,我国核技术应用的平均增长率达到18%,在2009年核技术应用产值总计已达1000亿元人民币,为国民经济发展做出了突出的贡献。下面是核技术分别在三个方面应用的介绍: 一、核技术在工业方面的应用 目前,我国已形成了基本配套的军民两用核动力与核燃料循环科研开发工业体系,具备了自主设计建造中小型核电站的能力和核电站燃料组件的生产能力,核技术(包括核供热、同位素和辐射技术等)在工业、农业和医学等领域得到广泛应用。经过几十年的发展,我国在科研、设计、建设和运行等方面积累了许多宝贵经验,培养和造就了一支专业齐全、具有相当实力的科研、开发、设计和工程建设队伍。我国的核能和平利用产业已经形成了一定的规模,在某些技术领域达到了世界先进水平 1.辐射加工:即利用γ射线和加速器产生的电子束辐照被加工物体,使其品质或性能得以改善的过程。辐射加工可以获得优质的化工材料,储存和保鲜食品,消毒医疗器材,处理环境污染物等,是20

世纪70年代的一门新技术,也称辐射工艺。目前在高分子材料辐射改,性、食品辐照保藏、卫生医疗用品的辐射消毒等方面,已有一些国家实现了工业化和商业化。辐射加工技术具有下列特点:①辐照过程不受温度影响,可以在低温下或室温下进行,因此辐照对象可以是气态、液态或固态;②γ射线或能量高的电子束穿透力强,可均匀深入到物体内部,因此可以在已包装或封装的情况下进行加工处理;③容易控制,适于连续操作;④不必加其他化学试剂和催化剂,保证产品纯度;⑤反应速率快,形成高效生产线。 由于辐射加工的独特优点,辐射化学工业产品的品种和数量不断增加,在高分子辐照交联、辐射裂解、辐射接枝术,辐射聚合以及有机物的辐射合成等方面已有几十种产品。特别是高分子辐射改性方面,产品最多。其中聚乙烯绝缘层的辐射交联,已应用于电线、电缆的制造工艺中。这种辐射交联电线耐热、耐腐蚀性能好,可提高设备的可靠性,并使之小型化;已广泛用于航天、通信、汽车、家用电器等工业中的配线材料。辐射交联聚乙烯热收缩薄膜、薄板和管道,已用于包装材料、电缆接头等。用电子束辐照装置对木材、金属、纸张等表面涂层的固化有很多优点,如节能、无公害、占地面积小、生产速度快、涂层性能好等。辐射接枝可以改善层压制品的粘接性。例如,聚乙烯粉末辐照后与丙烯酸进行接枝,将接枝物压成薄膜再与铝箔层压,可作瓶盖等。用甲基丙烯酸甲酯等单体浸渍过的木材,辐照后加工形成木材-塑料复合材料,在尺寸稳定性、吸水性、强度、抗霉防腐、表面物理性能等方面都有显著改善,可用于制作地板、工艺品、

膏状鼠李糖脂 (1)

膏状鼠李糖脂 编号名称单位规格 北京华越洋WX087 鼠李糖脂瓶100mg 北京华越洋WX088 鼠李糖脂瓶1g 膏状鼠李糖脂基本信息: 棕色膏状物,纯度90%以上。 分子量600.05 pH值3.5-4.5 表面张力:29MN/m CMC:26-50mg/L 华越洋膏状鼠李糖脂为单鼠李糖脂和双鼠李糖脂的混合物:单鼠李糖脂Rha-C10C10(Rf2)和双鼠李糖脂Rha-Rha-C10C10(Rf2),其中单双鼠李糖脂的质量比值约2:1。 膏状鼠李糖脂溶解性: 可以溶于有机溶剂如甲醇、氯仿、乙酸乙酯、乙醇、DMAC(二甲基乙酰胺)等。此膏状物直接溶于水后,为白色乳状液;若将其溶于偏碱性水溶液,得到澄清透明溶液,所以用温度略高于室温(50度)的弱碱性水溶液(pH8-9)溶解膏状鼠李糖脂;当pH<4.0则为沉淀形式。 鼠李糖脂的用途: 日化工业:华越洋鼠李糖脂作为表面活性和乳化性能强的生物表面活性剂,还可作为润湿剂、乳化剂等应用于食品、制药、日化,又由于其较强的抗菌性能和抗病毒活性,在临床

