文档库 最新最全的文档下载
当前位置:文档库 › 桁架结构静力测试

桁架结构静力测试

桁架结构静力测试
桁架结构静力测试

桁架结构静力测试

邬雨萱1450502 金永学1550873

1.工程背景:

钢桁架桥在现实中应用广泛,工程实例中有各

种各样的钢桁架桥。钢桁架桥一般为超静定结

构,以使桥更为安全。桁架杆件主要受轴向拉

应力或压应力而不受弯矩。因此可以最大限度

发挥材料的性能,让承受更大的力,因此其十

分适合于大跨度结构。如图所示就是一座钢桁

架桥。但是实际应用中的桁架桥的结点往往并

非全铰接,其中或多或少带有刚接特性,因此实际使用时桁架的受力与理论计算并不完全相同。桁架结构是现代工程结构中最常用的结构之一。在荷载作用下,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,节省材料,减轻自重和增大刚度,同时,桁架结构还具有造型优美,坚固耐用,具有艺术性等特点,在现代工程实践当中得到广泛的应用。因此,桁架的设计和测试显得尤为重要。

1.实验目的:

(1)设计并组装桁架结构;

(2)理论分析选定杆件轴力大小和方向; (3)了解应变片测量原理及使用方式;

(4)测定桁架各杆件轴力大小,并与理论值比较; 2. 实验内容:

(1)桁架搭建:该桁架由24根265mm ×10mm ×5mm 和90根190mm ×10mm ×5mm 的钢杆通过螺钉连结起来。成型后效果如下图。

图一 桁架实物图

(a) (b) (c)

图二 节点构造图

(2)实验方案设计:杆件选择:在实验中,为了测得杆的轴力,我们选择了三种不同的杆件粘贴应变片。杆件位置及编号如下图所示:

每个测点在杆件的正,反两面分别粘贴应变片,编号后,再引出导线,接入DH-3818静态应变测试仪上。将应变片粘贴在杆件两侧,目的是排除由于受力不在桁架所在平面内而造成的杆件弯曲对测试的影响。在实验处理数据时,应取两个读数的平均值作为杆件的应变值。

加载设计:因简支梁的挠度在力集中在梁中点时达到最大,所以我们将荷载加在桁架的中间位置。为了加载方便,我们把加载点设计在桁架的上弦点A 处。如上图所示。

(3)受力分析:该桁架结构有一定的对称性,在作受力分析图时我们只画结构的一半受力图:

(4)操作步骤:a.在需要测量的杆件上贴好应变片,将各应变片导线接入DH-3818静态应变测试仪并用电烙铁焊接牢固;

b.将DH-3818静态应变测试仪各通道清零并平衡;

c.加载,记录下各通道的读数,计算轴力,与理论值进行比较。 (5)实验数据处理:

测得每个杆件的横截面都是10.25×3.30mm(取横截面积为34mm 2)的矩形,取弹性模量E=210G ,重力加速度g=9.8m/s 。 数据表如下:

其它杆件受力

外载荷杆件1受力杆件2受力杆件3受力

3.实验分析与讨论

(1)在分析模型中,我们把桁架杆件的节点连接视为铰接,而在实际制作中我们是用螺栓连接的。虽然杆件之间可以发生小幅度的相对转动,但是节点还是对转动有一定约束,所以测得的数值与理论分析的数值相比会有一定的误差。

结构力学习题及答案(武汉大学)

结构力学习题 第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。 题2-1图题2-2图 题2-3图题2-4图 题2-5图题2-6图 2-7~2-15 试对图示体系进行几何组成分析。若是具有多余约束的几何不变体系,则需指明多余约束的数目。

题2-7图 题2-8图题2-9图 题2-10图题2-11图 题2-12图题2-13图 题2-14图题2-15图

题2-16图题2-17图 题2-18图题2-19图 题2-20图题2-21图2-1 1 W = 2-1 9 W - = 2-3 3 W - = 2-4 2 W = - 2-5 1 = W - 2-6 4 = W - 2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系 2-9、2-10、2-15具有一个多余约束的几何不变体系 2-11具有六个多余约束的几何不变体系 2-13、2-14几何可变体系为

2-18、2-19 瞬变体系 2-20、2-21具有三个多余约束的几何不变体系 第3章静定梁和静定平面刚架的力分析3-1 试作图示静定梁的力图。 (a)(b) (c) (d) 习题3-1图 3-2 试作图示多跨静定梁的力图。 (a) (b)

(c) 习题3-2图 3-3~3-9 试作图示静定刚架的力图。 习题3-3图习题3-4图 习题3-5图习题3-6图 习题3-7图习题3-8图

习题3-9图 3-10 试判断图示静定结构的弯矩图是否正确。 (a) (b) (c) (d) 部分习题答案 3-1 (a )m kN M B ?=80(上侧受拉),kN F R QB 60=,kN F L QB 60-= (b )m kN M A ?=20(上侧受拉),m kN M B ?=40(上侧受拉),kN F R QA 5.32=, kN F L QA 20-=,kN F L QB 5.47-=,kN F R QB 20=