医学中也有应用。 采油工业:一次和二次采油后,原油的平均采收率只有30%-35%左右。其中最主要的原因之一是由于粘滞力和毛细血管作用力的存在使得残余原油表面张力较大,原油以不连续的油块和油珠被圈捕在油藏岩石孔中。若能在其中注入生物表面活性剂,则可降低残余原油表面的张力,使残油从岩石孔中被驱赶出来,进而提高原油的采收率。 环境治理:具有生物可降解、环境友好性,其用途非常广泛。处理含油废水和修复被芳香烃或原油污染的土壤。许多化学合成表面活性剂由于难降解、有毒及在生态系统中的积累等性质而破坏生态环境,相比之下,生物表面活性剂则由于易生物降解、对生态环境无毒等特性而更适合于环境工程中污染治理。 膏状鼠李糖脂来源: 为微生物发酵所得次级代谢产物,发酵液经高温灭菌、过滤去除菌体、结晶、萃取、蒸发、再结晶等工艺而成膏状鼠李糖脂。 膏状鼠李糖脂保存: 常温密闭保存。

鼠李糖脂在生态农业中的应用

鼠李糖脂在生态农业中的应用 一、鼠李糖脂简介 1.1 鼠李糖脂的来源 鼠李糖脂通常是由铜绿假单胞菌在一定培养条件下,通过生物发酵的方法产生的具有表面活性的糖脂类产物[1]。1949年,Jarvis和Johnson最早对使用铜绿假单胞菌(Pseudomonas spp.)生产鼠李糖脂进行了报道[2]。目前,人们通常采用假单胞菌(Pseudomonas spp.)发酵生产鼠李糖脂。发酵法的关键是首先筛选出性能优良的高产菌株,然后再进行培养条件的优化来提高产量、降低成本。培养基中的碳源是决定生物表面活性剂产量和结构的重要因素。鼠李糖脂在菌株培养中生产的限制条件是发酵过程中累积的次级代谢产物,这些限制条件不包括碳源,而氮源和磷则会限制鼠李糖脂的生产[3]。鼠李糖脂发酵的关键首先是能筛选或者构建出鼠李糖脂产量高的菌株,然后再对合适的生产菌株的发酵的各种条件进行优化,从而达到高产量低成本的目标。条件优化主要从碳源、氮源、无机盐离子以及pH、温度等方面来进行[4]。 目前主要通过代谢工程和基因工程方法来提高鼠李糖脂产量,这些策略的主要目的是:(a)不使用化学消泡剂获得高浓度的鼠李糖脂;(b)利用可再生资源生产鼠李糖脂,降低生产底物成本;(c)控制生产过程中的其他产物,获得单一的鼠李糖脂而不是混合物;(d)建立鼠李糖脂的非致病性生产菌株;(e)寻常基础材料生物催化鼠李糖脂的生产[5]。实际工业生产中,鼠李糖脂生产条件的优化主要是通过添加脂肪酸、生产菌株随机突变、控制发酵pH值、控制底物摄取量和运用Tween-80及Triton X-100提高鼠李糖脂的产量。之前有研究者将鼠李糖基转移酶复合物I(Rh1AB)在相对较安全的生产宿主恶臭假单胞菌KT2440中异源表达,但是产量提高的很少[6]。可以通过构建工程菌株提高鼠李糖脂产量,之前有研究证明自转运酯酶参与了细胞膜的形成和运动,也参与了脂类的运输,当敲除自转运酯酶基因,鼠李糖脂产量明显降低,由此可知,自转运酯酶也参与了鼠李糖脂的形成,过量表达自转运酯酶EstA[7]和鼠李糖基转移酶复合物I(Rh1AB)提高鼠李糖脂产量[8]。 1.2 鼠李糖脂的结构

核技术应用

核技术应用读书笔记 核技术是建立在核科学基础之上的一门现代技术,因而泛称核科学技术。核科学技术作为现代化科学技术的组成部分,其渊源可以追溯到1896年天然放射性的发现,至今已有100多年的历史。带电粒子加速器的发现与核反应堆的建造为核科学技术的发展,奠定了雄厚的物质基础。第二次世界大战期间核科学技术在军事领域的突破,体现了核科学技术发展的时代特征,即技术的科学化与科学的技术化。世界第一颗原子弹的爆炸显示了核能释放的巨大威力,开创了本世纪现代科学技术定向发展的新格局,即动用国家一级的权威,动员全社会的力量,精心 规划布署,全力推进科学、技术、工程、产业、经济的一体化。 核 器 主 和 的 、 截 电 建 个 , 技术可望从实验室走向实用,为人类提供取之不尽的干净能源。威力很大的核爆炸将为工程建设、改造环境和开发资源服务。核动力将在交通运输及星际航行等方面发挥更大的作用。核技术在其他领域中的应用也将进一步扩大。 核科学与核技术在二十世纪取得了辉煌的成就。目前仍然是现代科学中的一个非常重要的前沿领域,保持着旺盛的生命力,不仅具有重大的科学意义,而且在高新技术及交叉学科领域的研究中起着重要作用。当前核科学与核技术发展的特点体现为:一方面对物质层次结构、宇宙起源等的探索不断深入,另一方面在能源、人口与健康、环境、信息、材料、农业、国家安全等领域以及多种学科的基础研究中的应用日益广泛。