用三角形单元建立拓扑优化类桁架连续体

用三角形单元建立拓扑优化类桁架连续体 作者:闫凯, 周克民, YAN Kai, ZHOU Ke-min 作者单位:华侨大学,土木工程学院,福建,泉州,362021 刊名: 华侨大学学报(自然科学版) 英文刊名:JOURNAL OF HUAQIAO UNIVERSITY(NATURAL SCIENCE) 年,卷(期):2009,30(2) 被引用次数:0次 参考文献(12条) 1.MICHELL A G M The limits of economy of material in framestucture 1904(06) 2.COX H L The design of structures of least weight 1965 3.HEGEMINER G A.PRAGER W On michell trusses 1969(02) 4.ROZVANY G I N Some shortcomings in michell trusses theory 1996(04) 5.ROZVANY G I N Partial relaxation of the orthogonality requirement for classical michell trusses 1997(04) 6.杨德庆.隋允康桁架结构拓扑优化设计密度变量的两种模式 1997(05) 7.BENDSOE M P.KIKUCHI N Generating optimal topologies in structural design using a homogenization method 1988(02) 8.程耿东关于桁架结构拓扑优化中的奇异最优解[期刊论文]-大连理工大学学报 2000(04) 9.隋允康.彭细荣结构拓扑优化ICM方法的改善[期刊论文]-力学学报 2005(02) 10.隋允康.杨德庆.孙焕纯统一骨架与连续体的结构拓扑优化的理论与方法[期刊论文]-计算力学学报 2000(01) 11.周克民.胡云昌利用有限元构造Michell桁架的一种方法[期刊论文]-力学学报 2002(06) 12.周克民.李霞长悬臂桁架受横向集中力的拓扑优化 2009(01) 相似文献(10条) 1.期刊论文赵丹.周克民.ZHAO Dan.ZHOU Ke-min基于类桁架连续体的柔性机构拓扑优化设计-福州大学学报(自 然科学版)2008,36(3) 以各向异性类桁架连续体为材料模型,以材料在结点位置的密度和主轴方向作为设计变量.结点在指定方向的位移为目标函数,根据有限元分析得到的应力应变场,采用优化准则法优化材料分布形成类桁架连续体·在微机电系统中可直接用各向同性材料,还可通过引入微小间隙使各向同性材料具有方向性.因材料在设计域内是连续分布的,不需要抑制中间密度,避免了其他拓扑优化方法中普遍存在的棋盘格现象、网格依赖性以及局部极值等数值不稳定问题.提供几个算例,并和已有结果进行比较,说明了此方法的有效性. 2.会议论文周克民.李霞类桁架连续体结构的离散化方法2009 本文研究了类桁架连续体离散化杆系结构的方法。根据单元内杆件在各结点位置的密度和方向的相对关系判断杆件分布区域类型(如T、S 等区域)。选择T区域杆件密度最大的结点作为初始点。在初始点沿杆件方向在单元内画直线与单元边界相交。根据该单元边界两端结点的杆件方向插值得到该交点的方向。再沿该交点的杆件方向在下一单元内画直线。逐个单元直到设计域边界得到折线(近似曲线)。根据每段曲线的横向杆件密度、方向改变角等在曲线上插入结点。在这些结点沿另一方向画另一条曲线,如此反复。最后找出所有曲线的交点。将这些交点之间的曲线用直线代替得到杆系结构。数值算例的结果与解析解十分接近。这种方法没有数值计算不稳定问题。 3.期刊论文张莉.周克民.Zhang Li.Zhou Kemin基于类桁架连续体的结构拓扑优化方法与应用-应用力学学报 2007,24(3) 以各向异性连续体为基结构,采用类桁架连续体材料模型进行结构拓扑优化.以材料在结点位置的密度和方向作为优化设计变量,使材料在设计域内连续分布.并以此建立材料的弹性矩阵和刚度矩阵.优化过程没有抑制中间密度,这从根本上避免了许多拓扑优化方法普遍存在的单元铰接、棋盘格现象以及单元依赖性等数值不稳定问题.采用满应力准则法,借助有限元结构分析,经过少量迭代,建立优化的材料连续分布场,即类桁架连续体结构.由于首先建立的拓扑优化结构是各向异性连续体,从而得到更大优化空间.然后可以结合工程实际需要将其转化为离散的拓扑优化杆系结构.最后,以1个经典Michell桁架和3种形式的拱桥为数值算例,演示了其结构拓扑优化过程. 4.期刊论文周克民.李霞.ZHOU Ke-min.LI Xia长悬臂桁架受横向集中力的拓扑优化-华侨大学学报(自然科学版 )2009,30(1) 用解析方法推导拓扑优化最小重量长悬臂桁架.桁架在应力约束下,自由端受横向集中力作用,桁架宽度为常数,它的节长、结点坐标、腹杆和弦杆的角度,以及所有杆的横截面尺寸均为设计变量.分析结果表明,拓扑优化桁架中的各节腹杆的位置和横截面面积相同,中间结点位于每节1/4位置.当结构长度趋于无限长时,腹杆趋于30°,60°,相对45°桁架的体积差别不大,与类桁架连续体的体积差别也很小.

桁架结构分析

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验” 结题论文 姓名骆辉军 学院土木与交通学院 专业土木工程(卓越全英班) 学号 201230221450 指导老师范学明 时间 2014年10月

一.实验背景 随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。在桥梁结构中,桁架结构也应用广泛。只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。 但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。 研究桁架结构模型优化的意义 桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。而且具有结构简单,运输方便等优点,其应用于各个工程领域。古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。 二.实验的相关资料 1.桁架结构的常见构造方式 桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相

结构力学_习题集(含答案)

《结构力学》课程习题集 西南科技大学成人、网络教育学院版权所有 习题 【说明】:本课程《结构力学》(编号为06014)共有单选题,判断题,计算题1,计算题2,计算题3,计算题4,几何构造分析等多种试题类型,其中,本习题集中有[计算题4]等试题类型未进入。 一、单选题 1.弯矩图肯定发生突变的截面是()。 A.有集中力作用的截面; B.剪力为零的截面; C.荷载为零的截面; D.有集中力偶作用的截面。 2.图示梁中C截面的弯矩是()。 4m2m 4m 下拉);上拉); 下拉);下拉)。 3.静定结构有变温时,()。 A.无变形,无位移,无内力; B.有变形,有位移,有内力; C.有变形,有位移,无内力; D.无变形,有位移,无内力。 4.图示桁架a杆的内力是()。 ; B.-2P;; D.-3P。 5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为()。

A.四根; B.二根; C.一根; D.零根。 P a l = a P P P 6 6. 图示梁A 点的竖向位移为(向下为正)( )。 A.)24/(3EI Pl ; B.)16/(3EI Pl ; C.)96/(53EI Pl ; D.)48/(53EI Pl 。 P EI EI A l/l/22 2 7. 静定结构的内力计算与( )。 无关; 相对值有关; 绝对值有关; 无关,I 有关。 8. 图示桁架,零杆的数目为:( )。 ; ; ; 。 9. 图示结构的零杆数目为( )。 ; ; ; 。 10. 图示两结构及其受力状态,它们的内力符合( )。 A.弯矩相同,剪力不同; B.弯矩相同,轴力不同; C.弯矩不同,剪力相同; D.弯矩不同,轴力不同。

桁架结构优化设计

桁架结构优化设计 一般所谓的优化,是指从完成某一任务所有可能方案中按某种标准寻找最佳方案。结构优化设计的基本思想是,使所设计的结构或构件不仅满足强度、刚度与稳定性等方面的要求,同时又在追求某种或某些目标方面(质量最轻,承载最高,价格最低,体积最小)达到最佳程度。 对于图1-1的结构,已知L=2m,x b=1m,载荷P=100kN,桁架材料的密度r=7.7x10-5N/mm3,[δt]=150Mpa,[δc]=100Mpa,y b的范围:0.5m≦y b≦1.5m。 图1-1 桁架结构 设计变量与目标函数(质量最小)

预定参数(设计中已确定,设计者不能任意修改的量):L , x b ,P ,r ,[δt ] ,[δc ] 设计变量(可由设计者调整的量)y b ,A 1,A 2 约束条件(对设计变量的约束条件) (1) 强度条件约束(截面、杆件的强度) (2) 几何条件约束(B 点的高度范围) 目标函数:桁架的质量W (最小) 解:1. 应力分析 0sin sin 02112=--=∑θθN N F x 0cos cos 02112=---=∑P N N F y θθ 由此得: )sin(sin 2111θθθ+= p N ) sin(sin 212 2θθθ+- =p N 由正弦定理得: l y l x p N B B 2 1) (2 -+=

l y x p N B B 2 22 += 由此得杆1和2横截面上的正应力 1 2 1) (2 lA y l x p B B -+= σ 2 2 22 lA y x p B B += σ 2.最轻质量设计 目标函数(桁架的质量) ))((2 2 2 1 2 2 B B y x A y l x A W B B ++-+=γ (1-1) 约束条件 [][]? ? ? ?? ????? ????≤+≤-+c B t B lA y x p lA y l x p B B σσ2 2 1 2 22 ) ( (1-2) 0.5≦y b ≦1.5(m ) (1-3) (于是问题归结为:在满足上述约束条件下,确定设计变量y b ,A 1,A 2,使目标函数W 最小。) 3.最优解搜索 采用直接实验法搜索。首先在条件(1-3)所述范围内选取一系列y b 值,由强度条件(1-2)确定A 1与A 2,最后根据式(1-2)计算相应W ,在y b -W 曲线中选取使W 最小的y b 与相应的A 1与A 2,即为本问题的最优解。 4.利用MA TLAB 编程 (1)分析目标函数和约束条件