核探测技术在地学中主要应用于放射性勘查。放射性勘查是一种地球物理找矿方法,它是以岩石或矿石在一定的几何空间造成的放射场的差异为基础的。通过专门的核探测仪器测量射线强度和放射性核素含量,以达到寻找矿产资源和地质工程勘探的目的。 放射性勘查方法很多,按其测量对象不同,可分为Y测量、Bn及其子体测量。其中Y测量又分航空Y测量、航空Y能谱测量、地面Y测量和地面Y 能谱测量。Bn及其子体测量又分射气测量、径迹测量、。卡测量、活性炭测量和’,。Po法测量等等。本节将对地面Y测量、射气测量和径迹测量等放射性勘查方法给予介绍。 转民”的序幕。 经过20多年的发展,在核技术应用产业方面,我国目前已形成具有一定规模和水平的科研开发与产业化体系。据报道,国内从事核技术应用开发和生产的企事业单位有300多家,产业规模为年总产值400亿元,约占国内生产总值的0.4%。国内开展核应用技术产业化较早的中国原子能科学研究院的经营性收入,已由1980年的400多万元增长到2004年的2.4亿元。为了进一步加速核应用技术的推广和应用,国家发改委明确了国家“十一五”期间支持民用非动力核技术应用高技术产业化的目标,即加快高技术成果的产业化,引导、推动民用非动力核技术应用产业的持续、快速、健康增长,促使我国核技术应用产业在5年左

生物表面活性剂鼠李糖脂应用于重金属污染处理的技术

生物表面活性剂鼠李糖脂应用于重金属污染处理 的技术基础 赵力金艳方 (北京沃太斯环保科技发展有限公司、大庆沃太斯化工有限公司) 1前言 对重金属污染土壤的控制和治理问题,涉及到的标准有《土壤环境质量标准》(GB15618-1995),《农用污泥中污染物控制标准》(GB4284-84),《地下水质量标准》(GBT 14848-93),《土壤环境质量评价标准限量》(HJ 350-2007),《地表水环境质量标准》(GB3838-2002)等,这些标准从不同的角度都规范了一些重金属的最离极限含量。涉及到的重金属有:镉、汞、砷、铜、铅、铬、锌、镍、硒、铍、锑、银、铊等等,砷和硒虽不是重金属,但由于它们的毒性与重金属相似,也列入到重金属污染类。 重金属以化合物、离子形态存在于土壤中,从土壤颗粒表面及土壤结构内部脱离、转移到土壤颗粒之间的水份中,并保证这些水份在一定的流动状态下,不再回到土壤表面,从而实现被淋洗出土壤体系、或者在外加电场条件下定向移动到阴极、或被植物根系吸收,是工程技术要解决的关键问题。 已经有科学家和工程技术人员找到了很多解决这个问题的办法,表面活性剂技术和螯合(络合)技术已经被证明有很好的功效,选择非离子表面活性剂或阴离子表面活性剂,与螯合剂复配成工作液体,或者选择兼有两者功效的物质做为工作液,在实验室和小型的现场都见到了很好的去除重金属的效果。 从环境工程的角度出发,对污染物的处理工程,要求应用的技术手段和方法,不能产生其它的对环境有污染的结果。所以近年来在土壤重金属污染修复研究中,大多数的技术人员都采用了非离子、阴离子性的生物表面活性剂做为工作液体或者环境液体的添加物,取得了一批成果。这些非离子、阴离子性的生物表面活性剂能满足所有工程技术的要求,包括表面活性(改变土壤颗粒表面润湿性)、螯合剂的功能(减小金属离子与土壤颗粒表面的结合力,可以使金属离子以螯合态稳定的存在于土壤颗粒间的水系统中),同时这些表面活性剂不论是残留在土壤中,还是被淋洗出土壤系统,都极易被其它环境微生物以营养物质利用而消失。 2、鼠李糖脂生物表面活性剂介绍 鼠李糖脂是由假单胞菌或伯克氏菌类产生的一种生物代谢性质的生物表面活性剂。是一种研究时间最长、应用技术最为成熟的一种生物表面活性剂,它在土壤、水体和植物中都自然存在,属于一种糖脂类的阴离子表面活性剂。 2.1理化性能 (1)鼠李糖脂的分子量通常在476~766g/mol之间, (2)临界胶束浓度在20~200mg/L. (3)鼠李糖脂的HLB值还没相关报道,按通常的计算方法,通过对官能影响的分析计

相关文档