《结构力学习题集》(含答案)

第三章 静定结构的位移计算 一、判断题: 1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取: A. ; ; B. D. C. =1 5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。 6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。 k M p 2 1 y 1 y 2 * * ωω ( a ) M =1 7、图a 、b 两种状态中,粱的转角?与竖向位移δ间的关系为:δ=? 。 8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。 a a 9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题: 10、求图示结构铰A 两侧截面的相对转角?A ,EI = 常数。 q l l l /2 11、求图示静定梁D 端的竖向位移 ?DV 。 EI = 常数 ,a = 2m 。 a a a 10kN/m 12、求图示结构E 点的竖向位移。 EI = 常数 。 l l l /3 2 /3 /3 q 13、图示结构,EI=常数 ,M =?90kN m , P = 30kN 。求D 点的竖向位移。 P 3m 3m 3m 14、求图示刚架B 端的竖向位移。 q 15、求图示刚架结点C 的转角和水平位移,EI = 常数 。 q

16、求图示刚架中D点的竖向位移。EI =常数。 l/2 17、求图示刚架横梁中D点的竖向位移。EI=常数。 18、求图示刚架中D点的竖向位移。 E I = 常数。 q l l l/l/ 22 19、求图示结构A、B两截面的相对转角,EI=常数。 l/ 23 l/3 20、求图示结构A、B两点的相对水平位移,E I = 常数。 l l

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年和提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓

基于MATLAB的桁架结构优化设计

基于MAT LAB 的桁架结构优化设计 林 琳 张云波 (华侨大学土木系福建泉州 362011) 【摘 要】 介绍了基于BP 神经网络的全局性结构近似分析方法,解决了结构优化设计问题中变量的非线性映射问题。在此基础上,利用改进的遗传算法,对桁架结构在满足应力约束条件下进行结构最轻优化设计。利用 Matlab 的神经网络工具箱,编程求解了三杆桁架优化问题。 【关键词】 改进遗传算法;BP 神经网络;结构优化设计;满应力准则 【中图分类号】 T U20114 【文献标识码】 A 【文章编号】 100126864(2003)01-0034-03 TRUSS STRUCTURA L OPTIMIZATON BASE D ON MAT LAB LI N Lin ZH ANG Y unbo (Dept.of Civil Engineering ,Huaqiao University ,Quanzhou ,362011) Abstract :Optimal structural design method based on BP neural netw ork and m odified genetic alg orithm were proposed in this paper.The high parallelism and non -linear mapping of BP neural netw ork ,an approach to the global structural approximation analysis was introduced.It can s olve the mapping of design variables in structural optimization problems.C ombining with an im proved genetic alg orithm ,the truss structure is optimized to satis fy the full stress criteria.Under the condition of MAT LAB 5.3,an exam ple of truss structure has been s olved by this method. K ey w ords :G enetic alg orithm ;BP neural netw ork ;Structural optimization design ;Full stress principle 结构优化设计,就是在满足结构的使用和安全要求的基础上,降低工程造价,更好地发挥投资效益。传统的优化方法有工程法和数学规划法,其难以解决离散变量问题,对多峰问题容易陷入局部最优,且对目标函数要求有较好的连续性或可微性。而近年来提出的基于生物自然选择与遗传机理的随机搜索遗传算法对所解的优化问题没有太多的数学要求,可以处理任意形式的目标函数和约束,对离散设计变量的优化问题尤为有效。进化算子的各态历经性使得遗传算法能够非常有效地进行概率意义下的全局搜索,能高效地寻找到全局最优点。但采用遗传算法时,进化的每一代种群成员必须要进行结构分析,因此所需的结构分析次数较多。 1 桁架结构优化设计问题的表述 在满足应力约束条件下的桁架重量最轻优化问题为: min w (A )=Σn i =1ρA i L i s.t 1 σi ≤[σi ] (i =1,2……n ) A min ≤A i ≤A max w (A )为结构总重量,ρ为材料密度,L i 为第i 杆的长度,A i 为第i 杆件面积,σi 为第i 杆的应力,[σi ]为第i 杆的许用 应力,A min 、A max 分别为杆件面积的下界与上界;n 为杆件总数。 2 神经网络结构近似分析方法 人工神经网络是由大量模拟生物神经元功能的简单处理单元相互连接而成的巨型复杂网络,它是一个具有高度非线 性的超大规模连续时间自适应信息处理系统,易处理复杂的非线性建模问题。文献[1]在K olm og orov 多层神经网络映射存在定理的基础上,针对近似结构分析问题提出的多层神经网络映射存在定理,确定了近似结构分析的神经网络的基本模型。从理论上证明一个三层神经网络可用来描述任一弹性结构的应力、位移等变量和结构设计变量之间的映射关系,为利用人工神经网络来进行结构近似分析提供理论基础。 211 BP 神经网络及其算法改进 BP 神经网络,即误差反向传播神经网络。其最主要的 特性就是具有非线性映射功能。1989年R obert Hecht -Niel 2 s on 证明了对于任何闭区间内的一个连续函数,都可用一个 隐含层的BP 网络来逼近。因而一个三层BP 网络可完成任意的n 维到m 维的映照,它由输入层、隐层和输出层构成。 传统的BP 网络存在着局部极小问题和收敛速度较慢的问题,因此本文采用了动量法和学习率自适应调整的策略,提高了学习速度并增加了算法的可靠性。 动量法考虑了以前时刻的梯度方向,降低了网络对误差曲面局部细节的敏感性,有效地抑制了网络陷于局部极小。 w (k +1)=w (k )+α[(1-η)D (k )+ηD (k -1)] α(k )=2λα(k -1)λ=stg n[D (k )D (k -1)] w (A )为权值向量,D (k )=- 5E 5w (k ) 为k 时刻的负梯度,D (k -1)为k -1时刻的负梯度,η为动量因子,α为学习率。 4 3 低 温 建 筑 技 术 2003年第1期(总第91期)

结构力学习题资料

结构力学复习题 一、单选题 1、 ①下图结构的自由度为。 (A)0 (B)-1 (C)-2 (D)1 正确答案(B) ②下图结构的自由度为。 (A)0 (B)-1 (C)-2 (D)1 正确答案(C) ③下图结构的自由度为。 (A)0 (B)-1 (C)-2 (D)

1 正确答案(A) ④下图结构的自由度为。 (A)0 (B)-1 (C)-2 (D)1 正确答案(D) 2、 ①分析下图所示体系的几何组成为。 (A)几何不变,无多于约束 (B)几何可变(C)几何瞬变 (D)几何不变,有多于约束 正确答案(A) ②分析下图所示体系的几何组成为。

(A)几何不变,无多于约束 (B)几何可变(C)几何瞬变 (D)几何不变,有多于约束 正确答案(D) ③分析下图所示体系的几何组成为。 (A)几何不变,无多于约束 (B)几何可变(C)几何瞬变 (D)几何不变,有多于约束 正确答案(D) ④分析下图所示体系的几何组成为。 (A)几何不变,无多于约束 (B)几何可变(C)几何瞬变 (D)几何不变,有多于约束 正确答案(B) 3、

①指出下列结构的零杆个数为。 (A)2 (B)3 (C)4 (D)5 正确答案(C) ②指出下列结构的零杆个数为。 (A)9 (B)10 (C)11 (D)12 正确答案(C) ③指出下列桁架的类型。 (A)简单桁架 (B)联合桁架 (C)组合桁架 (D)复杂桁架

正确答案(B) ④指出下列桁架的类型。 (A)简单桁架 (B)联合桁架 (C)组合桁架 (D)复杂桁架 正确答案(A) ⑤指出下列结构的单铰个数为。 (A)13 (B)14 (C)15 (D)16 正确答案(D) 4、 ①指出下列结构的超静定次数为。

简谈结构力学桁架零杆问题Word版

简谈结构力学桁架零杆问题 姓名(楷体四号) 单位(宋体小五) 摘要:本文粗略讲解一下桁架结构中关于零杆的问题,包括零杆的判断,以及零杆在求解桁架结构的用处。关键词:结构力学、桁架、零杆 引言 学习了结构力学,个人对于桁架印象较深,特别是桁架中我们认为约定出来的零杆印象很深,因为当初个人在学习的时候,对于零杆并未掌握,充其量只是知道有这么回事,其内在含义并不清楚。但它的存在对于求解桁架结构非常重要,有时候可以让复杂的桁架变为几根杆件的简单桁架,非常实用。通过后来的学习,网上查找资料,和同学探讨,现在虽不说精通,但也有些个人见解。 1零杆的含义 在结构力学关于静定平面桁架的内力的计算中,当桁架的一些结点没有荷载时,并由于桁架形式所导致,桁架中一些杆件不产生内力,这些内力为零的杆件称为“零杆”。零杆是在理论计算中为了便于计算才提出来的,实际生活中是很少见到的,只是我们为了计算桁架内力图时为了简化的方便,或者说忽略它的一点点受力对于整个求解结果影响并不是很大,我们就将其定义为零杆。 2零杆的作用 桁架中的零杆虽然不受力,但却是保持结构坚固性所必需的。因为桁架中的载荷往往是变化的。在一种载荷工况下的零杆,在另种载荷工况下就有可能承载。如果缺少了它,就不能保证桁架的坚固性。掌握了判断出零杆的方法,在分析桁架内力时,如果首先确定其中的零杆,这对后续分析往往有利,会给计算带来很大的方便。 3零杆的判定 1、无荷载的三杆结点,若两杆在同一直线上,则第三杆为零杆。(如下图a) 2、不在同一条直线上的两杆节点上若没有荷载作用,两杆均为零杆。(如下图b) 3、不共线的两杆结点,若荷载沿一杆作用,则另一杆为零杆。(如下图c) 4、对称桁架在对称荷载作用下,对称轴上的K形结点若无荷载,则该结点上的两根斜 杆为零杆。(如下图d) 5、对称桁架在反对称荷载作用下,与对称轴重合或者垂直相交的杆件为零杆。(如下 图e) 图示: 值得注意的是,d,e中结构的支座不是对称的,但是只有竖向力的作用,铰支座的水平约束其实不起作用,因此可以忽略,这才可以把结构看成是对称的结构。另外,

结构力学练习题与答案1

结构力学习题及答案 一. 是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题 分4小题,共11分) 1 . (本小题 3分) 图示结构中DE 杆的轴力F NDE =F P /3。( ). 2 . (本小题 4分) 用力法解超静定结构时,只能采用多余约束力作为基本未知量。 ( ) 3 . (本小题 2分) 力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。( ) 4 . (本小题 2分) 用位移法解超静定结构时,基本结构超静定次数一定比原结构高。 ( ) 二. 选择题(将选中答案的字母填入括弧)(本大题分5小题,共21分) 1 (本小题6分)

图示结构EI=常数,截面A 右侧的弯矩为:( ) A .2/M ; B .M ; C .0; D. )2/(EI M 。 2. (本小题4分) 图示桁架下弦承载,下面画出的杆件力影响线,此杆件是:( ) A.ch; B.ci; C.dj; D.cj. 3. (本小题 4分) 图a 结构的最后弯矩图为: A. 图b; B. 图c; C. 图d; D.都不对。( ) ( a) (b) (c) (d) 2 =1

4. (本小题 4分) 用图乘法求位移的必要条件之一是: A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。 ( ) 5. (本小题3分) 图示梁A 点的竖向位移为(向下为正):( ) A.F P l 3/(24EI); B. F P l 3/(!6EI); C. 5F P l 3/(96EI); D. 5F P l 3/(48EI). 三(本大题 5分)对图示体系进行几何组成分析。 四(本大题 9分)图示结构B 支座下沉4 mm ,各杆EI=2.0×105 kN·m 2,用力法计算并作M 图。 F P

桁架结构体系..

桁架结构体系 在本小节中我们要给大家介绍桁架结构体系的组成、优缺点及适用范围;桁架结构体系的合理布置原则及及受力特点。 桁架结构组成:一般由竖杆,水平杆和斜杆组成(图1-23)。 图1-23 桁架结构 在房屋建筑中,桁架常用来作为屋盖承重结构,这时常称为屋架。 用于屋盖的桁架体系有两类: (1)平面桁架,用于平面屋架; (2)空间桁架,用于空间网架。 这两类桁架的共同特点是它们都由一系列只受同向拉力或压力的杆件连接而成。作为桁架结构的整体来说,它们在荷载作用下受弯、受剪;但作为桁架结构中的杆件来说,只承受轴向力,不承受弯矩、剪力和扭矩。 桁架结构的最大特点是,把整体受弯转化为局部构件的受压或受拉,从而有效地发挥出材料的潜力并增大结构的跨度。 桁架结构受力合理、计算简单、施工方便、适应性强,对支座没有横向推力,因而在结构工程中得到了广泛的应用。 屋架的主要缺点是结构高度大,侧向刚度小。 结构高度大,增加了屋面及围护墙的用料,同时也增加了采暖、通风、采光等设备的负荷,并给音响控制带来困难。侧向刚度小,对于钢屋架特别明显,受压的上弦平面外稳定性差,也难以抵抗房屋纵向的侧向力,这就需要设置支撑。 桁架是较大跨度建筑的屋盖中常用的结构型式之一。在一般情况下,当房屋的跨度大于18m时,屋盖结构采用桁架比梁经济。屋架按其所采用的材料区分,有钢屋架、木屋架、钢木屋架和钢筋混凝土屋架等。钢筋混凝土屋架当其下弦采用预应力钢筋时,称为预应力钢筋混凝土屋架。目前,我国预应力钢筋混凝土屋架的跨度已做到60多米,钢屋架的跨度已做到70多米。

一、桁架结构的型式与受力特点 屋架结构的型式很多: (1)按屋架外形的不同,有三角形屋架、梯形屋架、抛物线屋架、折线型屋架、平行弦屋架等。 (2)根据结构受力的特点及材料性能的不同,也可采用桥式屋架、无斜腹杆屋架或刚接桁架、立体桁架等。 我国常用的屋架有三角形、矩形、梯形、拱形和无斜腹杆屋架等多种型式,见图1-24。 图1-24常用的屋架型式 (a)三角形屋架(b)平行弦屋架(矩形)(c)梯形屋架(再分式) (d)拱形屋架(e)下撑式屋架(f)无斜腹杆屋架 尽管桁架结构中以轴力为主,其构件的受力状态比梁的结构合理,但在桁架结构各杆件单元中,内力的分布是不均匀的。屋架的几何形状有矩形的(即平行弦屋架)、三角形、梯形、折线形的和抛物线形的等等。它们的内力分布随形状的不同而变化。 在一般情况下,屋架的主要荷载类型是均匀分布的结点荷载。我们首先分析在结点荷载作用下平行弦屋架的内力分布特点,见图1-25。然后,引伸至其它形式的屋架。 从图1-25中可以得出如下结论: (1)弦杆轴力:

拓扑优化

结构拓扑优化设计现状及前景 目前, 最优化设计理论和方法在机械结构设计中得到了深入的研究和广泛的应用。所谓优化设计就是根据具体的实际问题建立其优化设计的数学模型, 并采用一定的最优化方法寻找既满足约束条件又使目标函数最优的设计方案。根据优化问题的初始设计条件, 目前结构优化技术有四大领域: 1) 尺寸优化; 2) 形状优化; 3) 拓扑与布局优化; 4) 结构类型优化。结构尺寸优化是在结构的拓扑确定的前提下, 首先用少量尺寸对结构的某些变动进行表达, 如桁架各单元的横截面尺寸、某些节点位置的变动等, 然后在此基础上建立基于这些尺寸参数的数学模型并采用优化方法对该模型进行求解得到最优的尺寸参数。在尺寸优化设计中, 不改变结构的拓扑形态和边界形状, 只是对特定的尺寸进行调整, 相当于在设计初始条件中就增加了拓扑形态的约束。而结构最初始的拓扑形态和边界形状必须由设计者根据经验或实验确定, 而不能保证这些最初的设计是最优的, 所以最后得到的并不是全局最优的结果。结构形状优化是指在给定的结构拓扑前提下, 通过调整结构内外边界形状来改善结构的性能。以轴对称零件的圆角过渡形状设计的例子。形状设计对边界形状的改变没有约束,和尺寸优化相比其初始的条件得到了一定的放宽,应用的范围也得到了进一步的扩展。拓扑优化设计是在给定材料品质和设计域内,通过优化设计方法可得到满足约束条件又使目标函数最优的结构布局形式及构件尺寸。拓扑设计的初始约束条件更少, 设计者只需要提出设计域而不需要知道具体的结构拓扑形态。拓扑设计方法是一种创新性

的设计方法, 能为我们提供一些新颖的结构拓扑。目前, 拓扑设计理论在柔性受力结构、MEMS 器件及其它柔性微操作机构的设计中得到了广泛的研究。 结构拓扑优化的发展概况 结构拓扑优化包括离散结构的拓扑优化和连续变量结构的拓扑优化。近10 年来, 结构拓扑优化设计虽然取得了一些进展, 但大部分是针对连续变量的, 关于离散变量的研究为数甚少。由于离散变量优化的目标函数和约束函数是不连续、不可微的, 可行域退化为不连通的可行集, 所以难度远大于连续变量优化问题。在离散结构中, 桁架在工程中的应用较为广泛, 由于其重要性, 也由于其分析比较简单, 桁架结构的拓扑优化在文献中研究得最多. 结构拓扑优化的历史可以追溯到1904 年Michell提出的桁架理论, 但这一理论只能用于单工况并依赖于选择适当的应变场, 不能应用于工程实际。1964 年Dorn、Gomory、Greenberg 等人提出基结构法( ground structure approach) , 将数值方法引入该领域, 此后拓扑优化的研究重新活跃起来, 陆续有一些解析和数值方面的理论被 提出来。所谓基结构就是一个由结构节点、荷载作用点和支承点组成的节点集合, 集合中所有节点之间用杆件相连的结构。该方法的基本思路是: 从基结构的模型出发, 应用优化算法( 数学规划法或准则法) , 按照某种规划或约束, 将一些不必要的杆件从基结构中删除, 例如截面积达到零或下限的杆件将被删掉, 并认为最终剩下的杆件 决定了结构的最优拓扑。因此应用基结构, 可以将桁架拓扑优化当作

浅谈工业建筑中桁架结构的优化设计

浅谈工业建筑中桁架结构的优化设计 发表时间:2019-02-28T15:08:35.403Z 来源:《基层建设》2018年第36期作者:张明[导读] 摘要:随着我国工业化的进一步发展,桁架结构在工业建筑中的应用越来越广泛。 河钢股份有限公司唐山分公司发展规划部河北省唐山市 063000 摘要:随着我国工业化的进一步发展,桁架结构在工业建筑中的应用越来越广泛。除厂房屋盖结构外,桁架结构还应用于带式输送机的栈桥、通道、塔架等。它具有重量轻、跨度大、材料消耗经济、标准化程度高等优点,各种形状以满足不同用途。本文主要探讨在带式输送机栈桥的桁架中如何布置构件,使桁架结构受力更合理,使用更经济的材料。通过比较分析桁架在不同构件布置方案下的受力性能,达到优化桁架结构设计的目的。 关键词:平面桁架结构;杆件布置;优化设计 1 桁架基本情况 1.1 桁架的特点与组成 桁架结构是在简支梁基础上发展而来的,简支梁在均布荷载作用下,沿梁轴线弯曲,剪力的分布及截面正应力的分布在中和轴处为零,截面上下边缘处的正应力最大,随着跨度的增大,梁高增加根据正应力的分布特点,在先形成工字型梁后,继续挖空成空腹形式,中间剩下几根截面很小的连杆时,就发展成为“桁架”。由此可见,桁架是从梁式结构发展产生出来的。桁架的实质是利用梁的截面几何特征的几何因素—构件截面的惯性矩Ⅰ增大的同时,截面面积反而可以减小,从而减轻结构自重,达到节省材料的目的。 桁架结构是由直杆在杆端相互连接而组成的以抗弯为主的格构式体系,一般由上弦、下弦、腹杆组成,多应用于受弯构件。简支桁架在外荷载的作用下整体所产生的弯矩图和剪力图都与简支梁的情况相似,但桁架构件的受力性能与梁完全不同。桁架的上弦杆受压、下弦杆受拉,由此形成力偶来平衡外荷载所产生的弯矩,由斜腹杆轴力中的竖向分量来平衡外荷载所产生的剪力。 1.2 桁架结构计算的基本假定条件 (1)杆件与杆件之间相连接的节点均为绝对光滑无摩擦的铰结点。(2)所有杆件的轴线均是直线且在同一平面内,并通过铰的中心。(3)荷载和支座反力均作用在节点上,并位于桁架的平面内。通过分析可以看出:从整体来看,整个桁架相当于一个受弯杆件,而从局部看,桁架的每个杆件只承受轴力、拉力或压力,没有弯矩和剪力。 2 桁架在实际工程中的应用分析 这里以位于甘肃平凉某骨料生产线项目为例,分析桁架结构杆件布置。此桁架为皮带机运输栈桥桁架,跨度 18 m,宽度 3.2 m,高度2.7 m,全封闭结构,角度0°。 2.1 桁架结构建模 采用 PKPM 软件进行建模分析,取单榀桁架,高度 2.7 m,立杆间距取 3 m,荷载取宽度的一半,所有杆件按柱布置,所有节点设为较结点,荷载直接输在节点上。经计算上弦单个节点恒载 0.5 kN、活载7.5 kN,下弦单个节点恒载 3.5 kN、活载 24 kN,通过设置不同的杆件连接形式进行结果分析,桁架均对称布置。 2.2 桁架结构的对比分析 文章共进行四种连接形式的计算,在杆件和荷载均相同的情况下进行结果分析。 (1)由于桁架各杆件只有轴力,我们先将四种桁架结构的轴力图进行对比,如图 1 所示。从图中对比可以看出,桁架采取不同的杆件布置,桁架杆件的内力是不均匀的,整体近似梁内力分布,上下弦杆内力是两端小而向中间逐渐增大,腹杆内力是两端大而向中间逐渐减小的。但是明显3、4 形式下桁架的支座处节点荷载远远大于 1、2 形式,由此可见桁架结构边跨处腹杆直接与支座连接时,桁架整体受力更加合理,图中的 1、2 形式连接相对于 3、4 连接更加合理。 图1 恒载轴力 (2)将 1、2 两种桁架结构的应力图进行对比,如图 2 所示。从图中对比可以看出桁架杆件在 1、2 形式布置下虽然整体轴力分布都比较均匀,但是应力计算结果显示不同的布置下杆件所受内力不同,在相同的条件下 2 形式中间的杆件长细比(187>150)已经超限,1 形式杆件全部满足。由此可见桁架四种形式下最终比较结果 1 形式结构受力更合理。

结构力学练习题及答案

一.是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题分4小题,共 11分) 1 . (本小题 3分) 图示结构中DE 杆的轴力F NDE =F P /3。( ). 2 . (本小题 4分) 用力法解超静定结构时,只能采用多余约束力作为基本未知量。 ( ) 3 . (本小题 2分) 力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。( ) 4 . (本小题 2分) 用位移法解超静定结构时,基本结构超静定次数一定比原结构高。 ( ) 二.选择题(将选中答案的字母填入括弧内)(本大题分5小题,共21分) 1 (本小题6分) 图示结构EI=常数,截面A 右侧的弯矩为:( ) A .2/M ; B .M ; C .0; D. )2/(EI M 。 2. (本小题4分) 图示桁架下弦承载,下面画出的杆件内力影响线,此杆件是:( ) A.ch; B.ci; C.dj; D.cj. 2

3. (本小题 4分) 图a 结构的最后弯矩图为: A. 图b; B. 图c; C. 图d; D.都不对。( ) ( a) (b) (c) (d) 4. (本小题 4分) 用图乘法求位移的必要条件之一是: A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。 ( ) 5. (本小题3分) 图示梁A 点的竖向位移为(向下为正):( ) A.F P l 3 /(24EI); B. F P l 3 /(!6EI); C. 5F P l 3 /(96EI); D. 5F P l 3 /(48EI). 三(本大题 5分)对图示体系进行几何组成分析。 F P =1

相关文档